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ABSTRACT: We formulate the exact, local, resultant, dynamic continuity conditions along the singular sur-
face curve modeling the branched shell structure. The conditions are derived by performing direct through-
the-thickness integration in the global equilibrium conditions of continuum mechanics. Possible inaccuracies
following from additional fictitious surface loads and double integration over a part of the branching region are
compensated by some statically equivalent force and couple fields defined along the singular curve.

1 INTRODUCTION

The general theory of irregular shell structures
was initiated by Makowski & Stumpf (1994),
and Chŕościelewski et al. (1997), developed by
Pietraszkiewicz (2001), and summarized and ex-
tended by Chŕościelewski et al. (2004). In such a shell
theory one has to provide also some resultant continu-
ity conditions to be satisfied along the singular surface
curves modeling the irregularities.

Chróścielewski et al. (2004) noted that for shells
with folds and stepwise thickness, curvature, and/or
material changes it is possible to formulateexactly
the resultant dynamic continuity conditions by a di-
rect through-the-thickness integration of correspond-
ing local balance laws of continuum mechanics. How-
ever, in the case of shell branching, self-intersection,
complex stiffening and/or rigid or deformable junc-
tions there is some ambiguity in defining both the
shell base surface and thickness in the regions of ir-
regularity. Different approximate mechanical models
are used in the literature to treat these regions lead-
ing to inaccuracies in the resulting dynamic continu-
ity conditions.

In this paper we refine the through-the-thickness re-
duction procedure and apply it to the formulation of
the resultant dynamic continuity conditions at the sin-
gular surface curve modeling the shell branching. It
is noted that in reducing 3D fields to their resultants
prescribed at the base surface there may appear addi-
tional fictitious surface loads and double integration
over a part of the branching region. We compensate
the possible surplus of the resultant fields by subtract-
ing some statically equivalent resultant force and cou-
ple fields applied along the singular curve. As a result,

our local, resultant, dynamic continuity conditions for
the branched shell becomeexact implicationsof the
global equilibrium conditions of continuum mechan-
ics.

2 NOTATION AND PRELIMINARY RELATIONS

A shell is a 3D solid body identified in a reference
(undeformed) placement with a region B of the phys-
ical spaceE. The shell boundary∂B consists of three
separable parts: the upperM+ and lowerM− shell
faces, and the lateral boundary surface∂B∗ such that
∂B = M+ ∪M− ∪ ∂B∗, M+ ∩M− = ∅.

The position vectorx of any shell point x∈ B
can be described byx(x, ξ) = x(x) + ξt(x). Here
x(x) = x(x,0) is the position vector of a pointx on
some reference base surfaceM arbitrarily located in
B, −h− ≤ ξ ≤ +h+ is the distance alongξ from M
with h = h− + h+ > 0 the initial shell thickness, and
t(x) is the unit vector of the rectilinear coordinate line
ξ not necessarily normal toM .

The position vectory = χ(x) of the shell in the de-
formed placement̄B = χ(B) can formally be repre-
sented by

y(x, ξ) = y(x) + ζ(x, ξ), ζ(x,0) = 0, (1)

wherey is the position vector of the deformed base
surfaceM̄ = χ(M), which is a material surface dur-
ing deformation process.

Let P⊂B be an arbitrary part of the 3D shell B with
the boundary consisting of three separable parts:∂P=
Π+∪Π−∪∂P∗. Then in the referential description the
3D global equilibrium conditions can be expressed by
vanishing of the total force vectorF(P) and the total
torque vectorTo(P) taken relative to an arbitrary point
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o∈ E of all forces acting on P :

F(P) =
∫∫∫

P
f dv +

∫∫
∂P\∂Bf

tn da

+
∫∫

∂P∩∂Bf

t∗ da = 0, (2)

To(P) =
∫∫∫

P
y× f dv +

∫∫
∂P\∂Bf

y× tn da

+
∫∫

∂P∩∂Bf

y× t∗ da = 0.

In (2), ∂Bf is that part of∂B on which the external
surface force fieldt∗(x) is prescribed,f(x) is the vol-
ume force field, andtn(x) is the contact force field.

If (1) and x = x + ξt are introduced into (2) one
can perform an exact through-the-thickness integra-
tion with regard to the coordinateξ. The global equi-
librium conditions (2) can then be expressed through
the resultant fields defined entirely on the reference
base surfaceM , and this is an appropriate formula-
tion for the 2D theory of shells. In case of a regular
shell, such an exact reduction procedure with regard
to a non-material weighted surface of mass was sug-
gested by Simmonds (1984), see also Libai & Sim-
monds (1983, 1998). In what follows we perform such
an exact reduction of the equilibrium conditions (2)
with regard to the material base surface in the special
case of the branched shell.

3 BRANCHED SHELL

Let the shell B consist of three regular parts B1, B2,
B3 connected together along a common junction. The
base surfaceM of B consists now of three regular
partsM1, M2, M3 connected along the surface curve
Γ = ∂M1 ∩ ∂M2 ∩ ∂M3. Cutting off an arbitrary
part P of B containing the junction, let us discuss the
reduction of its global equilibrium conditions (2).

By the through-the-thickness reduction procedure
the shell parts P1, P2, P3 are reduced to their images
Π1, Π2, Π3 andΓ at Π ⊂ M . In the reduction proce-
dure there are two parts P1d and P2d of the branching
region where the through-the-thickness integration is
performed twice: once when reducing spatial forces
given in P1, P2 and on∂P1, ∂P2 to their resultants
defined onΠ1, Π2 and along∂Π1, ∂Π2, respectively,
and the second time when reducing spatial forces
given in P3 and on∂P3 to their resultants defined on
Π3 and along∂Π3, see Figure 1. Additionally, when
extending the parts P1, P2, P3 into the junction region
some fictitious surface forces are implicitly applied
on the extended surfacesΠ+

1d, Π+
2d, Π+

3d, Π−
3d marked

in Figure 1. In order to compensate the possible
surplus of the resultant surface forces and couples

on Π one has to subtract some resultant forces and
couples alongΓ following from the loads taken twice
in P1d, P2d and on∂P1d, ∂P2d as well as the ones
applied on the extended surfaces.
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Figure 1. The part of branched shell: regions of double integra-
tion.

After performing integration with regard toξ,
the total force vectorF1(P1) defined in (2) of all
spatial forces acting in P1 and on∂P1 is given by

F1(Π1) =
∫∫

Π1

f 1 da +
∫

∂Π1\∂Mf

n1ν dl

+
∫

∂Π1∩∂Mf

n∗1 dl−
∫

Γ
f 1Γ dl (3)

− n1e + n1i,

where

f 1 =
∫ +h+

1

−h−1

f1µ1 dξ + α+
1 t∗+1 − α−1 t∗−1 ,

n1ν =
∫ +h+

1

−h−1

α∗1t1n dξ, n∗1 =
∫ +h+

1

−h−1

α∗1t∗1 dξ,

f 1Γ =
∫ +h+

3

0
α+

1 t∗+1 α∗3 dξ +
∫ +h+

1

0
α+

3 t∗+3 α∗1 dξ (4)

+
∫ +h+

1

0

(∫ +h+
3

0
f1µ3 dξ

)
α∗1 dξ,

n1i =
∫∫

∂P1d

t1nda∗ at ci ,

n1e =
∫∫

∂P1d

t1nda∗ at ce .
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In (4) we have used the geometric expansion coef-
ficientsµ, α±, α∗ relating differentials outsideΠ to
those onΠ and along∂Π:

dv = µdξda, da± = α±da, da∗ = α∗dξdl. (5)

Whenci ∈ Γ∩ ∂Mf and/orce ∈ Γ∩ ∂Mf , the vec-
torsn1i andn1e in (4)4,5 should be calculated from the
known tractiont∗1 applied on∂Bf , instead oft1n.

In exactly the same way we can calculate the total
force vectorF2(Π2) of all spatial forces acting on P2.
The result is expressed through the fieldsf 2, n2ν , n∗2,
f 2Γ, n2i, n2e defined onΠ2 and∂Π2 in complete anal-
ogy to those given in (4).

The total force vectorF3(Π3) is calculated as for
the regular shell region by direct integration in (2)
with regard toξ leading to

F3(Π3) =
∫∫

Π3

f 3 da (6)

+
∫

∂Π3\∂Mf

n3ν dl +
∫

∂Π3∩∂Mf

n∗3 dl.

whare the fieldsf 3, n3ν , n∗3 are defined analogously to
(4).

Summing up the results forF1, F2, F3 we can write

F(Π) =
∫∫

Π\Γ
f da +

∫
∂Π\∂Mf

nν dl +
∫

∂Mf

n∗ dl

−
∫

Γ
f Γ dl− ne + ni. (7)

In (7) the resultant surface forcesf , the surface
stress resultantsnν , and the resultant boundary forces
n∗ are defined in all three parts of P, while the com-
pensating curvilinear force resultantsf Γ and concen-
trated forcesni, ne follow only from P1d, P2d, Π+

1d,
Π+

2d, Π+
3d, Π−

3d and∂P1d, ∂P2d taken into account in
F1(Π1) andF2(Π2), respectively.

The total torque vectorTo(Π) relative to o∈ E of
all spatial forces acting on P can again be calculated
by direct integration in (2) with regard toξ. The pro-
cedure is exactly the same as in (3)-(7), only when
calculating the surface couples one has to introduce
the following exact relations for the 3D position vec-
tor in the deformed placement:

y = y+ ζ, y+ = y+ ζ+, y− = y+ ζ−. (8)

In the regions P1d and P2d the compensating cou-
ples should be reduced relative to the singular curve
Γ, and the deformed position vectors should be taken
in the forms

y = yΓ + ζΓ, y+ = y+
Γ + ζ+

Γ , y− = y−Γ + ζ−Γ . (9)

Performing appropriate transformations similar to
those leading to (7) we obtain the total torque vector

To(Π) of the branched shell expressed only by fields
defined on the base surface

To(Π) =
∫∫

Π\Γ
(c+ y× f ) da

+
∫

∂Π\∂Mf

(mν + y× nν) dl

+
∫

∂Mf

(m∗ + y× n∗) dl (10)

−
∫

Γ
(cΓ + yΓ × f Γ) dl

− (me + yΓe × ne) + (mi + yΓi × ni).

Again, in (10) the resultant surface couplesc, stress
couplesmν , and boundary couplesm∗ are defined in
all three parts of P, while the compensating curvi-
linear couple resultantscΓ and the concentrated cou-
plesmi, me follow only from P1d, P2d, Π+

1d, Π+
2d, Π+

3d,
Π−

3d and∂P1d, ∂P2d taken into account inTo1(Π1) and
To2(Π2), respectively.

The relations (7) and (10) are exact 2D static equiv-
alents ofF(P) andTo(P) appearing in the 3D global
equilibrium conditions (2) for an arbitrary part P of
the shell B treated as a 3D solid.

4 DYNAMIC CONTINUITY CONDITIONS

The global equilibrium conditions (2) with the to-
tal force and torque given through the surface fields
by (7) and (10), should now be appropriately trans-
formed. In particular, we have to:

a) use the surface Cauchy postulatesnν = Nν,
mν = Mν, with ν the unit external normal vec-
tor at∂Π, which allow us to introduce the surface
stress resultantN and resultant coupleM tensors;

b) apply appropriate generalized surface divergence
theorems (see Chróścielewski et al. 2004) which
allow us to represent the curvilinear integrals
over ∂Π of the fieldsNν and Mν by the sur-
face integrals overΠ of the surface divergences
Div N andDiv M together with additional jump
terms alongΓ;

c) integrate by parts alongΓ, which allow us to rep-
resent the concentrated vectorsni, ne and mi,
me by curvilinear integrals overΓ of some dis-
tributed force and couple vectorsn andm.

As a result of all the transformations the
global equilibrium conditions for the branched shell
take the forms (for details see Konopińska and
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Pietraszkiewicz 2005)

F(Π) =
∫∫

Π\Γ
(Div N + f ) da +

∫
∂Mf

(n∗ −Nν) dl

−
∫

Π∩Γ

(
n′ + [Nν] + f Γ

)
dl, (11)

To(Π) =
∫∫

Π\Γ

{
Div M + ax(NFT − FNT ) + c

+ y× (Div N + f )}da

+
∫

∂Mf

{(m∗ −Mν) + y× (n∗ −Nν)}dl

−
∫

Γ

{
m′ + y′Γ × n + [Mν] + cΓ (12)

+yΓ ×
(
n′ + [Nν] + f Γ

)}
dl,

where byax(.) we understand the axial vector of the
skew tensor(.), and by[.] we denote jumps along the
singular curveΓ defined by

[Nν] =
∑3

k=1
N(k)ν(k),

[Mν] =
∑3

k=1
M(k)ν(k). (13)

In (13) the upper index(k) means the finite limit of
the corresponding field when approaching the com-
mon singular curveΓ from inside ofM (k), k = 1,2,3.

Vanishing of the first two integrals of (11) and
(12) leads to the known local equilibrium equations
to be satisfied at each regular point ofM and dy-
namic boundary conditions to be satisfied at each reg-
ular point of ∂Mf , see Libai & Simmonds (1983,
1998), Simmonds (1984), Pietraszkiewicz (2001), and
Chróścielewski et al. (2004).

Vanishing of the third integrals of (11) and (12)
is assured by the local, resultant, dynamic continuity
conditions

n′ + [Nν] + f Γ = 0,

m′ + y′Γ × n + [Mν] + cΓ = 0 (14)

to be satisfied at each regular point ofΓ.
The conditions (14) are the ordinary differential

equations alongΓ which differ from the equilibrium
equations of rods by the jump terms describing inter-
action between regular shell parts along the junction.

5 CONCLUSIONS

We have presented new and exact expressions
(14) for the local, resultant, dynamic continuity

conditions to be satisfied along the singular curve
Γ being the common boundary of three regular
branches of the shell base surface. The conditions
have been derived by performing a direct through-
the-thickness integration in the global equilibrium
conditions of continuum mechanics. Therefore,
our dynamic continuity conditions are valid for
an arbitrary shell thickness, internal through-the-
thickness structure and/or material properties, as well
as for unrestricted values of translations, rotations,
strains and/or bendings of the shell material elements.
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