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ABSTRACT: In the dynamically and kinematically exact theory of shells, the shell is represented by a mate-
rial base surface with an attached structure tensor. The gross deformation of the shell cross sections is descri-
bed by the translation vector of the surface and the rotation tensor work-averaged through the shell thickness. 
Some relations between 3D fields in the shell-like body and 2D fields modelling the shell behaviour are dis-
cussed. We show, in particular, that the exact resultant stress power of the shell does not coincide with the 2D 
effective stress power following from the exact resultant balance laws. The difference expressed through an 
intrinsic deformation vector is responsible for approximations in the shell constitutive description. We sketch 
how to refine the shell model in the case of a simple equilibrium problem of the non-linearly elastic shell. 

1 INTRODUCTION 

The non-linear theory of shells developed by Libai 
and Simmonds (1983, 1998) was formulated with 
regard to a non-material weighted surface of mass 
taken as the shell base surface.  

In a similar approach summarised in Chróście-
lewski et al. (2004) and Eremeyev & Pietrasz-
kiewicz (2004), a material surface arbitrarily located 
within the shell-like body was taken as the base sur-
face. Then the two-dimensional (2D) local balance 
equations of linear and angular momentum as well 
as the dynamic boundary conditions were derived 
with regard to the material surface by an exact 
through-the-thickness integration of 3D balance 
laws of continuum mechanics. The corresponding 
shell kinematics was established on the 2D level as 
an energetically exact dual structure from the virtual 
work identity. As a result, the gross deformation of 
the shell cross sections was described by the transla-
tion vector field and the through-the-thickness work-
averaged rotation tensor field, both defined at the 
material base surface. Then exact, unique expres-
sions of the shell strain and bending tensors, both 
defined again only at the base surface, followed as 
direct consequences of the exact 2D resultant bal-
ance laws. 

The aim of this report is to show:  
a) how the natural shell strain and bending measures 

are related to deformation of the base surface 
with an attached structure tensor;  

b) how the shell translation and rotation vector 
fields as well as the strain and bending tensor 
fields can be interpreted in terms of 3D deforma-
tion fields of continuum mechanics; 

c) that in such a dynamically and kinematically ex-
act shell theory the resultant stress power density 
cannot in general be expressed entirely through 
the exact 2D shell stress and strain measures thus 
leading to approximations in the constitutive de-
scription. 
A possible refinement of the effective stress 

power density is sketched for a simple equilibrium 
problem of the non-linearly elastic shell. 

2 EXACT RESULTANT LAWS FOR SHELLS 

The classical continuum mechanics is based on the 
balance laws of forces and couples 
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assumed to hold for any sufficiently regular part P of 
the body identified with its reference placement B. 
Here y = y(x,t) is the position vector at time t of 
a material particle whose position in the reference 
placement is x ∈ B, T(x,t) the 1st Piola-Kirchhoff 
stress tensor, n the external unit normal to ∂P, f(x,t) 
the body force vector, v(x,t)  (x,t) the velocity 
vector, and ρ

�y
0(x) the reference mass density. 



   
 

The laws (1) specified for the shell-like body with 
the base surface M ⊂ B arbitrarily located within B 
can exactly be transformed into the resultant forms 0
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In (6),  is the translation vector and Q the 

through-the-thickness work-averaged rotation ten-
sor, detQ +1, Q

u

–1 QT, describing the gross motion 
of the shell cross sections, while the non-singular 
tensor T is the shell structure tensor in the actual 
placement.  Here Π  P ∩ M is the part of M corresponding to 

P, and y(x,t) is the position vector at t of a material 
particle on the base surface M(t) which position in 
the reference placement is x ∈ M. Moreover, N(x,t) 
and M(x,t) are the stress and couple resultant ten-
sors, ν the unit vector externally normal to ∂Π and 
tangent to Π ⊂ M, f(x,t) and c(x,t) the resultant sur-
face force and couple vectors, and p(x,t) and s(x,t) 
the resultant surface linear and angular momentum 
vectors, respectively. Details of the exact through-
the-thickness integration procedure leading to (2) are 
given in Libai & Simmonds (1998) and 
Chróścielewski et al. (2004). 
 The resultant balance laws (2) hold iff 
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where 
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is the 2D effective stress power density. In (3) and 
(4),  means the scalar product in the tensor space, 

 the linear velocity vector of the base surface, ω 
the angular velocity vector of the shell cross section 
work-averaged through the shell thickness, 
ω ax Ω the axial vector associated with the skew 
tensor Ω, and F ∇ y the shell deformation gradi-
ent, with ∇  the surface gradient operator on M. 

i

Let in the reference (undeformed) placement the 
shell is represented by the position vector x(x) ∈ E 
of M and the non-singular structure tensor 
T0(x) ∈ E⊗E, detT0 ≠ 0, attached to any point 
x ∈ M, where E is the 3D vector space. The tensor 
T0 can be introduced, in particular, through three di-
rectors t0i(x), i 1,2,3, such that t0i T0(x)ii, with ii 
an orthonormal base of a 3D inertial frame. Then the 
velocity fields υ and Ω in (3) have to satisfy the dif-
ferential equations 
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For the tensorial angular velocity we obtain 
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3 NATURAL STRAINS AND BENDINGS 

Let C be a smooth curve on M given by x x(λ), 
where λ is a scalar parameter. Then x x[x(λ)] and 
T0 T0[x(λ)] along C and their differentials are 
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where TxM is the tangent space to M , and I0  the in-
clusion operator at x ∈ M, see Gurtin & Murdoch 
(1975) and Murdoch (1990). 

The skew part of the tensor D0 (dT0)T0
–1 can be 

represented by its axial vector b0 depending linearly 
on dx. Therefore,  
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The two tensors I0 and B0 are the basic measures 
of local geometry of the shell base surface M with 
the attached structure tensor T0 . 

In the actual (deformed) placement the shell base 
surface M(t) χ(M, t) is described by the position 
vector y(x,t) and the structure tensor T(x,t). Differen-
tials of y(x,t) and T(x,t) along C(t) χ(C, t) are given 
by 
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where ∇  is the surface gradient operator and I the 
inclusion operator at M(t) . 

The skew part of the tensor D (dT)T–1 can 
again be represented by its axial vector b depending 
linearly on dy , and this gives which solutions are 
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and from (14) it follows that ∇ω indeed. KSince dy Fdx, where F ∈ TyM(t)⊗TxM is the 
tangential surface deformation gradient, by subtract-
ing from (10)1 and (11) the respective relations (8)1 
and (9) rotated to the actual placement we obtain 5 LOCAL  3D  DEFORMATION 

Any point y(t) = χ(x, t) ∈ B(t) outside the deformed 
base surface M(t) = χ(M, t) can be described by the 
spatial position vector 
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From (12) it is seen that the tensors 
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are the appropriate natural strain and bending meas-
ures describing the local deformation of the shell 
base surface with the attached structure tensor. 

4 STRAIN AND BENDING VELOCITIES 

We want to show explicitly that the expressions 
F∇  and ∇ω appearing in (4) represent just the 

co-rotational time derivatives of the natural strain 
and bending measures (13) defined by 
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Indeed, direct time differentiation of (13)1 with 
the use of (13)1 yields 
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In order to prove that also K°=∇ω, let us first ex-
plicitly calculate 

1
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and note that the first term of (16) is already a skew 
tensor ∈ E⊗E depending linearly on dx. Therefore, 
from (11) and (16) we have 

0

0

( d )

( )d

Tax x

x .

b Q Q

K QB

∇ Qb

,0

e

                                   (17) 

0

(x, ) ( ) ( ) ,
( ) , ( 0 )

t x,t x, ,t
x, t

y
Q Q t

y

z e e
                      (19) 

where  is the coordinate in the thickness direction, 
t0 the base vector along  at x ∈ M, and e(x, ,t) an 
intrinsic deformation vector. Therefore,  

0( ) .u Q t Qu 1                                         (20) 

The first two terms of (20) represent the work-
averaged linear part of the displacement distribution 
across the shell thickness. The linear part is entirely 
defined by two fields u(x, t) and Q(x, t) being solu-
tions of the 2D initial-boundary value problem of the 
dynamically and kinematically exact shell theory. 
The last term in (20) represents a deviation of the 
unknown 3D field u(x, ,t) from this linear distribu-
tion. 

Let F(x,t) ∇y(x,t), det F > 0, be the spatial de-
formation gradient at x ∈ B. By the polar decompo-
sition theorem we have F RU, where R is the rota-
tion tensor (proper orthogonal) and U the right 
stretch tensor (symmetric and positive definite).  

In the spatial convected coordinate system , 
i 1,2,3, such that  on the base surface, the 
spatial deformation gradient at x ∈ B is given by 

i
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where gi are the contravariant base vectors of the 
coordinates  in the reference placement. i

,

Derivatives of y given by (19)1 with regard to the 
coordinates allow us to present F in the form 
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 (23) Since the vector dx does not depend on time, from 

(17) and (12)2 we obtain  
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Here εα, κα and E, K are the shell strain and bending 
vectors and tensors, respectively, in the material rep-
resentation which are related to the tensors defined 
in (13) according to 
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          (24) The first two terms of (28) correspond to the 2D 
effective stress power density  defined in (4), but 
expressed now through the stress and couple resul-
tant vectors as well as the respective strain and 
bending vectors in the material representation. The 
additional term r  represents that part of the resul-
tant stress power density of the shell-like body 
which is not expressible entirely through the surface 
fields included in . As a result, the dynamically 
and kinematically exact theory of shells without r  
is still approximate in the corresponding constitutive 
description. 

The relation (22)1 is just another form of the polar 
decomposition of F at x ∈ B, where the stretch ten-
sor Λ has still the positive determinant, detΛ > 0, but 
is non-symmetric, in general: ΛT ≠ Λ.  

In particular, at the shell base surface where 
0 we obtain 
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From (25) it is apparent that Q(x, t) should not be 
identified with R0(x, t) following from the 3D polar 
decomposition of F0 taken at M ⊂ B, which was 
used by Pietraszkiewicz (1979). One should keep in 
mind that Q(x, t) has been introduced through (3) and 
(6)2 with the help of energetic considerations, while 
R0(x, t) followed from purely geometric and alge-
braic transformations. 

In order to refine the constitutive description of 
the shell model based on (3) and (4), Makowski & 
Pietraszkiewicz (2002) introduced into the shell me-
chanical power an additional interstitial part requir-
ing special constitutive equations. Another possible 
way of refining the shell model is to express the in-
trinsic deformation vector field e through the shell 
strain and bending fields. Then the two terms pre-
sent in r  can be used for refinement of the consti-
tutive equations. Unfortunately, in many types of 
shell motion such a relation may not exist or may 
not be unique. We sketch below a simple problem of 
the non-linearly elastic shell for which such a rela-
tion may be found. 

6 RESULTANT STRESS POWER DENSITY 

In continuum mechanics the stress power density 
Σ(x,t) per unit volume of B is given by . 
The resultant stress power density Σ per unit area of 
M can be defined by direct through-the-thickness 
integration 

�iΣ =T F

7 ELASTIC EQUILIBRIUM PROBLEM 

0

0
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hΣ                              (26) Static equilibrium problem of a non-linearly elastic 
3D body without body forces can be described by  

where ≤  ≤  is the distance from M along 
, µ the geometric through-the-thickness expansion 

factor, and  the shell thickness. 
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Using the relations (22)1 and T FS, where 
S si ⊗ gi is the 2nd Piola-Kirchhoff stress tensor, 
the 3D density Σ can be transformed as follows:  
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where  is the constitutive equation, 
C F

( )�=S S C

*t
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TF the right Cauchy-Green deformation tensor, 
and  the force vector prescribed on the part 
∂Bf ⊂ ∂B. 

If B is the shell-like body then introducing (22)1 
into (30)1 and using  we have ( )�=P S

Now we can integrate (27)4 through the shell thick-
ness as in (26) and obtain 

Since according to (22) and (23),  
for the traction-free shell faces, the problem reduces 
to 
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Please note that the field P P  will 
also depend on the base surface M through its curva-
ture and on the transverse coordinate . At any 
fixed point x ∈ M the equation (32)

( , , , )�= ∇E K e e

r

1 becomes an or-
dinary differential equation with regard to  for the 
vector field e(x, ). Solving (32) we can establish 
the relation between e(x, ) and E, K as well as their 
surface gradients. Such a relation would allow one 
to take in (28) into account the part  of the stress 
power and to improve accuracy of the expression for 
the resultant stress power density Σ. This would al-
low one for a refinement of the corresponding 2D 
constitutive equations of the non-linearly elastic 
shell. 
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