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Abstract

We formulate the exact, resultant equilibrium conditions for the non-linear theory
of branching and self-intersecting shells. The conditions are derived by performing
direct through-the-thickness integration in the global equilibrium conditions of con-
tinuum mechanics. At each regular internal and boundary point of the base surface
our exact, local equilibrium equations and dynamic boundary conditions are equiv-
alent, as expected, to the ones known in the literature. As the new equilibrium
relations we derive the exact, resultant dynamic continuity conditions along the
singular surface curve modelling the branching and self-intersection as well as the
dynamic conditions at singular points of the surface boundary. All the results do not
depend on the size of shell thicknesses, internal through-the-thickness shell struc-
ture, material properties, and are valid for an arbitrary deformation of the shell
material elements.

Key words: shell, branch, intersection, singular curve, continuity conditions, exact
reduction, non-linear theory

1 Introduction

Most two-dimensional (2D) models of regular shells known in the litera-
ture, such as the Kirchhoff-Love model or the Timoshenko-Reissner model,
are formulated using various kinematic constraints on the 3D deformation of
the shell material elements. In such shell models the 2D virtual work principle
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pietrasz@imp.gda.pl (W. Pietraszkiewicz).

Preprint submitted to Elsevier Science 20 April 2006

* Manuscript



is usually applied to derive approximate equilibrium conditions formulated on
the shell base surface.

Reissner (1974, 1982) noted that the non-linear theory of regular shells can
be better formulated starting from the resultant 2D equilibrium equations,
which can be derived exactly by direct through-the-thickness integration of
the 3D equilibrium equations of continuum mechanics. The corresponding 2D
shell kinematics of the base surface can then be uniquely established as an
energetically exact dual structure from the virtual work identity. As a result,
the gross deformation of a shell cross section is characterised by a translation
vector and a rotation tensor that vary on the base surface. The two fields are
the only primary variables of the boundary value problem. Such a general,
dynamically and kinematically exact, six-scalar-field theory of regular shells,
formulated with regard to a non-material weighted surface of mass taken as
the shell base surface, was developed by Libai and Simmonds (1983, 1998)
and Simmonds (1984), and with regard to a material surface arbitrary located
within the shell-like body by Makowski and Stumpf (1990), Chróścielewski
et al. (1992), Pietraszkiewicz (2001a) and Pietraszkiewicz et al. (2005). For
this general shell model efficient finite element algorithms were developed and
many numerical examples of equilibrium, stability, and dynamics of regular
and complex shell structures were presented by Chróścielewski et al. (1992,
1997) and Chróścielewski et al. (2002, 2004).

Many real shell structures contain irregular shell geometry, material prop-
erties, loadings, deformations, and/or boundary conditions. The six-field non-
linear theory of irregular shell structures was initiated by Makowski and
Stumpf (1994) and developed by Chróścielewski et al. (1997), Pietraszkie-
wicz (2001a), and Chróścielewski et al. (2004). In those works it was assumed
that the region of shell irregularity (e.g. branching, self-intersection, stiffening,
technological junction, etc.) is small as compared with other shell dimensions
and its size can be ignored in deriving the resultant 2D equilibrium condi-
tions. However, such an assumption brings an undefinable error into the re-
sultant dynamic continuity conditions formulated along the singular surface
curves modelling the irregularity regions. Therefore, such conditions cannot
be regarded as exact implications of 3D equilibrium conditions of continuum
mechanics.

In this paper we derive the exact, resultant equilibrium conditions for two
important classes of irregular shell structures: the branching shell and the
self-intersecting shell. The base surfaces of the irregular shells consist of three
and four, respectively, regular material surfaces arbitrary located in the shell
space which are joined along the common singular surface curve modelling the
junction. The 2D equilibrium conditions are formulated at the base surface by
performing direct through-the-thickness integration in the 3D global equilib-
rium conditions of continuum mechanics. Our through-the-thickness integra-
tion procedure is exact and takes into account real dimensions and geometry
of the regions of shell branching and self-intersection.

The three regular parts of the branching shell structure are first extended
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into the junction region up to the singular curve. By this extension some ficti-
tious tractions become applied on four surface strips located at the junction.
There are also two tubes within the junction region where the through-the-
thickness integration is performed twice. In order to compensate the surplus
of forces and couples on the base surface following from the fictitious trac-
tions and the double integration, some statically equivalent system of forces
and couples has to be subtracted along the singular curve. As a result of ap-
propriate transformations, our local, resultant equilibrium conditions for the
branching shell structure become exact implications of the global equilibrium
conditions of continuum mechanics. The self-intersecting shell is treated in the
same way as the branching shell, only in the former case we have four regular
shell parts rigidly connected together at the common junction.

At each regular internal and boundary point of the base surface our ex-
act, local equilibrium equations (30) and dynamic boundary conditions (31)
are equivalent, as expected, to the ones given first by Libai and Simmonds
(1983). Other two local equilibrium relations – the exact, resultant dynamic
continuity conditions (32) along the singular curve and the exact, resultant
dynamic boundary conditions (33) at the singular boundary points – are new.
They complete the set of resultant equilibrium conditions necessary to appro-
priately formulate the boundary value problem of the general, six-field theory
of branching and self-intersecting shell structures.

Necessary formulae allowing one to express differential volume and surface
elements outside the base surface through the corresponding surface elements
of the base surface and linear elements of the singular surface curve are given
in Appendix. The relations take into account that the rectilinear transverse
co-ordinate measuring distance from the base surface may not, in general, be
normal to the surface.

2 Notation and preliminary relations

The system of notation used here follows that of Chróścielewski et al. (2004)
and Libai and Simmonds (1998).

A shell is a 3D solid body identified in a reference (undeformed) placement
with a region B of the physical space E having the 3D vector space E as its
translation space. The shell boundary ∂B consists of three separable parts: the
upper M+ and lower M− shell faces, and the lateral boundary surface ∂B∗

such that ∂B = M+ ∪M− ∪ ∂B∗, M+ ∩M− = ∅.
The position vector x of any shell point x ∈ B can be described by

x(x, ξ) = x (x) + ξt(x) . (1)

Here x (x) = x(x, 0) is the position vector of a point x of some reference base
surface M arbitrarily located in B, ξ ∈ [−h−(x), h+(x)] is the distance along

3



�

�
�

�

�
�

6

6

h

h

+

+

+

M

M

M

M
M

M

M

M

-

-

���

���

�
t

x

x

x

x

x
x

x

1

3

2o

B

B
� �

�
�

�

�

�
�

�

�

-

�

�
y

y

y

y

*

*

Fig. 1. Geometry of 3D shell-like body in the reference and deformed placements.

ξ from M with h = h− + h+ > 0 the initial shell thickness measured along ξ,
and t(x) is the unit vector of the rectilinear co-ordinate line ξ not necessarily
normal to M . Such a skew transverse co-ordinate ξ allows one to apply the
exact through-the-thickness integration also in case of folded shells or when
two shells do not intersect orthogonally, for example. The form (1) requires
that the lateral boundary surface ∂B∗ be a rectilinear surface, see Fig. 1.

The position vector y = χ(x) of the shell in the deformed placement
B̄ = χ(B) can formally be represented by

y(x, ξ) = y(x) + ζ(x, ξ) , ζ(x, 0) = 0 , (2)

where y = χ(x ) is the position vector of the deformed base surface M̄ = χ(M),
which is a material surface during the deformation process, and ζ is a deviation
of y ∈ B̄ from the deformed base surface M̄ , see Fig. 1.

Let P ⊂ B be an arbitrary part of the shell B with a boundary consisting of
three separable parts: ∂P = Π+ ∪Π− ∪∂P∗, where Π± ⊂ M± and ∂P∗ ⊂ ∂B∗.
Then in the referential description the 3D global equilibrium conditions of P
expressing the vanishing of the total force vector F(P) and the total torque
vector To(P) taken relative to an arbitrary point o ∈ E of all forces acting on
P are

F(P) =
∫∫∫

P
f dv +

∫∫
∂P\∂Bf

tn da +
∫∫

∂P∩∂Bf

t∗ da = 0 ,

To(P) =
∫∫∫

P
y× f dv +

∫∫
∂P\∂Bf

y× tn da +
∫∫

∂P∩∂Bf

y× t∗ da = 0 .
(3)

In (3), ∂Bf is that part of ∂B on which the traction vector field t∗(x) is pre-
scribed, f(x) is the volume force vector field, and tn(x) is the contact force
vector field. In shell theory it is usually assumed that the traction t∗ is pre-
scribed on both shell faces M± and on a part ∂B∗

f of the lateral boundary
surface ∂B∗, Fig. 1.

If (1) and (2) are introduced into (3) one can perform an exact through-the-
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Fig. 2. The branching shell structure: a) the 3D shell, b) the corresponding 2D base
surface.

thickness integration with regard to the co-ordinate ξ. The global equilibrium
conditions (3) can then be expressed through the resultant fields defined en-
tirely on the reference base surface M . Such a resultant form of the conditions
is appropriate for the 2D theory of shells. In case of a regular shell, such an
exact reduction procedure with regard to a non-material weighted surface of
mass was first suggested by Libai and Simmonds (1983), and with regard to
a material base surface by Makowski and Stumpf (1990). In what follows we
perform such an exact reduction of the equilibrium conditions (3) with regard
to the material base surface in case of branching and self-intersecting shells.

3 Branching shell

Let the reference shell B consist of three regular parts Bk, k = 1, 2, 3, rigidly
connected together along the common junction, see Fig. 2a). We assume that
two regular parts B1 and B2 form together a regular shell B1 ∪B2 which lower
face M−

1 ∪M−
2 is a regular surface, Fig. 2a). It is also assumed that the traction

t∗ can be prescribed, in general, on the upper M+ and lower M− shell faces as
well as on the part ∂B∗

f of the lateral boundary surface ∂B∗. The reference base
surface M of B can always be chosen to be located arbitrarily within the shell
space and to consist of three regular surfaces Mk connected together along
the common surface curve Γ = ∂M1 ∩ ∂M2 ∩ ∂M3, as in Fig. 2b). This means
that each of Bk has to be treated as being extended into the junction region
so that Γ should belong to the corresponding parts of each lateral boundary
surface ∂B∗

k along the junction.
Cutting off an arbitrary part P of B containing the junction, let us discuss

the exact reduction of its global equilibrium conditions (3) to the statically
equivalent conditions written on the part of the reference base surface Π ⊂ M ,
where the shell parts Pk are represented by their corresponding images Πk and
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Fig. 3. Part of the branching shell: surface strips with fictitious forces and tubes of
double integration.

Γ, see Fig. 2.
Extending each of the parts Pk into the junction region it is implicitly

assumed that some fictitious tractions t∗ are applied also on the shaded surface
strips Π+

1d, Π
+
2d, Π

+
3d, Π

−
3d at the junction region in Fig. 3. Then by through-

the-thickness integration, the volume forces f(x) as well as the tractions tn(x)
and t∗(x) acting in each Pk are reduced to an equivalent system of forces and
couples applied on the base surface Π ⊂ M . During the procedure there are
two tubes P1d and P2d where the integration is performed twice: once when
reducing the volume forces f(x) given in P1, P2 and the tractions tn or t

∗ acting
on ∂P1d and ∂P2d at xi and xe to their resultant forces and couples applied
on Π1, Π2, respectively, and the second time when reducing f(x) given in P3

and tn or t∗ acting on ∂P1d and ∂P2d at xi and xe to their equivalent forces
and couples applied on Π3. In order to compensate the surplus of forces and
couples following from the fictitious tractions and the double integration, we
have to subtract some forces and couples applied along Γ which are statically
equivalent to those additionally introduced loads.

After performing integration with regard to ξ, the total force vector F1(P1)
defined in (3)1 of all spatial forces acting in P1 and on ∂P1 is given by

F1(Π1) =
∫∫

Π1

f 1 da1 +
∫

∂Π1\∂Mf

n1ν ds+
∫

∂Π1∩∂Mf

n∗
1 ds

−
∫
Γ

f 1Γ ds , (4)
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where

f 1 =
∫ +h+

1

−h−
1

f1µ1 dξ1 + α+
1 t

∗+
1 − α−

1 t
∗−
1 ,

n1ν =
∫ +h+

1

−h−
1

α∗
1t1n dξ1 , n∗

1 =
∫ +h+

1

−h−
1

α∗
1t

∗
1 dξ1 ,

(5)

with t∗+1 and t∗−1 denoting the tractions prescribed on Π+
1 and Π−

1 , respec-
tively, and ξ1 the transverse co-ordinate of P1.

The minus sign in front of α−
1 t

∗−
1 in (5)1 conventionally indicates that the

traction t∗−1 acts on the surface M−
1 which outward orientation is opposite to

the one of M+
1 , see (A.10).

The correcting force f 1Γ subtracted in (4) takes into account the fictitious
traction t∗+1 applied on Π+

1d and included in definition (5)1 of f 1. The area
element of Π+

1d is da+
1 = α+

1 da1, according to (A.12)1, where da1 is the area
element of Π1. However, when extending P1 into the branching region the ex-
tended part of Π1 can always be chosen to coincide with the lateral boundary
surface ∂Π∗

3. Therefore, da1 may also be interpreted here as the area element
da∗3 of ∂P

∗
3 along the curve Γ. According to (A.14)1, da

∗
3 = α∗

3dξ3ds and there-
fore

∫∫
Π+

1d

t∗+1 da+
1 =

∫
Γ
f 1Γds , f 1Γ =

∫ +h+
3

0
α+

1 α∗
3t

∗+
1 dξ3 . (6)

In exactly the same way we can calculate the total force vector F2(Π2)
of all spatial forces acting on P2. The result is expressed through the fields
defined on Π2 and ∂Π2 in complete analogy to those given in (5) and (6):

F2(Π2) =
∫∫

Π2

f 2 da2 +
∫

∂Π2\∂Mf

n2ν ds+
∫

∂Π2∩∂Mf

n∗
2 ds

−
∫
Γ

f 2Γ ds , (7)

where

f 2 =
∫ +h+

2

−h−
2

f2µ2dξ2 + α+
2 t

∗+
2 − α−

2 t
∗−
2 ,

n2ν =
∫ +h+

2

−h−
2

α∗
2t2ndξ2 , n∗

2 =
∫ +h+

2

−h−
2

α∗
2t

∗
2dξ2 ,

f 2Γ =
∫ 0

−h−
3

α+
2 α∗

3t
∗+
2 dξ3 .

(8)

The total force vector F3(Π3) is calculated by direct integration in (3)1
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with regard to ξ3 leading to

F3(Π3) =
∫∫

Π3

f 3 da3 +
∫

∂Π3\∂Mf

n3ν ds+
∫

∂Π3∩∂Mf

n∗
3 ds

−
∫
Γ
f 3Γds− (n3e − n3i) , (9)

where

f 3 =
∫ +h+

3

−h−
3

f3µ3dξ3 + α+
3 t

∗+
3 − α−

3 t
∗−
3 ,

n3ν =
∫ +h+

3

−h−
3

α∗
3t3ndξ3 , n∗

3 =
∫ +h+

3

−h−
3

α∗
3t

∗
3dξ3 .

(10)

The correcting force f 3Γ in (9) should again take into account fictitious
tractions t∗±3 applied on Π±

3d and included in definition (10)1 of f 3. The area
elements of Π±

3d are da±3 = α±
3 da3, according to (A.12)1. When transforming

the elementary traction t∗+3 da+
3 the area element da3 may be changed into

da∗1 = α∗
1dξ1ds of ∂P∗

1 along Γ. Similarly, when transforming −t∗−3 da−3 the
area element da3 may be changed into da∗2 = α∗

2dξ2ds of ∂P∗
2 along Γ.

The first term in definition (10)1 of f 3 also includes the volume force field
f3 applied within the tubes P1d and P2d. These volume forces have already
been taken into account in definitions (5)1 of f 1 and (8)1 of f 2, respectively.
In order to correct the result of the double integration, we have to subtract
an equivalent force resultant field by including it into definition of f 3Γ acting
along Γ. Since in P1d, according to (A.3)1, the elementary volume force is
f3dv3 = f3µ3dξ3da3 and da3 can be changed into da∗1 = α∗

1dξ1ds, we can
integrate f3dv3 over the surface ∂P1d. Similarly, since in P2d the elementary
volume force is again f3dv3 = f3µ3dξ3da3 but now da3 can be changed into
da∗2 = α∗

2dξ2ds, we can integrate f3dv3 over the surface ∂P2d.
As a result of all those transformations we obtain

∫∫
Π+

3d

t∗+3 da+
3 −

∫∫
Π−

3d

t∗−3 da−3 +
∫∫∫

P1d

f3dv3 +
∫∫∫

P2d

f3dv3 =
∫
Γ
f 3Γds ,

f 3Γ =
∫ +h+

1

0
α+

3 α∗
1t

∗+
3 dξ1 −

∫ +h+
2

0
α−

3 α∗
2t

∗−
3 dξ2

+
∫ +h+

1

0

(∫ +h+
3

0
f3µ3dξ3

)
α∗

1dξ1 +
∫ +h+

2

0

(∫ 0

−h−
3

f3µ3dξ3

)
α∗

2dξ2 .

(11)

When reducing the elementary tractions t3nda
∗
3 or t

∗
3da

∗
3 acting on ∂P∗

3\∂B∗
f

or ∂P∗
3 ∩ ∂B∗

f to the resultant boundary forces n3ν or n∗
3 acting on ∂Π3 \ ∂Mf

or ∂Π3∩∂Mf , respectively, we note that the tractions acting on the boundaries
∂P1d and ∂P2d at xi have already been taken into account in the expressions
(4) and (7). In order to correct the result of the double integration in (9), we
have to subtract in (9) some statically equivalent concentrated forces n3i or
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n∗
3i acting at the initial point xi of Γ and defined by

n3i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

t3nda
∗
3 , n∗

3i =
∫∫

(∂P1d∪∂P2d)∩∂B∗
f

t∗3da
∗
3 . (12)

In exactly the same way we can define the statically equivalent concentrated
forces n3e or n∗

3e acting at the end point xe of Γ. The second minus sign in
front of n i in (9) conventionally indicates that the boundaries ∂P1d and ∂P2d

at xi have opposite orientations than the orientation of Γ. Similar boundaries
at xe have the same orientations as the one of Γ.

Summing up the results for F1, F2, F3 we can write

F(Π) =
∫∫

Π\Γ
f da+

∫
∂Π\∂Mf

nν ds+
∫

∂Mf

n∗ ds

−
∫
Γ

f Γ ds− (ne − n i) . (13)

In (13) the resultant surface forces f , the surface stress resultants nν , the
resultant boundary forces n∗, and the compensating curvilinear force resul-
tants f Γ follow from all three parts of P, while the concentrated forces n i, ne

follow only from integration over ∂P1d and ∂P2d taken into account in F3(Π3).
The total torque vector To(Π) relative to o ∈ E of all spatial forces acting

on P can again be calculated by direct integration in (3)2 with regard to ξ.
The procedure is exactly the same as in (4)-(13), only when calculating the
surface couples one has to introduce the following exact representations (2)
for the 3D position vector in the deformed placement relative to the deformed
base surface χ(M):

y = y + ζ , y+ = y + ζ+ , y− = y + ζ− . (14)

In the tubes P1d and P2d the compensating couples should be reduced
relative to points of the deformed singular curve χ(Γ), and the position vectors
in the deformed placement should be taken in the following exact form:

y = yΓ + ζΓ , y+ = yΓ + ζ+
Γ , y− = yΓ + ζ−

Γ . (15)

After performing integration with regard to ξ1, the total torque vector
To1(Π1) defined in (3)2 of all spatial forces acting in P1 and on ∂P1 is given
by

To1(Π1) =
∫∫

Π1

(c1 + y 1 × f 1) da1 +
∫

∂Π1\∂Mf

(m1ν + y1 × n1ν) ds

+
∫

∂Π1∩∂Mf

(m∗
1 + y1 × n∗

1) ds−
∫
Γ
(c1Γ + yΓ × f 1Γ) ds , (16)

9



where now

c1 =
∫ +h+

1

−h−
1

ζ1 × f1µ1dξ1 + α+
1 ζ+

1 × t∗+1 − α−
1 ζ−

1 × t∗−1 ,

m1ν =
∫ +h+

1

−h−
1

α∗
1ζ1 × t1ndξ1 , m∗

1 =
∫ +h+

1

−h−
1

α∗
1ζ1 × t∗1dξ1 ,

c1Γ =
∫ +h+

3

0
α+

1 α∗
3ζ

+
1Γ × t∗+1 dξ3 .

(17)

In exactly the same way we can calculate the total torque vector To2(Π2)
of all spatial forces acting in P2 and on ∂P2, and the result is

To2(Π2) =
∫∫

Π2

(c2 + y2 × f 2) da2 +
∫

∂Π2\∂Mf

(m2ν + y2 × n2ν) ds

+
∫

∂Π2∩∂Mf

(m∗
2 + y 2 × n∗

2) ds−
∫
Γ
(c2Γ + yΓ × f 2Γ) ds , (18)

where c2, m2ν , m
∗
2, c2Γ are defined in complete analogy to the fields (17).

Finally, the total torque vector To3(Π3) of all spatial forces acting in P3

and on ∂P3 reads

To3(Π3) =
∫∫

Π3

(c3 + y3 × f 3) da3 +
∫

∂Π3\∂Mf

(m3ν + y3 × n3ν) ds

+
∫

∂Π3∩∂Mf

(m∗
3 + y 3 × n∗

3) ds−
∫
Γ
(c3Γ + yΓ × f 3Γ) ds (19)

− {(m3e + yΓe × n3e)− (m3i + yΓi × n3i)} ,

where all 2D and 1D fields are defined analogously to (17), and the compen-
sating couples are defined in analogy to (11)2 by

c3Γ =
∫ +h+

1

0
α+

3 α∗
1ζ

+
3Γ × t∗+3 dξ1 −

∫ +h+
2

0
α−

3 α∗
2ζ

+
3Γ × t∗−3 dξ2

+
∫ +h+

1

0

(∫ +h+
3

0
ζΓ × f3µ3dξ3

)
α∗

1dξ1 +
∫ +h+

2

0

(∫ 0

−h−
3

ζΓ × f3µ3dξ3

)
α∗

2dξ2 ,

m3i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

ζΓ × t3nda
∗
3 , (20)

with similar apparent definitions for m∗
3i, m3e, and m∗

3e.
Summing up the results for To1(Π1), To2(Π2), and To3(Π3) and performing

some transformations we obtain the total torque vector To(Π) of the branched
shell expressed only by the fields defined on an arbitrary part Π of the base
surface

To(Π) =
∫∫

Π\Γ
(c + y × f ) da +

∫
∂Π\∂Mf

(mν + y × nν) ds

+
∫

∂Mf

(m∗ + y × n∗) ds−
∫
Γ
(cΓ + yΓ × f Γ) ds (21)

− {(m e + yΓe × ne)− (m i + yΓi × n i)} .

10



Again, in (21) the resultant surface couples c, the resultant stress couples
mν , the resultant boundary couples m∗, and the compensating curvilinear
couple resultants cΓ follow from all three parts of P, while the concentrated
couples m i, m e follow only from integration over ∂P1d and ∂P2d taken into
account in To3(Π3).

The relations (13) and (21) are exact 2D static equivalents of F(P) and
To(P) appearing in the 3D global equilibrium conditions (3) for an arbitrary
part P of the branching shell B treated as a 3D solid body.

4 Transformations

The global equilibrium conditions (3), with the total force and torque vec-
tors expressed through the surface fields by (13) and (21), should now be
appropriately transformed.

Let the surface point x ∈ M be a regular point of ∂M . Then by the sur-
face Cauchy theorem there exist the surface stress resultant tensor N (x) ∈
E ⊗ TxM and the surface resultant couple tensor M (x) ∈ E ⊗ TxM , both of
the 1st Piola-Kirchhoff type, such that

nν = Nν , mν = Mν , (22)

where TxM is the 2D vector space tangent to M at x ∈ M , and ν ∈ TxM is
the unit vector externally normal to ∂M .

For any tensor field S ∈ F ⊗ TxM , where F denotes a vector space, the
generalized divergence theorem at the piecewise smooth surface M , consisting
of n regular surface elementsMk joined along the common junction represented
by the stationary singular curve Γ, has the form (see Chróścielewski et al.,
2004, formula 1.4.39)

∫∫
M\Γ

Div S da =
∫

∂M
Sν ds+

∫
Γ
[Sν] ds . (23)

Here Div is the surface divergence operator on M defined intrinsically by
Gurtin and Murdoch (1975), and the jump at each regular point of Γ is defined
by

[Sν] =
∑n

k=1
S kνk , (24)

where S k is the one-sided finite limit of S when the respective boundary ∂Mk

coinciding with Γ is approached, and νk ∈ TxMk is the unit vector externally
normal to ∂Mk.

In particular, if we apply (23) to some terms present in (13) and (21) we

11



obtain

∫
∂Π

N νds =
∫∫

Π\Γ
DivN da−

∫
Γ
[N ν]ds ,∫

∂Π
Mνds =

∫∫
Π\Γ

DivMda−
∫
Γ
[Mν]ds ,∫

∂Π
y ×N νds =

∫∫
Π\Γ

{
ax
(
NF T − FN T

)
+ y × (DivN )

}
da

−
∫
Γ
[y ×Nν]ds ,

(25)

where ax(.) means the axial vector of the skew tensor (.), F = ∇y ∈ E⊗TxM
is the shell deformation gradient with ∇ the surface gradient operator on M ,
and for the branching shell discussed here

[Nν] =
3∑

k=1

N kνk , [Mν] =
3∑

k=1

M kνk ,

[y ×Nν] =
3∑

k=1

yk ×N kνk .

(26)

Note that the second terms of (13) and (21) are integrated along ∂Π\∂Mf ,
while in the left-hand sides of (25) there are integrations over the full bound-
ary ∂Π. In order to apply (25), one has to insert into (13) and (21) ± integrals
over ∂Π ∩ ∂Mf with the same integrands as in the second terms of (13) and
(21), respectively. Then these additional integrals with + sign complete the
second terms of (13) and (21) into the integrals over the full ∂Π, while the
integrals with − sign can be combined with the respective third integrals of
(13) and (21). This allows one to use the generalized divergence theorems (25)
to all terms integrated over ∂Π in (13) and (21).

Finally, note that the last two terms of (13) and (21) are just some concen-
trated loads applied at the both ends of the singular curve Γ. Thus, we can
equivalently represent them by the following curvilinear integrals over some
distributed loads along Γ:

ne − n i =
∫
Γ
n ′ds ,

(m e + yΓe × ne)− (m i + yΓi × n i) =
∫
Γ
(m ′ + y ′

Γ × n + yΓ × n ′) ds .
(27)

As a result of all transformations suggested above the global equilibrium
conditions (13) and (21) for the branching shell take the forms

F(Π) =
∫∫

Π\Γ
(Div N + f ) da +

∫
∂Mf

(n∗ −Nν) ds

−
∫
Π∩Γ

(n ′ + [N ν]+ f Γ) ds = 0 , (28)

12



To(Π) =
∫∫

Π\Γ

{
Div M + ax(NF T − FN T ) + c + y × (Div N + f )

}
da

+
∫

∂Mf

{(m∗ −Mν) + y × (n∗ −N ν)}ds

−
∫
Γ
{m ′ + y ′

Γ × n + [Mν]+ cΓ + yΓ × (n ′ + [Nν] + f Γ)} ds
= 0 . (29)

The relations (28) and (29) are again the exact static equivalents of the 3D
global equilibrium conditions (3). However, now F(Π) andTo(Π) are expressed
through the surface and curvilinear resultant fields referred to an arbitrary
part Π of the reference base surface M , which corresponds to an arbitrary
part P of the reference shell B treated as a 3D solid body.

5 Local dynamic conditions

Vanishing of the total force in (28) and the total torque in (29) requires
that the following local dynamic conditions be satisfied:

the equilibrium equations

Div N + f = 0 , Div M + ax
(
NF T − FN T

)
+ c = 0 (30)

at each regular point x ∈ M \ Γ,
the dynamic boundary conditions

n∗ −N ν = 0 , m∗ −M ν = 0 (31)

at each regular point x ∈ ∂Mf , and
the dynamic continuity conditions

n ′ + [Nν]+ f Γ = 0 , m ′ + y ′
Γ × n + [Mν] + cΓ = 0 (32)

at each regular point x ∈ Γ.
Additionally, the dynamic boundary conditions

n∗
i − n i = 0 , m∗

i −m i = 0 at xi ∈ Γ ∩ ∂Mf ,

n∗
e − n e = 0 , m∗

e −me = 0 at xe ∈ Γ ∩ ∂Mf , (33)

have implicitly been used in (27) to account for the statically equivalent loads
n and m applied along Γ.

The local relations (30) and (31) are equivalent, as one would expect,
to the exact, resultant equilibrium equations and dynamic boundary condi-
tions of the general non-linear theory of regular shells given, for example, in
Libai and Simmonds (1983, 1998), Simmonds (1984), Makowski and Stumpf
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Fig. 4. The self-intersecting shell structure: a) the 3D shell, b) the corresponding
2D base surface.

(1990), Pietraszkiewicz (2001a), Chróścielewski et al. (2004), and Eremeyev
and Pietraszkiewicz (2004).

The dynamic continuity conditions (32) and (33) are the new exact, resul-
tant relations that have to be satisfied along the singular curve Γ modelling
the shell branching. They generalize two different forms of jump conditions
proposed by Makowski et al. (1999) and Pietraszkiewicz (2001b) for two al-
ternative formulations of the Kirchhoff-Love type non-linear theory of thin ir-
regular shells. The conditions (32) complete by the correcting terms n , m , f Γ

and cΓ the dynamic continuity conditions discussed in Makowski and Stumpf
(1994), Chróścielewski et al. (1997) and Pietraszkiewicz (2001a), and make ex-
act somewhat similar relations along Γ derived by Chróścielewski et al. (2004)
using an alternative approximate procedure.

The conditions (32) are the ordinary differential equations along Γ which
differ from the equilibrium equations of rods by the jump terms describing
interactions between regular shell parts along the junction.

6 Self-intersecting shell

Let the shell B consist of two regular shell elements intersecting each other,
see Fig. 4a). Alternatively, we can think of the self-intersecting shell as con-
sisting of four regular branches Bk, k = 1, 2, 3, 4, rigidly connected along
the common junction. The reference base surface M of B consists now of
four regular surfaces Mk rigidly connected along the common singular curve
Γ = ∂M1 ∩ ∂M2 ∩ ∂M3 ∩ ∂M4, as in Fig. 4b).

Cutting off an arbitrary part P of B containing the junction, we can dis-
cuss again the exact reduction of the global equilibrium conditions (3) of P
in the way discussed in sections 3, 4, and 5, only now we have additionally
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to take into account the existence of the fourth branch P4, see Fig. 5. Thus,
additionally to the shaded surface strips Π+

1d, Π
+
2d, Π

−
3d, Π

+
3d in Fig. 3, there

appear other shaded surface strips Π−
1d, Π

−
2d, Π

−
4d, Π

+
4d in Fig. 5 on which some

fictitious tractions are applied. There are now two enlarged tubes P1d and
P2d with enlarged ends ∂P1d and ∂P2d at xi and xe, where the integration is
performed twice. Therefore, in order to compensate the surplus of forces and
couples following from the fictitious tractions and the double integration, we
have to subtract again some forces and couples along Γ which are statically
equivalent to the additionally introduced loads.

The expressions of the total forces Fk(Πk) and the total torques Tok(Πk),
k = 1, 2, 3, for the self-intersecting shell become here formally exactly the same
as those given in section 3 for the branching shell. However, some definitions
of the correcting forces and couples applied along Γ have to be refined here as
a result of existence of the additional part P4.

Note that the area element of Π−
1d is da−1 = α−

1 da1, where da1 can now be
changed into da∗4 = α∗

4dξ4ds. Therefore, the relations (6) for f 1Γ and (17)3 for
c1Γ have to be refined now into∫∫

Π+
1d

t∗+1 da+
1 −

∫∫
Π−

1d

t∗−1 da−1 =
∫
Γ
f 1Γds ,

f 1Γ =
∫ +h+

3

0
α+

1 α∗
3t

∗+
1 dξ3 −

∫ +h+
4

0
α−

1 α∗
4t

∗−
1 dξ4 ,

c1Γ =
∫ +h+

3

0
α+

1 α∗
3ζ

+
1Γ × t∗+1 dξ3 −

∫ +h+
4

0
α−

1 α∗
4ζ

−
1Γ × t∗−1 dξ4 .

(34)

Similarly, the area element of Π−
2d is da−2 = α−

2 da2, where da2 can now be
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changed into da∗4 = α∗
4dξ4ds. Therefore, the relation (8)3 for f 2Γ and the one

for c2Γ should now be refined into∫∫
Π+

2d

t∗+2 da+
2 −

∫∫
Π−

2d

t∗−2 da−2 =
∫
Γ
f 2Γds ,

f 2Γ =
∫ 0

−h−
3

α+
2 α∗

3t
∗+
2 dξ3 −

∫ 0

−h−
4

α−
2 α∗

4t
∗−
2 dξ4 ,

c2Γ =
∫ 0

−h−
3

α+
2 α∗

3ζ
+
2Γ × t∗+2 dξ3 −

∫ 0

−h−
4

α−
2 α∗

4ζ
−
2Γ × t∗−2 dξ4 .

(35)

The total force F3(Π3) and total torqueTo3(Π3) vectors for the self-intersec-
ting shell as well as definitions of all the fields are exactly the same as for the
branching shell given in (9) and (19), where ∂P1d and ∂P2d in (11) and (20)
now mean the upper part of the enlarged tube boundaries belonging to ∂P3.

Finally, applying analogous transformations as in the case of F3(Π3), for
the total force vector F4(Π4) we obtain

F4(Π4) =
∫∫

Π4

f 4da4 +
∫

∂Π4\∂Mf

n4νds+
∫

∂Π4∩∂Mf

n∗
4ds

−
∫
Γ
f 4Γds− (n4e − n4i) , (36)

where

f 4 =
∫ +h+

4

−h−
4

f 4µ4dξ4 + α+
4 t

∗+
4 − α−

4 t
∗−
4 ,

n4ν =
∫ +h+

4

−h−
4

α∗
4t4ndξ4 , n∗

4 =
∫ +h+

4

−h−
4

α∗
4t

∗
4dξ4 .

(37)

Again, the correcting force f 4Γ in (36) should take into account the fictitious
tractions t∗±4 applied on Π±

4d and included in definition (37)1 of f 4. The area
elements of Π±

4d are da±4 = α±
4 da4, where da4 = da∗1 = α∗

1dξ1ds for Π+
4d and

da4 = da∗2 = α∗
2dξ2ds for Π−

4d. In order to account in f 4Γ the volume force
field f4 applied within the lower part of the tubes P1d and P2d, let us note
that the elementary volume force is here f4dv4 = f4µ4dξ4da4, where da4 =
da∗1 = α∗

1dξ1ds when integrating over ∂P1d and da4 = da∗2 = α∗
2dξ2ds when

integrating over ∂P2d. As a result, we have

f 4Γ =
∫ 0

−h−
1

α+
4 α∗

1t
∗+
4 dξ1 −

∫ 0

−h−
2

α−
4 α∗

2t
∗−
4 dξ2

+
∫ 0

−h−
1

(∫ +h+
4

0
f4µ4dξ4

)
α∗

1dξ1 +
∫ 0

−h−
2

(∫ 0

−h−
4

f4µ4dξ4

)
α∗

2dξ2 . (38)

Applying similar arguments as those leading to (12), the concentrated
forces n4i or n∗

4i acting at xi read

n4i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

t4nda
∗
4 , n∗

4i =
∫∫

(∂P1d∪∂P2d)∩∂B∗
f

t∗4da
∗
4 , (39)
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where now ∂P1d ∪ ∂P2d mean the lower parts of boundaries belonging to ∂P4

at xi. The concentrated forces n4e or n∗
4e at xe are defined similarly to (39).

Summing up the results of F1, F2, F3, F4 for the self-intersecting shell we
obtain the same formal expression (13) as for the branching shell. However,
now in (13) the fields f , nν , n

∗, and f Γ follow from all four parts of P, while
the concentrated forces n i, ne follow from combining the force vectors F3 and
F4 alone.

It is now apparent that using similar approach as for To3(Π3) for the total
torque vector To4(Π4) we obtain

To4(Π4) =
∫∫

Π4

(c4 + y 4 × f 4) da4 +
∫

∂Π4\∂Mf

(m4ν + y4 × n4ν) ds

+
∫

∂Π4∩∂Mf

(m∗
4 + y4 × n∗

4) ds−
∫
Γ
(c4Γ + yΓ × f 4Γ) ds (40)

− {(m4e + yΓe × n4e)− (m4i + yΓi × n4i)} ,

where all 2D and 1D fields are defined analogously as in (17). Only for the
correcting couples we have analogues of (38) and (39) in the form

c4Γ =
∫ 0

−h−
1

α+
4 α∗

1ζ
+
4Γ × t∗+4 dξ1 −

∫ 0

−h−
2

α−
4 α∗

2ζ
−
4Γ × t∗−4 dξ2

+
∫ 0

−h−
1

(∫ +h+
4

0
ζΓ × f4µ4dξ4

)
α∗

1dξ1 +
∫ 0

−h−
2

(∫ 0

−h−
4

ζΓ × f4µ4dξ4

)
α∗

2dξ2 ,

m4i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

ζΓ × t4nda
∗
4 . (41)

The concentrated couples m∗
4i, m4e, and m∗

4e are defined accordingly.
Summing up the result of To1, To2, To3, To4 for the self-intersecting shell

we obtain the same formal expression (21) as for the branching shell. However,
now in (21) the fields c, mν , m

∗, and cΓ follow from all four parts of P, while
m i, m e are the result of combining the couples from To3 and To4.

The relations (13) and (21), with extended definitions of fields presented in
this section, are again the exact 2D static equivalents for the self-intersecting
shell of the global vectors F(P) and To(P) appearing in the 3D equilibrium
conditions (3).

Further transformations of (13) and (21) in the case of the self-intersecting
shell are exactly the same as those given in section 4 for the branching shell,
only now in definitions of jumps (26) we have to sum up over k = 1, 2, 3, 4.
As a result, the global equilibrium conditions for the self-intersecting shell
become formally identical to (28) and (29). Therefore, also the local dynamic
conditions are the same as (30)-(33), only the fields present in the dynamic
continuity conditions (32) and the dynamic boundary conditions (33) have
to be calculated according to formulae derived in this section for the self-
intersecting shell.
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7 Discussion

We have discussed standard geometries of the junction region of the branch-
ing shell (Fig. 2a, Fig. 3) and the self-intersecting shell (Fig. 4a, Fig. 5). In
more complex geometries of the junctions the reduction procedure should be
understood as slightly modified.

As an example, let us assume the cross-section of the junction region of a
quite general branching shell as is shown in Fig. 6a). In this general case we
can always introduce a base surface, for example starting Π3 from the fold line
of the lower shell face (see Fig. 6b) and then joining Π1 and Π2 along some Γ.

A detailed analysis of Fig. 6b) and Fig. 3 indicates that in both cases
we have similar extended surface strips Π+

1d, Π
+
2d, Π

−
3d, Π

+
3d with fictitious trac-

tions and tubes ∂P1d, ∂P2d of double integration. However, in Fig. 6b) the skew
thickness co-ordinate ξ3 measures distance from Π3 along two straight lines
which are different above and below Π3. The boundary surface ∂P3 within the
junction region consist now of two different rectilinear surfaces joined along
the common surface curve Γ. Therefore, the formulae (10) should now be un-
derstood as being calculated segment-wise along the thickness co-ordinate ξ3,
which is now different above and below Π3.

In Section 3 three regular parts of the branching shell structure have first
been extended into the junction region up to Γ and then the surplus of ad-
ditional resultant forces and couples has been subtracted along Γ. One might
apply another statically equivalent approach as well: cut off first the junction
region itself, then reduce forces applied in regular shell parts Pk to their static
equivalents on Πk, and finally add along Γ static equivalents of forces acting
in the junction region. However, definition of such a junction region itself is
not unique and different possible definitions would lead to different values of
equivalent forces and couples along Γ. In such an approach the resultant forces
and couples of the regular shell parts would be defined only up to some dis-
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tance from Γ depending on the size of the defined junction region. As a result,
we feel that such an approach, as not uniquely defined, would be less conve-
nient in 2D modelling and analysis of branching and/or self-intersecting shells.
Our reduction procedure described in Section 3 does not require of defining
the junction region and, therefore, is independent of its definition.

8 Conclusions

We have derived the exact, resultant, global and local equilibrium condi-
tions for the non-linear theory of branching and self-intersecting shells. The
conditions have been written on the reference base surface consisting of three
(in case of branching) and four (in case of self-intersection) regular surfaces
joined together along the common singular curve modelling the junction. The
exact 2D equilibrium conditions have been formulated by performing direct
through-the-thickness integration in the 3D global equilibrium conditions of
continuum mechanics.

At regular surface and boundary points our local, resultant equilibrium
equations and dynamic boundary conditions are equivalent to the ones pub-
lished earlier. However, our resultant dynamic continuity conditions (32) along
the singular curve Γ and dynamic boundary conditions (33) at singular bound-
ary points xi, xe are new.

In the derivation process we have used no simplifying assumptions of any
kind, apart of usual regularity requirements for the fields allowing all math-
ematical operations to be performed. Therefore, our results are valid for an
arbitrary shell thickness which can be uniquely defined along the transverse co-
ordinate ξ. They are applicable for an arbitrary internal through-the-thickness
shell structure including layers, reinforcements, a mixture of several constitu-
ents, voids, cracks and other structural defects, provided that the internal 3D
stress field is still integrable across the shell thickness. The results are also
valid for an arbitrary material behaviour as well as for unrestricted values of
translations, rotations, strains, and/or bendings of the shell material elements.

Applying a similar approach with appropriate modifications the exact, re-
sultant dynamic continuity conditions for other types of shell irregularity can
also be formulated. The structure of the conditions should be similar to the
one of (32), only for each type of shell irregularity the fields n , m , f Γ, cΓ

would be defined by somewhat different expressions.
The additional 2D resultant equilibrium conditions derived here allow one

to formulate the complete boundary value problem for the branching and self-
intersecting shells. One only needs to appropriately refine the procedure lead-
ing to the six-field non-linear theory of irregular shells presented in Chróście-
lewski et al. (2004).
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A Relations for differential elements

In the paper we frequently need to express differential volume elements
as well as differential surface elements of the upper M+ and lower M− shell
faces and of the shell lateral boundary surface ∂B∗ through corresponding
differential elements of M and ∂M .

Let any x ∈ B be parameterized by the co-ordinates (ξα, ξ) ≡ (ξi), α = 1, 2,
i = 1, 2, 3, where ξ is the rectilinear co-ordinate measuring distance along the
line defined by the unit vector t not necessarily normal to M , and ξα are
Gaussian co-ordinates ofM (Fig. A.1). The covariant aα and the contravariant
aβ base vectors as well as the corresponding components aαβ and aαβ of the
surface metric tensor of M are given by (see Fig. A.1)

aα = P
∂x

∂ξα
≡ Px ,α , aαβ = aα · aβ , a = det (aαβ) ,

aβ · aα = δβ
α , aαβ = aα · aβ , n =

1

2
εαβx ,α ×x ,β ,

εαβ =
√

aeαβ , εαβ = aαλaβµ ελµ =
1√
a
eαβ ,

(A.1)

where P is the projection operator of M (see Gurtin and Murdoch, 1975), n
is the unit normal vector orienting M , δβ

α is the 2D Kronecker symbol such
that δ1

1 = δ2
2 = 1, δ2

1 = δ1
2 = 0, while eαβ ≡ eαβ are the surface permutation

symbols such that e11 = e22 = 0, e12 = −e21 = 1.
At any spatial point x ∈ B we have the following 3D relations analogous

to those of (A.1):

gi = x,i , gij = gi · gj , g = det(gij) ,

gj · gi = δj
i , gij = gi · gj , gi =

1

2
εijkgj × gk ,

εijk =
1√
g

eijk , εijk = (gi × gj) · gk =
√

g eijk ,

(A.2)

where gi and g
j are the spatial covariant and contravariant base vectors, while

gij and gij are covariant and contravariant components of the metric tensor
of E, respectively. In (A.2), eijk ≡ eijk are the 3D permutation symbols such
that e123 = e312 = e231 = −e132 = −e213 = −e321 = 1 , otherwise eijk = 0,
while for the 3D Kronecker symbols δ1

1 = δ2
2 = δ3

3 = 1 and δj
i = 0 for i �= j.

The differential volume element dv of B and the differential surface element
da of M are defined by

dv =
√

g dξ1dξ2dξ = µ dξ da ,

da =
√

a dξ1dξ2 , µ =

√
g

a
.

(A.3)

The spatial base vectors gi and g
j are expressed through the vectors x ,α
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Fig. A.1. Shell geometry.

and t defined on M by the relations (Fig. A.1)

gα = x ,α +ξt ,α , g3 = t ,

gβ =
1

2
εijβgi × gj = µ−1 εαβt × gα ,

g3 =
1

2
ε3jkgj × gk =

1

2
µ−1εαβgα × gβ ,

µ =
1

2
εαβ

(
gα × gβ

)
· g3

= n · t + ξ εαβ(x ,α ×t ,β ) · t + 1

2
ξ2 εαβ(t ,α ×t ,β ) · t .

(A.4)

It follows from (1) that the position vector of the upper shell face M+ and
the base vectors on M+ are (Fig. A.1)

x+(ξα) = x (ξα) + h+(ξα)t , a+
α = P+x,+α ,

x,+α = g
+
α + h,+α t , g+

α = gα|ξ=h+ = x ,α +h+t ,α ,
(A.5)

where g+
α are the spatial base vectors at x+ of the surface parallel to M at

the distance ξ = h+ measured along t .
The differential surface element da+ of M+ can be defined through the
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vector identity

da+ = n+da+ = x,+1 × x,+2 dξ1dξ2 . (A.6)

Introducing (A.5)2 into (A.6) we perform the following transformations:

da+ =
(
g+

1 + h,+1 t
)
×
(
g+

2 + h,+2 t
)
dξ1dξ2

=
√

g+g3+dξ1dξ2 +
(
h,+1 t × g+

2 − h,+2 t × g+
1

)
dξ1dξ2

=

√
g+

a
g3+da+ h,+α εαβt × g+

β da

=
(
g3+ − h,+α g

α+
)
µ+da . (A.7)

It is easy to see from (A.6) and (A.7) that

∣∣∣da+
∣∣∣ = ∣∣∣n+da+

∣∣∣ = +
√

n+ · n+da+ = da+

=
√
(g3+ − h,+α g

α+) · (g3+ − h,+β g
β+)µ+da

=
√

g33 − 2h,+α gα3+ + h,+α h,+β gαβ+µ+da . (A.8)

The position vector of the lower shell face M− and its base vectors are (Fig.
A.1)

x− (ξα) = x (ξα)− h− (ξα) t , a−
α = P−x,−α ,

x,−α = g
−
α − h,−α t , g−α = gα|ξ=h− = x ,α −h−t ,α ,

(A.9)

where g−α are the spatial base vectors at x− for ξ = −h−.
The differential surface element da− of M− can again be defined through

the vector identity

da− = −n−da− = −x,−1 × x,−2 dξ1dξ2 , (A.10)

where the minus sign in front of n− follows conventionally from the require-
ment that da− should point out in the outward direction to the lower shell
face M−.

Introducing (A.9)2 into (A.10) and performing transformations analogous
to (A.7) and (A.8) we obtain

∣∣∣da−
∣∣∣ = da−

=
√

g33− + 2h,−α gα3− + h,−α h,−β gαβ−µ−da . (A.11)

It follows from (A.8) and (A.11) that

da± = α±da ,

α± = µ±
√

g33± ∓ 2h,±α gα3± + h,±α h,±β gαβ± .
(A.12)
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Fig. A.2. Geometry of the lateral boundary surface.

The shell lateral boundary surface ∂B∗ is rectilinear one formed by straight
lines along the vector t at each point x ∈ ∂M (Fig. A.2). The differential
surface element da∗ of ∂B∗ can again be defined through the vector identity

da∗ = n∗da∗ = x,∗s × x,∗ξ dsdξ
= gατ

α × tdsdξ = εα3βg
βταdsdξ (A.13)

= gβνβµdsdξ ,

so that

da∗ = α∗dξds , α∗ = µ
√
gαβνανβ . (A.14)

In most shell problems we can take the transverse co-ordinate ξ to be
orthogonal to M and, therefore, t ≡ n . Then, according to Pietraszkiewicz
(1979),

gα = µλ
αx ,α , gβ = (µ−1)βλa

λµx ,µ , g3 = g
3 = n ,

µλ
α = δλ

α − ξ bλ
α , µ = det(µλ

α) = 1− 2ξH + ξ2K ,

µλ
α(µ

−1)βλ = δβ
α , µλ

α(µ
−1)αµ = δλ

µ , (µ−1)βλ =
1

µ

{
δβ
λ + ξ

(
bβ
λ − 2Hδβ

λ

)}
,

gαβ = µλ
α µµ

β aλµ , gαβ = (µ−1)αλ(µ
−1)βµa

λµ , (A.15)

gα3 = gα3 = 0 , g33 = g33 = 1 ,

where µλ
α and (µ−1)

β
λ are called shifters, and

bαβ = −n ,α ·x ,β , bλ
α = aλβbαβ , b = det (bαβ) ,

H =
1

2
bα
α , K =

b

a
.

(A.16)

23



In (A.16), bαβ and bλ
α are covariant and mixed components of the curvature

tensor, H is the mean curvature, and K is the Gaussian curvature of the
reference base surface M .

In the normal co-ordinate system (ξα, ξ) the geometric expansion factors
α±, α∗ appearing in (A.12) and (A.14) can be simplified into

α± = µ±
√
1 + h,±α h,±β gαβ± , α∗ = µ

√
gαβνανβ , (A.17)

where now µ and gαβ are given by (A.15).
If additionally the shell is of constant thickness and M is so chosen that

h+ and h− do not depend on ξα, then h,±α ≡ 0, and α± = µ±.
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Chróścielewski, J., Makowski, J., Stumpf, H., 1992. Genuinely resultant shell
finite elements accounting for geometric and material non–linearity. Inter-
national Journal for Numerical Methods in Engineering 35, 63–94.
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Pietraszkiewicz, W., Chróścielewski, J., Makowski, J., 2005. On dynamically
and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak,
Cz. (Eds.), Shell Structures: Theory and Applications. Taylor & Francis,
London et al. (in print)

Reissner, E., 1974. Linear and nonlinear theory of shells. In: Fung, Y.C., Sech-
ler, E.E. (Eds.), Thin Shell Structures. Prentice–Hall, Englewood Cliffs, pp.
29–44.

Reissner, E., 1982. A note on two–dimensional finite deformation theories of
shells. International Journal of Non–Linear Mechanics 17 (3), 217–221.

Simmonds, J.G., 1984. The nonlinear thermodynamical theory of shells: De-
scent from 3–dimensions without thickness expansion. In Axelrad, E., Em-
merling, F. (Eds.), Flexible Shells. Springer–Verlag, Berlin, pp. 1–11.

25



  

Supplementary Material



  

Supplementary Material



Exact resultant equilibrium conditions

in the non-linear theory
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Abstract

We formulate the exact, resultant equilibrium conditions for the non-linear theory
of branching and self-intersecting shells. The conditions are derived by performing
direct through-the-thickness integration in the global equilibrium conditions of con-
tinuum mechanics. At each regular internal and boundary point of the base surface
our exact, local equilibrium equations and dynamic boundary conditions are equiv-
alent, as expected, to the ones known in the literature. As the new equilibrium
relations we derive the exact, resultant dynamic continuity conditions along the
singular surface curve modelling the branching and self-intersection as well as the
dynamic conditions at singular points of the surface boundary. All the results do not
depend on the size of shell thicknesses, internal through-the-thickness shell struc-
ture, material properties, and are valid for an arbitrary deformation of the shell
material elements.

Key words: shell, branch, intersection, singular curve, continuity conditions, exact
reduction, non-linear theory

1 Introduction

Most two-dimensional (2D) models of regular shells known in the litera-
ture, such as the Kirchhoff-Love model or the Timoshenko-Reissner model,
are formulated using various kinematic constraints on the 3D deformation of
the shell material elements. In such shell models the 2D virtual work principle
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is usually applied to derive approximate equilibrium conditions formulated on
the shell base surface.

Reissner (1974, 1982) noted that the non-linear theory of regular shells can
be better formulated starting from the resultant 2D equilibrium equations,
which can be derived exactly by direct through-the-thickness integration of
the 3D equilibrium equations of continuum mechanics. The corresponding 2D
shell kinematics of the base surface can then be uniquely established as an
energetically exact dual structure from the virtual work identity. As a result,
the gross deformation of a shell cross section is characterised by a translation
vector and a rotation tensor that vary on the base surface. The two fields are
the only primary variables of the boundary value problem. Such a general, dy-
namically and kinematically exact, six-scalar-field theory of regular shells,
formulated with regard to a non-material weighted surface of mass taken as
the shell base surface, was developed by Libai and Simmonds (1983, 1998)
and Simmonds (1984), and with regard to a material surface arbitrary located
within the shell-like body by Makowski and Stumpf (1990), Chróścielewski
et al. (1992), Pietraszkiewicz (2001a) and Pietraszkiewicz et al. (2005). For
this general shell model efficient finite element algorithms were developed and
many numerical examples of equilibrium, stability, and dynamics of regular
and complex shell structures were presented by Chróścielewski et al. (1992,
1997) and Chróścielewski et al. (2002, 2004).

Many real shell structures contain irregular shell geometry, material prop-
erties, loadings, deformations, and/or boundary conditions. The six-field non-
linear theory of irregular shell structures was initiated by Makowski and
Stumpf (1994) and developed by Chróścielewski et al. (1997), Pietraszkie-
wicz (2001a), and Chróścielewski et al. (2004). In those works it was assumed
that the region of shell irregularity (e.g. branching, self-intersection, stiffening,
technological junction, etc.) is small as compared with other shell dimensions
and its size can be ignored in deriving the resultant 2D equilibrium condi-
tions. However, such an assumption brings an undefinable error into the re-
sultant dynamic continuity conditions formulated along the singular surface
curves modelling the irregularity regions. Therefore, such conditions cannot
be regarded as exact implications of 3D equilibrium conditions of continuum
mechanics.

In this paper we derive the exact, resultant equilibrium conditions for two
important classes of irregular shell structures: the branching shell and the
self-intersecting shell. The base surfaces of the irregular shells consist of three
and four, respectively, regular material surfaces arbitrary located in the shell
space which are joined along the common singular surface curve modelling
the junction. The 2D equilibrium conditions are formulated at the base sur-
face by performing direct through-the-thickness integration in the 3D global
equilibrium conditions of continuum mechanics. Our through-the-thickness
integration procedure is exact and takes into account real dimensions and ge-
ometry of the regions of shell branching and self-intersection.

The three regular parts of the branching shell structure are first extended
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into the junction region up to the singular curve. By this extension some ficti-
tious tractions become applied on four surface strips located at the junction.
There are also two tubes within the junction region where the through-the-
thickness integration is performed twice. In order to compensate the surplus of
forces and couples on the base surface following from the fictitious tractions
and the double integration, some statically equivalent system of forces and cou-
ples has to be subtracted along the singular curve. As a result of appropriate
transformations, our local, resultant equilibrium conditions for the branching
shell structure become exact implications of the global equilibrium conditions
of continuum mechanics. The self-intersecting shell is treated in the same way
as the branching shell, only in the former case we have four regular shell parts
rigidly connected together at the common junction.

At each regular internal and boundary point of the base surface our ex-
act, local equilibrium equations (30) and dynamic boundary conditions (31)
are equivalent, as expected, to the ones given first by Libai and Simmonds
(1983). Other two local equilibrium relations – the exact, resultant dynamic
continuity conditions (32) along the singular curve and the exact, resultant
dynamic boundary conditions (33) at the singular boundary points – are new.
They complete the set of resultant equilibrium conditions necessary to appro-
priately formulate the boundary value problem of the general, six-field theory
of branching and self-intersecting shell structures.

Necessary formulae allowing one to express differential volume and surface
elements outside the base surface through the corresponding surface elements
of the base surface and linear elements of the singular surface curve are given
in Appendix. The relations take into account that the rectilinear transverse
co-ordinate measuring distance from the base surface may not, in general, be
normal to the surface.

2 Notation and preliminary relations

The system of notation used here follows that of Chróścielewski et al. (2004)
and Libai and Simmonds (1998).

A shell is a 3D solid body identified in a reference (undeformed) placement
with a region B of the physical space E having the 3D vector space E as its
translation space. The shell boundary ∂B consists of three separable parts: the
upper M+ and lower M− shell faces, and the lateral boundary surface ∂B∗

such that ∂B = M+ ∪M− ∪ ∂B∗, M+ ∩M− = ∅.
The position vector x of any shell point x ∈ B can be described by

x(x, ξ) = x (x) + ξt(x) . (1)

Here x (x) = x(x, 0) is the position vector of a point x of some reference base
surface M arbitrarily located in B, ξ ∈ [−h−(x), h+(x)] is the distance along
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Fig. 1. Geometry of 3D shell-like body in the reference and deformed placements.

ξ from M with h = h− + h+ > 0 the initial shell thickness measured along ξ,
and t(x) is the unit vector of the rectilinear co-ordinate line ξ not necessarily
normal to M . Such a skew transverse co-ordinate ξ allows one to apply the
exact through-the-thickness integration also in case of folded shells or when
two shells do not intersect orthogonally, for example. The form (1) requires
that the lateral boundary surface ∂B∗ be a rectilinear surface, see Fig. 1.

The position vector y = χ(x) of the shell in the deformed placement
B̄ = χ(B) can formally be represented by

y(x, ξ) = y(x) + ζ(x, ξ) , ζ(x, 0) = 0 , (2)

where y = χ(x ) is the position vector of the deformed base surface M̄ = χ(M),
which is a material surface during the deformation process, and ζ is a deviation
of y ∈ B̄ from the deformed base surface M̄ , see Fig. 1.

Let P ⊂ B be an arbitrary part of the shell B with a boundary consisting of
three separable parts: ∂P = Π+∪Π−∪∂P∗, where Π± ⊂ M± and ∂P∗ ⊂ ∂B∗ .
Then in the referential description the 3D global equilibrium conditions of P
expressing the vanishing of the total force vector F(P) and the total torque
vector To(P) taken relative to an arbitrary point o ∈ E of all forces acting on
P are

F(P) =
∫∫∫

P
f dv +

∫∫
∂P\∂Bf

tn da +
∫∫

∂P∩∂Bf

t∗ da = 0 ,

To(P) =
∫∫∫

P
y× f dv +

∫∫
∂P\∂Bf

y× tn da +
∫∫

∂P∩∂Bf

y× t∗ da = 0 .
(3)

In (3), ∂Bf is that part of ∂B on which the traction vector field t∗(x) is pre-
scribed, f(x) is the volume force vector field, and tn(x) is the contact force
vector field. In shell theory it is usually assumed that the traction t∗ is pre-
scribed on both shell faces M± and on a part ∂B∗

f of the lateral boundary

surface ∂B∗, Fig. 1.
If (1) and (2) are introduced into (3) one can perform an exact through-the-
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Fig. 2. The branching shell structure: a) the 3D shell, b) the corresponding 2D base
surface.

thickness integration with regard to the co-ordinate ξ. The global equilibrium
conditions (3) can then be expressed through the resultant fields defined en-
tirely on the reference base surface M . Such a resultant form of the conditions
is appropriate for the 2D theory of shells. In case of a regular shell, such an
exact reduction procedure with regard to a non-material weighted surface of
mass was first suggested by Libai and Simmonds (1983), and with regard to
a material base surface by Makowski and Stumpf (1990). In what follows we
perform such an exact reduction of the equilibrium conditions (3) with regard
to the material base surface in case of branching and self-intersecting shells.

3 Branching shell

Let the reference shell B consist of three regular parts Bk, k = 1, 2, 3, rigidly
connected together along the common junction, see Fig. 2a). We assume that
two regular parts B1 and B2 form together a regular shell B1 ∪ B2 which lower
face M−

1 ∪M−
2 is a regular surface, Fig. 2a). It is also assumed that the traction

t∗ can be prescribed, in general, on the upper M+ and lower M− shell faces as
well as on the part ∂B∗

f of the lateral boundary surface ∂B∗. The reference base
surface M of B can always be chosen to be located arbitrarily within the shell
space and to consist of three regular surfaces Mk connected together along
the common surface curve Γ = ∂M1 ∩ ∂M2 ∩ ∂M3, as in Fig. 2b). This means
that each of Bk has to be treated as being extended into the junction region
so that Γ should belong to the corresponding parts of each lateral boundary
surface ∂B∗

k along the junction.
Cutting off an arbitrary part P of B containing the junction, let us discuss

the exact reduction of its global equilibrium conditions (3) to the statically
equivalent conditions written on the part of the reference base surface Π ⊂ M ,
where the shell parts Pk are represented by their corresponding images Πk and
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Γ, see Fig. 2.
Extending each of the parts Pk into the junction region it is implicitly as-

sumed that some fictitious tractions t∗ are applied also on the shaded surface
strips Π+

1d, Π
+
2d, Π

+
3d, Π

−
3d at the junction region in Fig. 3. Then by through-

the-thickness integration, the volume forces f(x) as well as the tractions tn(x)
and t∗(x) acting in each Pk are reduced to an equivalent system of forces and
couples applied on the base surface Π ⊂ M . During the procedure there are
two tubes P1d and P2d where the integration is performed twice: once when
reducing the volume forces f(x) given in P1, P2 and the tractions tn or t∗ act-
ing on ∂P1d and ∂P2d at xi and xe to their resultant forces and couples applied
on Π1, Π2, respectively, and the second time when reducing f(x) given in P3

and tn or t∗ acting on ∂P1d and ∂P2d at xi and xe to their equivalent forces
and couples applied on Π3. In order to compensate the surplus of forces and
couples following from the fictitious tractions and the double integration, we
have to subtract some forces and couples applied along Γ which are statically
equivalent to those additionally introduced loads.

After performing integration with regard to ξ, the total force vector F1(P1)
defined in (3)1 of all spatial forces acting in P1 and on ∂P1 is given by

F1(Π1) =
∫∫

Π1

f 1 da1 +
∫

∂Π1\∂Mf

n1ν ds+
∫

∂Π1∩∂Mf

n∗
1 ds

−
∫
Γ

f 1Γ ds , (4)
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where

f 1 =
∫ +h+

1

−h−
1

f1µ1 dξ1 + α+
1 t

∗+
1 − α−

1 t
∗−
1 ,

n1ν =
∫ +h+

1

−h−
1

α∗
1t1n dξ1 , n∗

1 =
∫ +h+

1

−h−
1

α∗
1t

∗
1 dξ1 ,

(5)

with t∗+1 and t∗−1 denoting the tractions prescribed on Π+
1 and Π−

1 , respec-
tively, and ξ1 the transverse co-ordinate of P1.

The minus sign in front of α−
1 t

∗−
1 in (5)1 conventionally indicates that the

traction t∗−1 acts on the surface M−
1 which outward orientation is opposite to

the one of M+
1 , see (A.10).

The correcting force f 1Γ subtracted in (4) takes into account the fictitious
traction t∗+1 applied on Π+

1d and included in definition (5)1 of f 1. The area
element of Π+

1d is da+
1 = α+

1 da1, according to (A.12)1, where da1 is the area
element of Π1. However, when extending P1 into the branching region the ex-
tended part of Π1 can always be chosen to coincide with the lateral boundary
surface ∂Π∗

3. Therefore, da1 may also be interpreted here as the area ele-
ment da∗3 of ∂P

∗
3 along the curve Γ. According to (A.14)1, da

∗
3 = α∗

3dξ3ds and
therefore

∫∫
Π+

1d

t∗+1 da+
1 =

∫
Γ
f 1Γds , f 1Γ =

∫ +h+
3

0
α+

1 α∗
3t

∗+
1 dξ3 . (6)

In exactly the same way we can calculate the total force vector F2(Π2)
of all spatial forces acting on P2. The result is expressed through the fields
defined on Π2 and ∂Π2 in complete analogy to those given in (5) and (6):

F2(Π2) =
∫∫

Π2

f 2 da2 +
∫

∂Π2\∂Mf

n2ν ds+
∫

∂Π2∩∂Mf

n∗
2 ds

−
∫
Γ

f 2Γ ds , (7)

where

f 2 =
∫ +h+

2

−h−
2

f2µ2dξ2 + α+
2 t

∗+
2 − α−

2 t
∗−
2 ,

n2ν =
∫ +h+

2

−h−
2

α∗
2t2ndξ2 , n∗

2 =
∫ +h+

2

−h−
2

α∗
2t

∗
2dξ2 ,

f 2Γ =
∫ 0

−h−
3

α+
2 α∗

3t
∗+
2 dξ3 .

(8)

The total force vector F3(Π3) is calculated by direct integration in (3)1

7



with regard to ξ3 leading to

F3(Π3) =
∫∫

Π3

f 3 da3 +
∫

∂Π3\∂Mf

n3ν ds+
∫

∂Π3∩∂Mf

n∗
3 ds

−
∫
Γ
f 3Γds− (n3e − n3i) , (9)

where

f 3 =
∫ +h+

3

−h−
3

f3µ3dξ3 + α+
3 t

∗+
3 − α−

3 t
∗−
3 ,

n3ν =
∫ +h+

3

−h−
3

α∗
3t3ndξ3 , n∗

3 =
∫ +h+

3

−h−
3

α∗
3t

∗
3dξ3 .

(10)

The correcting force f 3Γ in (9) should again take into account fictitious
tractions t∗±3 applied on Π±

3d and included in definition (10)1 of f 3. The area
elements of Π±

3d are da±3 = α±
3 da3, according to (A.12)1. When transforming

the elementary traction t∗+3 da+
3 the area element da3 may be changed into

da∗1 = α∗
1dξ1ds of ∂P∗

1 along Γ. Similarly, when transforming −t∗−3 da−3 the
area element da3 may be changed into da∗2 = α∗

2dξ2ds of ∂P∗
2 along Γ.

The first term in definition (10)1 of f 3 also includes the volume force field
f3 applied within the tubes P1d and P2d. These volume forces have already
been taken into account in definitions (5)1 of f 1 and (8)1 of f 2, respectively.
In order to correct the result of the double integration, we have to subtract
an equivalent force resultant field by including it into definition of f 3Γ acting
along Γ. Since in P1d, according to (A.3)1, the elementary volume force is
f3dv3 = f3µ3dξ3da3 and da3 can be changed into da∗1 = α∗

1dξ1ds, we can
integrate f3dv3 over the surface ∂P1d. Similarly, since in P2d the elementary
volume force is again f3dv3 = f3µ3dξ3da3 but now da3 can be changed into
da∗2 = α∗

2dξ2ds, we can integrate f3dv3 over the surface ∂P2d.
As a result of all those transformations we obtain

∫∫
Π+

3d

t∗+3 da+
3 −

∫∫
Π−

3d

t∗−3 da−3 +
∫∫∫

P1d

f3dv3 +
∫∫∫

P2d

f3dv3 =
∫
Γ
f 3Γds ,

f 3Γ =
∫ +h+

1

0
α+

3 α∗
1t

∗+
3 dξ1 −

∫ +h+
2

0
α−

3 α∗
2t

∗−
3 dξ2

+
∫ +h+

1

0

(∫ +h+
3

0
f3µ3dξ3

)
α∗

1dξ1 +
∫ +h+

2

0

(∫ 0

−h−
3

f3µ3dξ3

)
α∗

2dξ2 .

(11)

When reducing the elementary tractions t3nda
∗
3 or t

∗
3da

∗
3 acting on ∂P∗

3\∂B∗
f

or ∂P∗
3∩∂B∗

f to the resultant boundary forces n3ν or n
∗
3 acting on ∂Π3\∂Mf or

∂Π3 ∩ ∂Mf , respectively, we note that the tractions acting on the boundaries
∂P1d and ∂P2d at xi have already been taken into account in the expressions
(4) and (7). In order to correct the result of the double integration in (9), we
have to subtract in (9) some statically equivalent concentrated forces n3i or

8



n∗
3i acting at the initial point xi of Γ and defined by

n3i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

t3nda
∗
3 , n∗

3i =
∫∫

(∂P1d∪∂P2d)∩∂B∗
f

t∗3da
∗
3 . (12)

In exactly the same way we can define the statically equivalent concentrated
forces n3e or n∗

3e acting at the end point xe of Γ. The second minus sign in
front of n i in (9) conventionally indicates that the boundaries ∂P1d and ∂P2d

at xi have opposite orientations than the orientation of Γ. Similar boundaries
at xe have the same orientations as the one of Γ.

Summing up the results for F1, F2, F3 we can write

F(Π) =
∫∫

Π\Γ
f da+

∫
∂Π\∂Mf

nν ds+
∫

∂Mf

n∗ ds

−
∫
Γ

f Γ ds− (ne − n i) . (13)

In (13) the resultant surface forces f , the surface stress resultants nν , the
resultant boundary forces n∗, and the compensating curvilinear force resul-
tants f Γ follow from all three parts of P, while the concentrated forces n i, ne

follow only from integration over ∂P1d and ∂P2d taken into account in F3(Π3).
The total torque vector To(Π) relative to o ∈ E of all spatial forces acting

on P can again be calculated by direct integration in (3)2 with regard to ξ.
The procedure is exactly the same as in (4)-(13), only when calculating the
surface couples one has to introduce the following exact representations (2)
for the 3D position vector in the deformed placement relative to the deformed
base surface χ(M):

y = y + ζ , y+ = y + ζ+ , y− = y + ζ− . (14)

In the tubes P1d and P2d the compensating couples should be reduced
relative to points of the deformed singular curve χ(Γ), and the position vectors
in the deformed placement should be taken in the following exact form:

y = yΓ + ζΓ , y+ = yΓ + ζ+
Γ , y− = yΓ + ζ−

Γ . (15)

After performing integration with regard to ξ1, the total torque vector
To1(Π1) defined in (3)2 of all spatial forces acting in P1 and on ∂P1 is given
by

To1(Π1) =
∫∫

Π1

(c1 + y 1 × f 1) da1 +
∫

∂Π1\∂Mf

(m1ν + y1 × n1ν) ds

+
∫

∂Π1∩∂Mf

(m∗
1 + y1 × n∗

1) ds−
∫
Γ
(c1Γ + yΓ × f 1Γ) ds , (16)

9



where now

c1 =
∫ +h+

1

−h−
1

ζ1 × f1µ1dξ1 + α+
1 ζ+

1 × t∗+1 − α−
1 ζ−

1 × t∗−1 ,

m1ν =
∫ +h+

1

−h−
1

α∗
1ζ1 × t1ndξ1 , m∗

1 =
∫ +h+

1

−h−
1

α∗
1ζ1 × t∗1dξ1 ,

c1Γ =
∫ +h+

3

0
α+

1 α∗
3ζ

+
1Γ × t∗+1 dξ3 .

(17)

In exactly the same way we can calculate the total torque vector To2(Π2)
of all spatial forces acting in P2 and on ∂P2, and the result is

To2(Π2) =
∫∫

Π2

(c2 + y2 × f 2) da2 +
∫

∂Π2\∂Mf

(m2ν + y2 × n2ν) ds

+
∫

∂Π2∩∂Mf

(m∗
2 + y 2 × n∗

2) ds−
∫
Γ
(c2Γ + yΓ × f 2Γ) ds , (18)

where c2, m2ν , m
∗
2, c2Γ are defined in complete analogy to the fields (17).

Finally, the total torque vector To3(Π3) of all spatial forces acting in P3

and on ∂P3 reads

To3(Π3) =
∫∫

Π3

(c3 + y3 × f 3) da3 +
∫

∂Π3\∂Mf

(m3ν + y3 × n3ν) ds

+
∫

∂Π3∩∂Mf

(m∗
3 + y 3 × n∗

3) ds−
∫
Γ
(c3Γ + yΓ × f 3Γ) ds (19)

− {(m3e + yΓe × n3e)− (m3i + yΓi × n3i)} ,

where all 2D and 1D fields are defined analogously to (17), and the compen-
sating couples are defined in analogy to (11)2 by

c3Γ =
∫ +h+

1

0
α+

3 α∗
1ζ

+
3Γ × t∗+3 dξ1 −

∫ +h+
2

0
α−

3 α∗
2ζ

+
3Γ × t∗−3 dξ2

+
∫ +h+

1

0

(∫ +h+
3

0
ζΓ × f3µ3dξ3

)
α∗

1dξ1 +
∫ +h+

2

0

(∫ 0

−h−
3

ζΓ × f3µ3dξ3

)
α∗

2dξ2 ,

m3i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

ζΓ × t3nda
∗
3 , (20)

with similar apparent definitions for m∗
3i, m3e, and m∗

3e.
Summing up the results for To1(Π1), To2(Π2), and To3(Π3) and performing

some transformations we obtain the total torque vector To(Π) of the branched
shell expressed only by the fields defined on an arbitrary part Π of the base
surface

To(Π) =
∫∫

Π\Γ
(c + y × f ) da +

∫
∂Π\∂Mf

(mν + y × nν) ds

+
∫

∂Mf

(m∗ + y × n∗) ds−
∫
Γ
(cΓ + yΓ × f Γ) ds (21)

− {(m e + yΓe × ne)− (m i + yΓi × n i)} .

10



Again, in (21) the resultant surface couples c, the resultant stress couples
mν , the resultant boundary couples m∗, and the compensating curvilinear
couple resultants cΓ follow from all three parts of P, while the concentrated
couples m i, m e follow only from integration over ∂P1d and ∂P2d taken into
account in To3(Π3).

The relations (13) and (21) are exact 2D static equivalents of F(P) and
To(P) appearing in the 3D global equilibrium conditions (3) for an arbitrary
part P of the branching shell B treated as a 3D solid body.

4 Transformations

The global equilibrium conditions (3), with the total force and torque vec-
tors expressed through the surface fields by (13) and (21), should now be
appropriately transformed.

Let the surface point x ∈ M be a regular point of ∂M . Then by the sur-
face Cauchy theorem there exist the surface stress resultant tensor N (x) ∈
E ⊗ TxM and the surface resultant couple tensor M (x) ∈ E ⊗ TxM , both of
the 1st Piola-Kirchhoff type, such that

nν = Nν , mν = Mν , (22)

where TxM is the 2D vector space tangent to M at x ∈ M , and ν ∈ TxM is
the unit vector externally normal to ∂M .

For any tensor field S ∈ F ⊗ TxM , where F denotes a vector space, the
generalized divergence theorem at the piecewise smooth surface M , consisting
of n regular surface elements Mk joined along the common junction repre-
sented by the stationary singular curve Γ, has the form (see Chróścielewski et
al., 2004, formula 1.4.39)

∫∫
M\Γ

Div S da =
∫

∂M
Sν ds+

∫
Γ
[Sν] ds . (23)

Here Div is the surface divergence operator on M defined intrinsically by
Gurtin and Murdoch (1975), and the jump at each regular point of Γ is de-
fined by

[Sν] =
∑n

k=1
S kνk , (24)

where S k is the one-sided finite limit of S when the respective boundary ∂Mk

coinciding with Γ is approached, and νk ∈ TxMk is the unit vector externally
normal to ∂Mk.

In particular, if we apply (23) to some terms present in (13) and (21) we

11



obtain

∫
∂Π

N νds =
∫∫

Π\Γ
DivN da−

∫
Γ
[N ν]ds ,∫

∂Π
Mνds =

∫∫
Π\Γ

DivMda−
∫
Γ
[Mν]ds ,∫

∂Π
y ×N νds =

∫∫
Π\Γ

{
ax
(
NF T − FN T

)
+ y × (DivN )

}
da

−
∫
Γ
[y ×Nν]ds ,

(25)

where ax(.) means the axial vector of the skew tensor (.), F = ∇y ∈ E⊗TxM
is the shell deformation gradient with ∇ the surface gradient operator on M ,
and for the branching shell discussed here

[Nν] =
3∑

k=1

N kνk , [Mν] =
3∑

k=1

M kνk ,

[y ×Nν] =
3∑

k=1

yk ×N kνk .

(26)

Note that the second terms of (13) and (21) are integrated along ∂Π\∂Mf ,
while in the left-hand sides of (25) there are integrations over the full bound-
ary ∂Π. In order to apply (25), one has to insert into (13) and (21) ± integrals
over ∂Π ∩ ∂Mf with the same integrands as in the second terms of (13) and
(21), respectively. Then these additional integrals with + sign complete the
second terms of (13) and (21) into the integrals over the full ∂Π, while the
integrals with − sign can be combined with the respective third integrals of
(13) and (21). This allows one to use the generalized divergence theorems (25)
to all terms integrated over ∂Π in (13) and (21).

Finally, note that the last two terms of (13) and (21) are just some concen-
trated loads applied at the both ends of the singular curve Γ. Thus, we can
equivalently represent them by the following curvilinear integrals over some
distributed loads along Γ:

ne − n i =
∫
Γ
n ′ds ,

(m e + yΓe × ne)− (m i + yΓi × n i) =
∫
Γ
(m ′ + y ′

Γ × n + yΓ × n ′) ds .
(27)

As a result of all transformations suggested above the global equilibrium
conditions (13) and (21) for the branching shell take the forms

F(Π) =
∫∫

Π\Γ
(Div N + f ) da +

∫
∂Mf

(n∗ −Nν) ds

−
∫
Π∩Γ

(n ′ + [N ν]+ f Γ) ds = 0 , (28)

12



To(Π) =
∫∫

Π\Γ

{
Div M + ax(NF T − FN T ) + c + y × (Div N + f )

}
da

+
∫

∂Mf

{(m∗ −Mν) + y × (n∗ −N ν)}ds

−
∫
Γ
{m ′ + y ′

Γ × n + [Mν]+ cΓ + yΓ × (n ′ + [Nν] + f Γ)} ds
= 0 . (29)

The relations (28) and (29) are again the exact static equivalents of the 3D
global equilibrium conditions (3). However, now F(Π) andTo(Π) are expressed
through the surface and curvilinear resultant fields referred to an arbitrary
part Π of the reference base surface M , which corresponds to an arbitrary
part P of the reference shell B treated as a 3D solid body.

5 Local dynamic conditions

Vanishing of the total force in (28) and the total torque in (29) requires
that the following local dynamic conditions be satisfied:

the equilibrium equations

Div N + f = 0 , Div M + ax
(
NF T − FN T

)
+ c = 0 (30)

at each regular point x ∈ M \ Γ,
the dynamic boundary conditions

n∗ −N ν = 0 , m∗ −M ν = 0 (31)

at each regular point x ∈ ∂Mf , and
the dynamic continuity conditions

n ′ + [Nν]+ f Γ = 0 , m ′ + y ′
Γ × n + [Mν] + cΓ = 0 (32)

at each regular point x ∈ Γ.
Additionally, the dynamic boundary conditions

n∗
i − n i = 0 , m∗

i −m i = 0 at xi ∈ Γ ∩ ∂Mf ,

n∗
e − n e = 0 , m∗

e −me = 0 at xe ∈ Γ ∩ ∂Mf , (33)

have implicitly been used in (27) to account for the statically equivalent loads
n and m applied along Γ.

The local relations (30) and (31) are equivalent, as one would expect,
to the exact, resultant equilibrium equations and dynamic boundary condi-
tions of the general non-linear theory of regular shells given, for example, in
Libai and Simmonds (1983, 1998), Simmonds (1984), Makowski and Stumpf
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Fig. 4. The self-intersecting shell structure: a) the 3D shell, b) the corresponding
2D base surface.

(1990), Pietraszkiewicz (2001a), Chróścielewski et al. (2004), and Eremeyev
and Pietraszkiewicz (2004).

The dynamic continuity conditions (32) and (33) are the new exact, resul-
tant relations that have to be satisfied along the singular curve Γ modelling
the shell branching. They generalize two different forms of jump conditions
proposed by Makowski et al. (1999) and Pietraszkiewicz (2001b) for two al-
ternative formulations of the Kirchhoff-Love type non-linear theory of thin ir-
regular shells. The conditions (32) complete by the correcting terms n , m , f Γ

and cΓ the dynamic continuity conditions discussed in Makowski and Stumpf
(1994), Chróścielewski et al. (1997) and Pietraszkiewicz (2001a), and make ex-
act somewhat similar relations along Γ derived by Chróścielewski et al. (2004)
using an alternative approximate procedure.

The conditions (32) are the ordinary differential equations along Γ which
differ from the equilibrium equations of rods by the jump terms describing
interactions between regular shell parts along the junction.

6 Self-intersecting shell

Let the shell B consist of two regular shell elements intersecting each other,
see Fig. 4a). Alternatively, we can think of the self-intersecting shell as con-
sisting of four regular branches Bk, k = 1, 2, 3, 4, rigidly connected along
the common junction. The reference base surface M of B consists now of
four regular surfaces Mk rigidly connected along the common singular curve
Γ = ∂M1 ∩ ∂M2 ∩ ∂M3 ∩ ∂M4, as in Fig. 4b).

Cutting off an arbitrary part P of B containing the junction, we can dis-
cuss again the exact reduction of the global equilibrium conditions (3) of P
in the way discussed in sections 3, 4, and 5, only now we have additionally to
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take into account the existence of the fourth branch P4, see Fig. 5. Thus, addi-
tionally to the shaded surface strips Π+

1d, Π
+
2d, Π

−
3d, Π

+
3d in Fig. 3, there appear

other shaded surface strips Π−
1d, Π

−
2d, Π

−
4d, Π

+
4d in Fig. 5 on which some ficti-

tious tractions are applied. There are now two enlarged tubes P1d and P2d

with enlarged ends ∂P1d and ∂P2d at xi and xe, where the integration is per-
formed twice. Therefore, in order to compensate the surplus of forces and
couples following from the fictitious tractions and the double integration, we
have to subtract again some forces and couples along Γ which are statically
equivalent to the additionally introduced loads.

The expressions of the total forces Fk(Πk) and the total torques Tok(Πk),
k = 1, 2, 3, for the self-intersecting shell become here formally exactly the
same as those given in section 3 for the branching shell. However, some defi-
nitions of the correcting forces and couples applied along Γ have to be refined
here as a result of existence of the additional part P4.

Note that the area element of Π−
1d is da

−
1 = α−

1 da1, where da1 can now be
changed into da∗4 = α∗

4dξ4ds. Therefore, the relations (6) for f 1Γ and (17)3 for
c1Γ have to be refined now into∫∫

Π+
1d

t∗+1 da+
1 −

∫∫
Π−

1d

t∗−1 da−1 =
∫
Γ
f 1Γds ,

f 1Γ =
∫ +h+

3

0
α+

1 α∗
3t

∗+
1 dξ3 −

∫ +h+
4

0
α−

1 α∗
4t

∗−
1 dξ4 ,

c1Γ =
∫ +h+

3

0
α+

1 α∗
3ζ

+
1Γ × t∗+1 dξ3 −

∫ +h+
4

0
α−

1 α∗
4ζ

−
1Γ × t∗−1 dξ4 .

(34)

Similarly, the area element of Π−
2d is da−2 = α−

2 da2, where da2 can now be
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changed into da∗4 = α∗
4dξ4ds. Therefore, the relation (8)3 for f 2Γ and the one

for c2Γ should now be refined into∫∫
Π+

2d

t∗+2 da+
2 −

∫∫
Π−

2d

t∗−2 da−2 =
∫
Γ
f 2Γds ,

f 2Γ =
∫ 0

−h−
3

α+
2 α∗

3t
∗+
2 dξ3 −

∫ 0

−h−
4

α−
2 α∗

4t
∗−
2 dξ4 ,

c2Γ =
∫ 0

−h−
3

α+
2 α∗

3ζ
+
2Γ × t∗+2 dξ3 −

∫ 0

−h−
4

α−
2 α∗

4ζ
−
2Γ × t∗−2 dξ4 .

(35)

The total force F3(Π3) and total torqueTo3(Π3) vectors for the self-intersec-
ting shell as well as definitions of all the fields are exactly the same as for the
branching shell given in (9) and (19), where ∂P1d and ∂P2d in (11) and (20)
now mean the upper part of the enlarged tube boundaries belonging to ∂P3.

Finally, applying analogous transformations as in the case of F3(Π3), for
the total force vector F4(Π4) we obtain

F4(Π4) =
∫∫

Π4

f 4da4 +
∫

∂Π4\∂Mf

n4νds+
∫

∂Π4∩∂Mf

n∗
4ds

−
∫
Γ
f 4Γds− (n4e − n4i) , (36)

where

f 4 =
∫ +h+

4

−h−
4

f 4µ4dξ4 + α+
4 t

∗+
4 − α−

4 t
∗−
4 ,

n4ν =
∫ +h+

4

−h−
4

α∗
4t4ndξ4 , n∗

4 =
∫ +h+

4

−h−
4

α∗
4t

∗
4dξ4 .

(37)

Again, the correcting force f 4Γ in (36) should take into account the fictitious
tractions t∗±4 applied on Π±

4d and included in definition (37)1 of f 4. The area
elements of Π±

4d are da±4 = α±
4 da4, where da4 = da∗1 = α∗

1dξ1ds for Π+
4d and

da4 = da∗2 = α∗
2dξ2ds for Π−

4d. In order to account in f 4Γ the volume force
field f4 applied within the lower part of the tubes P1d and P2d, let us note
that the elementary volume force is here f4dv4 = f4µ4dξ4da4, where da4 =
da∗1 = α∗

1dξ1ds when integrating over ∂P1d and da4 = da∗2 = α∗
2dξ2ds when

integrating over ∂P2d. As a result, we have

f 4Γ =
∫ 0

−h−
1

α+
4 α∗

1t
∗+
4 dξ1 −

∫ 0

−h−
2

α−
4 α∗

2t
∗−
4 dξ2

+
∫ 0

−h−
1

(∫ +h+
4

0
f4µ4dξ4

)
α∗

1dξ1 +
∫ 0

−h−
2

(∫ 0

−h−
4

f4µ4dξ4

)
α∗

2dξ2 . (38)

Applying similar arguments as those leading to (12), the concentrated
forces n4i or n∗

4i acting at xi read

n4i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

t4nda
∗
4 , n∗

4i =
∫∫

(∂P1d∪∂P2d)∩∂B∗
f

t∗4da
∗
4 , (39)
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where now ∂P1d ∪ ∂P2d mean the lower parts of boundaries belonging to ∂P4

at xi. The concentrated forces n4e or n∗
4e at xe are defined similarly to (39).

Summing up the results of F1, F2, F3, F4 for the self-intersecting shell we
obtain the same formal expression (13) as for the branching shell. However,
now in (13) the fields f , nν , n

∗, and f Γ follow from all four parts of P, while
the concentrated forces n i, ne follow from combining the force vectors F3 and
F4 alone.

It is now apparent that using similar approach as for To3(Π3) for the total
torque vector To4(Π4) we obtain

To4(Π4) =
∫∫

Π4

(c4 + y 4 × f 4) da4 +
∫

∂Π4\∂Mf

(m4ν + y4 × n4ν) ds

+
∫

∂Π4∩∂Mf

(m∗
4 + y4 × n∗

4) ds−
∫
Γ
(c4Γ + yΓ × f 4Γ) ds (40)

− {(m4e + yΓe × n4e)− (m4i + yΓi × n4i)} ,

where all 2D and 1D fields are defined analogously as in (17). Only for the
correcting couples we have analogues of (38) and (39) in the form

c4Γ =
∫ 0

−h−
1

α+
4 α∗

1ζ
+
4Γ × t∗+4 dξ1 −

∫ 0

−h−
2

α−
4 α∗

2ζ
−
4Γ × t∗−4 dξ2

+
∫ 0

−h−
1

(∫ +h+
4

0
ζΓ × f4µ4dξ4

)
α∗

1dξ1 +
∫ 0

−h−
2

(∫ 0

−h−
4

ζΓ × f4µ4dξ4

)
α∗

2dξ2 ,

m4i =
∫∫

(∂P1d∪∂P2d)\∂B∗
f

ζΓ × t4nda
∗
4 . (41)

The concentrated couples m∗
4i, m4e, and m∗

4e are defined accordingly.
Summing up the result of To1, To2, To3, To4 for the self-intersecting shell

we obtain the same formal expression (21) as for the branching shell. However,
now in (21) the fields c, mν , m

∗, and cΓ follow from all four parts of P, while
m i, m e are the result of combining the couples from To3 and To4.

The relations (13) and (21), with extended definitions of fields presented in
this section, are again the exact 2D static equivalents for the self-intersecting
shell of the global vectors F(P) and To(P) appearing in the 3D equilibrium
conditions (3).

Further transformations of (13) and (21) in the case of the self-intersecting
shell are exactly the same as those given in section 4 for the branching shell,
only now in definitions of jumps (26) we have to sum up over k = 1, 2, 3, 4.
As a result, the global equilibrium conditions for the self-intersecting shell
become formally identical to (28) and (29). Therefore, also the local dynamic
conditions are the same as (30)-(33), only the fields present in the dynamic
continuity conditions (32) and the dynamic boundary conditions (33) have
to be calculated according to formulae derived in this section for the self-
intersecting shell.
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Fig. 6. Cross section of the general branching shell: a) the 3D shell, b) extended
strips with fictitious tractions and tubes of double integration.

7 Discussion

We have discussed standard geometries of the junction region of the branch-
ing shell (Fig. 2a, Fig. 3) and the self-intersecting shell (Fig. 4a, Fig. 5). In
more complex geometries of the junctions the reduction procedure should be
understood as slightly modified.

As an example, let us assume the cross-section of the junction region of a
quite general branching shell as is shown in Fig. 6a). In this general case we
can always introduce a base surface, for example starting Π3 from the fold line
of the lower shell face (see Fig. 6b) and then joining Π1 and Π2 along some Γ.

A detailed analysis of Fig. 6b) and Fig. 3 indicates that in both cases we
have similar extended surface strips Π+

1d, Π
+
2d, Π

−
3d, Π

+
3d with fictitious tractions

and tubes ∂P1d, ∂P2d of double integration. However, in Fig. 6b) the skew
thickness co-ordinate ξ3 measures distance from Π3 along two straight lines
which are different above and below Π3. The boundary surface ∂P3 within the
junction region consist now of two different rectilinear surfaces joined along
the common surface curve Γ. Therefore, the formulae (10) should now be un-
derstood as being calculated segment-wise along the thickness co-ordinate ξ3,
which is now different above and below Π3.

In Section 3 three regular parts of the branching shell structure have first
been extended into the junction region up to Γ and then the surplus of ad-
ditional resultant forces and couples has been subtracted along Γ. One might
apply another statically equivalent approach as well: cut off first the junction
region itself, then reduce forces applied in regular shell parts Pk to their static
equivalents on Πk, and finally add along Γ static equivalents of forces acting
in the junction region. However, definition of such a junction region itself is
not unique and different possible definitions would lead to different values of
equivalent forces and couples along Γ. In such an approach the resultant forces
and couples of the regular shell parts would be defined only up to some dis-
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tance from Γ depending on the size of the defined junction region. As a result,
we feel that such an approach, as not uniquely defined, would be less conve-
nient in 2D modelling and analysis of branching and/or self-intersecting shells.
Our reduction procedure described in Section 3 does not require of defining
the junction region and, therefore, is independent of its definition.

8 Conclusions

We have derived the exact, resultant, global and local equilibrium condi-
tions for the non-linear theory of branching and self-intersecting shells. The
conditions have been written on the reference base surface consisting of three
(in case of branching) and four (in case of self-intersection) regular surfaces
joined together along the common singular curve modelling the junction. The
exact 2D equilibrium conditions have been formulated by performing direct
through-the-thickness integration in the 3D global equilibrium conditions of
continuum mechanics.

At regular surface and boundary points our local, resultant equilibrium
equations and dynamic boundary conditions are equivalent to the ones pub-
lished earlier. However, our resultant dynamic continuity conditions (32) along
the singular curve Γ and dynamic boundary conditions (33) at singular bound-
ary points xi, xe are new.

In the derivation process we have used no simplifying assumptions of any
kind, apart of usual regularity requirements for the fields allowing all math-
ematical operations to be performed. Therefore, our results are valid for an
arbitrary shell thickness which can be uniquely defined along the transverse co-
ordinate ξ. They are applicable for an arbitrary internal through-the-thickness
shell structure including layers, reinforcements, a mixture of several constitu-
ents, voids, cracks and other structural defects, provided that the internal 3D
stress field is still integrable across the shell thickness. The results are also
valid for an arbitrary material behaviour as well as for unrestricted values of
translations, rotations, strains, and/or bendings of the shell material elements.

Applying a similar approach with appropriate modifications the exact, re-
sultant dynamic continuity conditions for other types of shell irregularity can
also be formulated. The structure of the conditions should be similar to the
one of (32), only for each type of shell irregularity the fields n , m , f Γ, cΓ

would be defined by somewhat different expressions.
The additional 2D resultant equilibrium conditions derived here allow one

to formulate the complete boundary value problem for the branching and self-
intersecting shells. One only needs to appropriately refine the procedure lead-
ing to the six-field non-linear theory of irregular shells presented in Chróście-
lewski et al. (2004).
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A Relations for differential elements

In the paper we frequently need to express differential volume elements
as well as differential surface elements of the upper M+ and lower M− shell
faces and of the shell lateral boundary surface ∂B∗ through corresponding
differential elements of M and ∂M .

Let any x ∈ B be parameterized by the co-ordinates (ξα, ξ) ≡ (ξi), α = 1, 2,
i = 1, 2, 3, where ξ is the rectilinear co-ordinate measuring distance along the
line defined by the unit vector t not necessarily normal to M , and ξα are
Gaussian co-ordinates ofM (Fig. A.1). The covariant aα and the contravariant
aβ base vectors as well as the corresponding components aαβ and aαβ of the
surface metric tensor of M are given by (see Fig. A.1)

aα = P
∂x

∂ξα
≡ Px ,α , aαβ = aα · aβ , a = det (aαβ) ,

aβ · aα = δβ
α , aαβ = aα · aβ , n =

1

2
εαβx ,α ×x ,β ,

εαβ =
√

aeαβ , εαβ = aαλaβµ ελµ =
1√
a
eαβ ,

(A.1)

where P is the projection operator of M (see Gurtin and Murdoch, 1975), n
is the unit normal vector orienting M , δβ

α is the 2D Kronecker symbol such
that δ1

1 = δ2
2 = 1, δ2

1 = δ1
2 = 0, while eαβ ≡ eαβ are the surface permutation

symbols such that e11 = e22 = 0, e12 = −e21 = 1.
At any spatial point x ∈ B we have the following 3D relations analogous

to those of (A.1):

gi = x,i , gij = gi · gj , g = det(gij) ,

gj · gi = δj
i , gij = gi · gj , gi =

1

2
εijkgj × gk ,

εijk =
1√
g

eijk , εijk = (gi × gj) · gk =
√

g eijk ,

(A.2)

where gi and g
j are the spatial covariant and contravariant base vectors, while

gij and gij are covariant and contravariant components of the metric tensor
of E, respectively. In (A.2), eijk ≡ eijk are the 3D permutation symbols such
that e123 = e312 = e231 = −e132 = −e213 = −e321 = 1 , otherwise eijk = 0,
while for the 3D Kronecker symbols δ1

1 = δ2
2 = δ3

3 = 1 and δj
i = 0 for i �= j.

The differential volume element dv of B and the differential surface element
da of M are defined by

dv =
√

g dξ1dξ2dξ = µ dξ da ,

da =
√

a dξ1dξ2 , µ =

√
g

a
.

(A.3)

The spatial base vectors gi and g
j are expressed through the vectors x ,α
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Fig. A.1. Shell geometry.

and t defined on M by the relations (Fig. A.1)

gα = x ,α +ξt ,α , g3 = t ,

gβ =
1

2
εijβgi × gj = µ−1 εαβt × gα ,

g3 =
1

2
ε3jkgj × gk =

1

2
µ−1εαβgα × gβ ,

µ =
1

2
εαβ

(
gα × gβ

)
· g3

= n · t + ξ εαβ(x ,α ×t ,β ) · t + 1

2
ξ2 εαβ(t ,α ×t ,β ) · t .

(A.4)

It follows from (1) that the position vector of the upper shell face M+ and
the base vectors on M+ are (Fig. A.1)

x+(ξα) = x (ξα) + h+(ξα)t , a+
α = P+x,+α ,

x,+α = g
+
α + h,+α t , g+

α = gα|ξ=h+ = x ,α +h+t ,α ,
(A.5)

where g+
α are the spatial base vectors at x+ of the surface parallel to M at

the distance ξ = h+ measured along t .
The differential surface element da+ of M+ can be defined through the
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vector identity

da+ = n+da+ = x,+1 × x,+2 dξ1dξ2 . (A.6)

Introducing (A.5)2 into (A.6) we perform the following transformations:

da+ =
(
g+

1 + h,+1 t
)
×
(
g+

2 + h,+2 t
)
dξ1dξ2

=
√

g+g3+dξ1dξ2 +
(
h,+1 t × g+

2 − h,+2 t × g+
1

)
dξ1dξ2

=

√
g+

a
g3+da+ h,+α εαβt × g+

β da

=
(
g3+ − h,+α g

α+
)
µ+da . (A.7)

It is easy to see from (A.6) and (A.7) that

∣∣∣da+
∣∣∣ = ∣∣∣n+da+

∣∣∣ = +
√

n+ · n+da+ = da+

=
√
(g3+ − h,+α g

α+) · (g3+ − h,+β g
β+)µ+da

=
√

g33 − 2h,+α gα3+ + h,+α h,+β gαβ+µ+da . (A.8)

The position vector of the lower shell face M− and its base vectors are (Fig.
A.1)

x− (ξα) = x (ξα)− h− (ξα) t , a−
α = P−x,−α ,

x,−α = g
−
α − h,−α t , g−α = gα|ξ=h− = x ,α −h−t ,α ,

(A.9)

where g−α are the spatial base vectors at x− for ξ = −h−.
The differential surface element da− of M− can again be defined through

the vector identity

da− = −n−da− = −x,−1 × x,−2 dξ1dξ2 , (A.10)

where the minus sign in front of n− follows conventionally from the require-
ment that da− should point out in the outward direction to the lower shell
face M−.

Introducing (A.9)2 into (A.10) and performing transformations analogous
to (A.7) and (A.8) we obtain

∣∣∣da−
∣∣∣ = da−

=
√

g33− + 2h,−α gα3− + h,−α h,−β gαβ−µ−da . (A.11)

It follows from (A.8) and (A.11) that

da± = α±da ,

α± = µ±
√

g33± ∓ 2h,±α gα3± + h,±α h,±β gαβ± .
(A.12)
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The shell lateral boundary surface ∂B∗ is rectilinear one formed by straight
lines along the vector t at each point x ∈ ∂M (Fig. A.2). The differential
surface element da∗ of ∂B∗ can again be defined through the vector identity

da∗ = n∗da∗ = x,∗s × x,∗ξ dsdξ
= gατ

α × tdsdξ = εα3βg
βταdsdξ (A.13)

= gβνβµdsdξ ,

so that

da∗ = α∗dξds , α∗ = µ
√
gαβνανβ . (A.14)

In most shell problems we can take the transverse co-ordinate ξ to be
orthogonal to M and, therefore, t ≡ n . Then, according to Pietraszkiewicz
(1979),

gα = µλ
αx ,α , gβ = (µ−1)βλa

λµx ,µ , g3 = g
3 = n ,

µλ
α = δλ

α − ξ bλ
α , µ = det(µλ

α) = 1− 2ξH + ξ2K ,

µλ
α(µ

−1)βλ = δβ
α , µλ

α(µ
−1)αµ = δλ

µ , (µ−1)βλ =
1

µ

{
δβ
λ + ξ

(
bβ
λ − 2Hδβ

λ

)}
,

gαβ = µλ
α µµ

β aλµ , gαβ = (µ−1)αλ(µ
−1)βµa

λµ , (A.15)

gα3 = gα3 = 0 , g33 = g33 = 1 ,

where µλ
α and (µ−1)

β
λ are called shifters, and

bαβ = −n ,α ·x ,β , bλ
α = aλβbαβ , b = det (bαβ) ,

H =
1

2
bα
α , K =

b

a
.

(A.16)
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In (A.16), bαβ and bλ
α are covariant and mixed components of the curvature

tensor, H is the mean curvature, and K is the Gaussian curvature of the
reference base surface M .

In the normal co-ordinate system (ξα, ξ) the geometric expansion factors
α±, α∗ appearing in (A.12) and (A.14) can be simplified into

α± = µ±
√
1 + h,±α h,±β gαβ± , α∗ = µ

√
gαβνανβ , (A.17)

where now µ and gαβ are given by (A.15).
If additionally the shell is of constant thickness and M is so chosen that

h+ and h− do not depend on ξα, then h,±α ≡ 0, and α± = µ±.
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