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Preface

This volume contains full texts of 114 papers that have been selected for presentation at the 8th Conference
"Shell Structures: Theory and Applications", 12-14 October, 2005, Jurata (Poland), called briefly SSTA2005.

Shells are basic structural elements of modern technology and everyday life. Examples of shell structures
include automobile bodies, domes, water and oil tanks, pipelines, silos, ship hulls, aircraft fuselages, turbine
blades, nanotubes, but also loudspeaker cones, balloons, parachutes, biological membranes, a human skin, a
bottle of wine, or a beer can.

SSTA conferences are traditionally organized by the Section of Structural Mechanics of the Committee for
Civil Engineering of the Polish Academy of Sciences in co-operation with other scientific and technological
organizations. Previous SSTA conferences were held in Cracow (1974), Gotlun (1978), Opole (1982), Szklarska
Poreba (1986), Janowice (1992), and Jurata (1998, 2002). The aim of the meetings is always the same: to bring
together scientists, engineers, and other specialists in shell structures in order to discuss important results and
new ideas in the field. The goal is to pursue more accurate theoretical models, to develop more powerful and
versatile methods of analysis, and to disseminate expertise in design and maintenance of shell structures.

All abstracts sent to organizers of SSTA2005 and the full-text manuscripts submitted to this volume were
reviewed by members of the International Advisory Board. The editors are deeply indebted to all members of
the Board for their efforts and important contribution to publication of this volume.

The final corrected versions of the manuscripts had to be prepared in a camera-ready form suitable for
publication by Taylor & Francis (incorporating A.A. Balkema Publishers). However, many final texts submitted
did not adjust to the standard suggested by the publisher. Therefore, most of the final texts have additionally been
adjusted to the publishers requirements using DTP techniques, obvious printing errors were corrected, and the
English of some texts was refined. We believe that all those technical and linguistic improvements have made
some papers better readable an more understandable. We would like to thank very much indeed our associates
Dr. J. Gorski, Dr. W. Witkowski, Ms. V. Konopinska, and Mr. Sz. Opoka for their assistance and help in bringing
the volume to its final form.

The papers published in this volume reflect a wide spectrum of scientific and engineering problems of
shell structures. The papers are divided into six broad groups: general lectures, theoretical modelling, stability,
dynamics, finite element analyses, and engineering design. In each group there is a number of papers containing
original and/or interesting results in the field. We feel that such a grouping of papers allows the reader to find
more easily the results he is interested in.

We would like to express our gratitude to all authors for their contributions, and for their willingness and
efforts to share their research and development activities with the community of shell structures. We are deeply
grateful to the authors of the general lectures Prof. I. Andrianov (Ukraine), Prof. VA. Eremeyev (Russia),
Prof. A. Ibrahimbegovi¢ (France), Prof. I’. Klosowski (Poland), Prof. B.H. Kroplin (Germany), Prof. H.A. Mang
(Austria), and Prof. J.M. Rotter (UK) for their particularly valuable and extensive contributions to this volume.

For organization of SSTA2005, active involvement of the local Organizing Committee has been of primary
importance. We thank very much indeed all the members of OC for their long-lasting engagement and exceptional
efforts. Last but not least, we would like to gratefully acknowledge the financial support of our sponsors, in
particular the Centre for Urban Construction and Rehabilitation, SOFiSTiK AG, and the Foundation for Civil
Engineering Development.

Gdansk, July 2005
Wojciech Pietraszkiewicz
Czestaw Szymczak
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On exact dynamic continuity conditions in the theory of
branched shells

V. Konopihska & W. Pietraszkiewicz
Polish Academy of Sciences, Institute of Fluid-Flow Machinery,iiSdaPoland

ABSTRACT: We formulate the exact, local, resultant, dynamic continuity conditions along the singular sur:
face curve modeling the branched shell structure. The conditions are derived by performing direct throug
the-thickness integration in the global equilibrium conditions of continuum mechanics. Possible inaccuracie
following from additional fictitious surface loads and double integration over a part of the branching region ar.
compensated by some statically equivalent force and couple fields defined along the singular curve.

1 INTRODUCTION our local, resultant, dynamic continuity conditions for
the branched shell beconegact implicationf the

The general theory of irregular shell structuresglobal equilibrium conditions of continuum mechan-

was initiated by Makowski & Stumpf (1994), jcs.

and Choscielewski et al. (1997), developed by

Pietraszkiewicz (2001), and summarized and ex-

tended by Ctiscielewski et al. (2004). In such ashell 2 NOTATION AND PRELIMINARY RELATIONS

theory one has to provide also some resultant continu-

ity conditions to be satisfied along the singular surfacé® shell is a 3D solid body identified in a reference

curves modeling the irregularities. (undeformed) placement with a region B of the phys-
Chroscielewski et al. (2004) noted that for shells ical spacet. The shell bound+ar@B consists of three

with folds and stepwise thickness, curvature, and/op€Parable parts: the uppsf" and lower) ™ shell

material changes it is possible to formulateactly aces, and the lateral boundary surféa& such that

- i L . OB=MtuUM-uUoB*, MtnM- =0.
the resultant dynamic continuity conditions by a di- The position vectox of any shell point xc B

rect through-the-thickness integration of correspondban be described by(z,¢) = x(x) + £t(x). Here

ing local balance laws of continuum mechanics. How-X<x) = X(z,0) is the position vector of a point on

ever, in the case of shell branching, self-intersectiongome reference base surfatearbitrarily located in
complex stiffening and/or rigid or deformable junc- B - < ¢ < 15" is the distance along from M
tions there is some ambiguity in defining both thewith 4 = »~ 4+ A > 0 the initial shell thickness, and
shell base surface and thickness in the regions of ir(x) is the unit vector of the rectilinear coordinate line
regularity. Different approximate mechanical models¢ not necessarily normal tdf.

are used in the literature to treat these regions lead- The position vectoy = x(x) of the shell in the de-
ing to inaccuracies in the resulting dynamic continu-formed placemenB = x(B) can formally be repre-

ity conditions. sented by
In this paper we refine the through-the-thickness re-
duction procedure and apply it to the formulation ofy(z,&) = y(z) +{(z,&), {(x,0) =0, @

the resultant dynamic continuity conditions at the Sin'wherey is the position vector of the deformed base

gular surface curve modeling the shell branching. lig,facens = (A1), which is a material surface dur-
is noted that in reducing 3D fields to their resultants(i]lqg deformation process.

prescribed at the base surface there may appear addi-| ot p B pe an arbitrary part of the 3D shell B with
'[IOI‘la| f|Ct|t|OUS Surface |OadS and dOUble |ntegrat|0nthe boundary Consisting Of three Separab'e paﬁ&
over a part of the branching region. We compensatg[+ 1~ UdP*. Then in the referential description the
the possible surplus of the resultant fields by subtract3D global equilibrium conditions can be expressed by
ing some statically equivalent resultant force and couvanishing of the total force vectd¥(P) and the total
ple fields applied along the singular curve. As a resultforque vectoiT ,(P) taken relative to an arbitrary point
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o € € of all forces actingon P : on II one has to subtract some resultant forces and
couples along’ following from the loads taken twice

F(P) :// fdv+// t da in Pyy, Py and ondPyy, 0Py as well as the ones
P OP\OB applied on the extended surfaces.
+ // t*da =0, 2)
OPNEB

TO(P)_// y><fdv—i—// y x t, da
P OP\OB;
+// y x t*da = 0.
OPNAB

In (2), 0By is that part ofoB on which the external
surface force field*(x) is prescribedf(x) is the vol-
ume force field, and, (x) is the contact force field.

If (1) and x = x + &t are introduced into (2) one -
can perform an exact through-the-thickness integra- h
tion with regard to the coordinate The global equi-
librium conditions (2) can then be expressed through
the resultant fields defined entirely on the referenceigure 1. The part of branched shell: regions of double integra-
base surfacé/, and this is an appropriate formula- tion.
tion for the 2D theory of shells. In case of a regular
shell, such an exact reduction procedure with regard After performing integration with regard tg,
to a non-material weighted surface of mass was sughe total force vectof= (P;) defined in (2) of all
gested by Simmonds (1984), see also Libai & Sim-Spatial forces acting in,Rand onoP; is given by
monds (1983, 1998). In what follows we perform such

):// flda+/ ny, dl
I AL \OM

an exact reduction of the equilibrium conditions (2) F1(IL
with regard to the material base surface in the special
case of the branched shell.

+/ n;dz—/ fopdl 3)
3 BRANCHED SHELL oML NOM; r

Let the shell B consist of three regular partg B, Ny + Ny
B; connected together along a common junction. The

base surface// of B consists now of three regular Where
partsM,, M,, M3 connected along the surface curve +hi
' = OM; N OM; N OMs. Cutting off an arbitrary  f; :/ fips dé +aftiT —art),
part P of B containing the junction, let us discuss the

reduction of its global equilibrium conditions (2).

By the through-the-thickness reduction procedure /*h1+ . . /

7h1

+ht
E 3
ayty dg,

the shell parts P P,, P; are reduced to their images " =
I1;, Iy, I13 andT” atIT C M. In the reduction proce-
dure there are two parts Pand B, of the branching e i
region where the through-the-thickness integration ig . :/ aftitagde +/ aftiTagde (4)
performed twice: once when reducing spatial forces 0 0
given in B, P, and onoP;, 0P, to their resultants
defined onll;, I1, and alongdIl;, JIl,, respectively, thi [ pths f .
and the second time when reducing spatial forces +/0 /0 13 A | o 0,
given in B and ondP; to their resultants defined on
I3 and alongoll;, see Figure 1. Additionally, when

Nnqy; —// tlnda* at ¢;,

O0P1g

1 hy

extending the parts,;PP,, Ps into the junction region

some fictitious surface forces are implicitly applied

on the extended surfacél',, 1T, I1;,, IT;, marked

in Figure 1. In order to compensate the pOSSib|enle:// ty,da* at c..
surplus of the resultant surface forces and couples P14
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In (4) we have used the geometric expansion coeflo(I1) of the branched shell expressed only by fields

ficients u, o™, o relating differentials outsidél to

those onlI and alongIl:

dv = pdéda, da® =aFda, da* = a*dedl. (5)
Whenc; € ' 9M; and/ore, € I'N 0Mjy, the vec-

torsn,; andn;. in (4), 5 should be calculated from the

known tractiont; applied ordBy, instead ot ,,.

defined on the base surface

TO(H)://H\F(C+y><f)da

+/ (m, +yxn,)d
ATI\OM

In exactly the same way we can calculate the total

force vector,(I1,) of all spatial forces acting on,P
The result is expressed through the figigsn,,, n3,
for, No;, N9 defined o1, andoll, in complete anal-
ogy to those given in (4).

The total force vectoF;(I13) is calculated as for
the regular shell region by direct integration in (2)
with regard to¢ leading to

Fs(I13) :/H fqda (6)

+/ N3, dl+/ n; di.
8H3\8Mf angﬂaMf

whare the field$, ns,, n; are defined analogously to

(4).

Summing up the results fét;, Fo, F3 we can write

F(H):// fda+/ n,,dl+/ n*dl
I\ ATI\OM ¢ oM

/fpdlneJrni.
T

In (7) the resultant surface forcés the surface

(7)

+/ (m*4+yxn*)d (10)
oM

—/ (cr+yp xfp)d
T

— (Me + Ype X Ne) + (M; 4 Yy X NG).

Again, in (10) the resultant surface couptestress
couplesm,,, and boundary couples* are defined in
all three parts of P, while the compensating curvi-
linear couple resultants: and the concentrated cou-
plesm;, m, follow only from P4, Py, 117, 115, I13,,
I1;, andoPy4, 0Py, taken into account ifi o; (1I;) and
To2(I1,), respectively.

The relations (7) and (10) are exact 2D static equiv-
alents ofF(P) andT(P) appearing in the 3D global
equilibrium conditions (2) for an arbitrary part P of
the shell B treated as a 3D solid.

4 DYNAMIC CONTINUITY CONDITIONS

The global equilibrium conditions (2) with the to-
tal force and torque given through the surface fields

stress resultants,, and the resultant boundary forces by (7) and (10), should now be appropriately trans-

n* are defined in all three parts of P, while the com-

pensating curvilinear force resultarits and concen-
trated forces;, n. follow only from Py, Py, 117,
I3, 113, 115, and 9Py4, 0Py, taken into account in
F1(II;) andF,(I1,), respectively.

The total torque vectof ,(II) relative to oc € of

formed. In particular, we have to:

a) use the surface Cauchy postulatgs= Nv,
m, = My, with v the unit external normal vec-
tor atoll, which allow us to introduce the surface
stress resultamM and resultant couplé tensors;

all spatial forces acting on P can again be calculated

by direct integration in (2) with regard % The pro-

cedure is exactly the same as in (3)-(7), only when
calculating the surface couples one has to introduce

the following exact relations for the 3D position vec-
tor in the deformed placement:
y=y+¢ yr=y+Ct oy =y+( (8)

In the regions B, and B, the compensating cou-

ples should be reduced relative to the singular curve
I', and the deformed position vectors should be taken

in the forms

y=Yyr+<¢r, Y =V +¢E, Yy =y +<r. ©)

b) apply appropriate generalized surface divergence
theorems (see Coscielewski et al. 2004) which
allow us to represent the curvilinear integrals
over OII of the fieldsNv and Mv by the sur-
face integrals ovell of the surface divergences
Div N and Div M together with additional jump
terms along’;

C) integrate by parts alorg which allow us to rep-
resent the concentrated vectars n, and m;,
m. by curvilinear integrals over of some dis-
tributed force and couple vectonsandm.

As a result of all the transformations the

Performing appropriate transformations similar toglobal equilibrium conditions for the branched shell
those leading to (7) we obtain the total torque vectotake the forms (for details see Konépka and
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Pietraszkiewicz 2005) conditions to be satisfied along the singular curve
[' being the common boundary of three regular
F(II) :// (DivN+f)da+/ (n* —Nv) di branches of the shell base surface. The conditions
T My have been derived by performing a direct through-
the-thickness integration in the global equilibrium

/ (W + [No] +fp) d, (11) conditions .of continyum mgqhanics. Thgrefore,

nr our dynamic continuity conditions are valid for

an arbitrary shell thickness, internal through-the-
, T p. thickness structure and/or material properties, as well

To(II) ://H\F {DivM +az(NFT —FN7) +c as for unrestricted values of translations, rotations,
strains and/or bendings of the shell material elements.

+yx (DivN+f)}da ACKNOWLEDGEMENTS

+/ {(m* —Mv)+ yx (n* —Nv)}d This research was supported by the Polish State
My Committee for Scientific Research under grant KBN
No. 5 TO7A 008 25.

_/{m+%xn+wﬂ+q (12)
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m +yrxn+[Mv]+cr=0 (14)

to be satisfied at each regular pointlof

The conditions (14) are the ordinary differential
equations along' which differ from the equilibrium
equations of rods by the jump terms describing inter-
action between regular shell parts along the junction.

5 CONCLUSIONS

We have presented new and exact expressions
(14) for the local, resultant, dynamic continuity
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