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2 South Scientific Center of RASci and Rostov State University, Zorge str. 5, 344090 Rostov on Don, Russia

Received 15 November 2006, revised 30 November 2006, accepted 1 December 2006
Published online 3 December 2006

Key words Shell, phase transition, singular curve, continuity conditions, rotation, non-linear theory, elasticity, line ten-
sion.

MSC (2000) 74K25, 74N10, 74K35, 74A50, 74N20

Dedicated to the memory of Professor Pavel Zhilin

The non-linear theory of elastic shells undergoing phase transitions was proposed by two first authors in J. Elast. 79
(2004), 67–86. In the present paper the theory is extended by taking into account also the elastic strain energy density of
the curvilinear phase interface as well as the resultant forces and couples acting along the interface surface curve itself.
All shell relations are found from the variational principle of stationary total potential energy. In particular, we derive the
extended dynamic continuity conditions at coherent and/or incoherent surface curves modelling the phase interface. The
continuity conditions allow one to establish the final position of the interface surface curve after the phase transition. The
results are illustrated by an example of a phase transition in an infinite plate with a central hole.
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1 Introduction

The non-linear mechanical theory of elastic shells with an account of occurence of the phase transition (PT) in the material
was developed by Eremeyev and Pietraszkiewicz [1]. The formulation was based on the dynamically and kinematically
exact shell model [2, 3, 4] with displacements composed of work-averaged translations and rotations of the shell cross
sections. Such a general shell model had a structure of the classical Cosserat surface [5] to which Professor Pavel Zhilin
contributed in [6, 7, 8]. In particular, in [1] we derived new dynamic continuity conditions at the curvilinear phase interface.

Within 3D theories of phase transformation phenomena the phase interface is usually modelled by a sharp smoothly
evolving surface separating different material phases in the thermodynamic equlibrium state. The surface interface itself
may be endowed with various additional fields modelling different types of PTs, see for example Grinfeld [9] and Pod-
strigach and Povstenko [10], where many references are given. In particular Povstenko [11] reviewed various models of
the surface interfaces and three-phase line interface junctions in 3D continuum and proposed to treat them as 2D and 1D
continua of the Cosserat type, respectively. Within 2D theories of thin films and biomembranes undergoing PTs simple 1D
models of the interface surface curve were discussed by Wang [12], Atai and Steigmann [13], Boulbitch [14], Bhattacharya
and James [15], Roytburd and Slutsker [16], and Rubin et al [17]. However, neither of those 1D models is complete enough
to be applied with the non-linear theory of shells with PTs developed in [1].

The aim of this paper is to extend the results of [1] by taking into account also the elastic strain energy density of
the phase interface itself as well as additional resultant forces and couples acting along the interface surface curve and
at its intersections with the shell boundary contour. The curvilinear density allows one to model within shell theory also
generalized capillary type phenomena widely discussed in continuum mechanics with PT, [9, 10]. The additional forces and
couples along the curvilinear interface may appear as a result of exact reduction to 1D problem of the 3D PT phenomenon
in a thin tube about the interface curve, as it is given for branching and self-intersecting shells in [18, 19].

After reviewing kinematic relations in Section 2, the equilibrium problem of PTs in elastic shells is formulated in
Section 3 in the weak form as the stationary problem for the functional of total potential energy (7). Stationarity conditions
of the functional following from (11) give the local equilibrium equations and dynamic boundary conditions known from
[1, 2, 3, 4]. Along the curvilinear interface we obtain the new, local, dynamic continuity conditions (14), (15) which extend
those proposed in [1]. The latter conditions allow one to establish position of the interface curve in the thermodynamic
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equilibrium state of PT in shells. Coherent curvilinear interfaces and interfaces incoherent in rotations are discussed in
more detail in Subsections 4.1 and 4.2, respectively, where specific results appropriate to those two cases are given. The
extended theory of PTs in shells is illustrated by a simple example of an infinite plate with a central hole discussed in [1],
but now endowed with an additional capillary tension along the interface circle.

2 Kinematic relations

Within the dynamically and kinematically exact theory of regular shells [2, 3, 4], a shell is a three-dimensional (3D) solid
body identified in a reference (undeformed) placement κ with a region B of the physical space E having the 3D vector
space E as its translation space. Geometry of B is described in the normal coordinates (θα, ξ), α = 1, 2, where ξ = 0
defines the regular base surface M ⊂ B, and ξ ∈ [−h−, h+] is the distance from M , with h = h−+h+ the shell thickness.
If x ∈ E is the position vector of x ∈ M , then the surface covariant and contravariant base vectors aα and aβ are defined
by

aα =
∂x
∂θα

≡ x,α , aβ · aα = δβ
α , η =

1
2
εαβaα × aβ , (1)

where η is the unit normal orienting M and εαβ are contravariant components of the surface permutation tensor ε.
In the deformed placement γ the shell can be represented by the position vector y = χ(x) ∈ E of the material base

surface N = χ(M) with attached three directors dα, d such that

y = x + u , dα = Qaα , d = Qη , (2)

where χ is the deformation function, while u ∈ E is the translation vector of M and Q ∈ SO(3) the proper orthogonal
(rotation) tensor, QT = Q−1, detQ = +1, describing the work-averaged gross deformation of the shell cross section.

The shell strain and bending tensors E and K in the spatial representation can be defined by [1, 2, 3]

E = εα ⊗ aα , K = κα ⊗ aα ,

εα = y,α − dα = u,α +(1 − Q) aα = Eαβdβ + Eαd ,

κα = ax
(
Q,α QT

)
=

1
2

{
dβ × (

Q,α QT
)

dβ + d × (
Q,α QT

)
d
}

= d × Kαβdβ + Kαd .

(3)

In a two-phase elastic shell different material phases may appear in different complementary subregions NA and NB of
N separated by the curvilinear phase interface D ∈ N , Fig.1. For a continuous deformation χ we can introduce on M a
singular image curve C = χ−1(D) separating the corresponding image regions MA = χ−1(NA) and MB = χ−1(NB).
The position vectors of C and D are related by xC(s) = χ−1 (yC(s)), where s is the arc length parameter along C.

The equilibrium boundary value problem (BVP) for shells with PTs was formulated in [1] in the weak form as the sta-
tionary problem for the functional of total potential energy. In the functional of [1] we did not take into account physical
properties of the curvilinear interface itself such as, for example, the line tension of capillarity type and its possible gen-
eralizations. Also force and couple resultants acting along C and at its intersections with ∂M were not accounted for in
[1]. To extend the functional of [1] by additional effects associated with C let us remind some kinematical relations of the
surface curve C treated here as an axis of a virtual rod.

Within the dynamically and kinematically exact theory of regular rods developed in [3, 20] the initial (undeformed)
placement κ of the 3D rod-like body is represented by the position vector xC ∈ E of the axis C and three orthonormal
vectors τα, τ attached to any point xC ∈ C, with τ = dxC/ds ≡ x′C . In the deformed placement γ the rod is represented
by the position vector yC ∈ E of the material rod axis D = χ(C) and three attached orthonormal directors hα, h which
satisfy the relations

yC = χ(xC) = xC + uC , hα = Rτα , h = Rτ , (4)

where uC is the translation vector and R the rotation tensor describing the work-averaged gross deformation of the rod
cross section.

The local deformation of the phase interface C can be described by the natural strain ε and bending κ vectors in the
spatial representation defined by [3, 20]

ε = u′
C + (1 − R) τ , κ = ax

(
R′RT

)
. (5)

The 1D fields uC(s), R(s) along C can be different, in general, from finite limits u±(s), Q±(s) of the 2D fields u,
Q when the respective boundaries ∂MA or ∂MB coinciding with C are approached. As a result, each type of the phase
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Fig. 1 Two-phase shell kinematics.

transition should be characterised by additional relations between uC , R and u±, Q±. In this paper we discuss only such
types of PT which do not lead to fragmentation of the shell. This is possible in two types of PT.

The phase interface C is called coherent if both fields y and Q are continuous at C

y− = y+ = yC , [[ y ]] = 0 , [[ y′ ]] = 0 ,

Q− = Q+ = R , [[ Q ]] = 0 , [[ Q′ ]] = 0 ,
(6)

where [[ ... ]] = [[ ... ]]+− [[ ... ]]− is the jump at C. Therefore, the coherent curve C can be singular with regard to F = Gradsy
and GradsQ but not with regard to y and Q themselves, where Grads is the surface gradient operator defined intrinsically
in [21, 22].

The phase interface is called incoherent in rotations if y is continuous at C but continuity of Q at C is violated. In this
case the conditions indicated in the first row of (6) are still satisfied, but those indicated in the second row of (6) can be
violated. Therefore, the interface C incoherent in rotations can be singular with regard to F, GradsQ, and Q.

3 Weak formulation of equilibrium BVP

The equilibrium BVP for shells with occurrence of the PT can now be formulated in the following weak form extending
the one proposed in [1, 23]:

Given the external, resultant surface force and couple fields f(θα), c(θα) on M , curvilinear force and couple fields fC(s),
cC(s) along C, concentrated forces and couples n∗

i , m∗
i and n∗

e , m∗
e acting at initial and end points xi, xe of intersection of

C with ∂Mf , as well as boundary force and couple fields n∗(s), m∗(s) prescribed along ∂Mf , respectively, find a solution
(u, Q, xC) on the configuration space S (M ;E × SO(3) × E) satisfying the kinematic boundary conditions u = u∗,
Q = Q∗ along ∂Md = ∂M \ ∂Mf such that for any kinematically admissible virtual vector fields δu, w = ax

(
δQQT

)
,

δxC the following variational principle of the total potential energy is satisfied:

δI = 0 , I =
∫∫

MA

WA da +
∫∫

MB

WB da +
∫

C

WC ds − A . (7)

Here WA = WA(E, K) and WB = WB(E, K) are the 2D elastic strain energy densities associated with the subregions MA

and MB , respectively, WC = WC(ε,κ) is the 1D elastic strain energy density associated with the phase interface curve C,
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and A is the potential of external loads such that

δA =
∫∫

M\C

(f · δu + c · w) da +
∫

C

(fC · δuC + cC · wC) ds

+
∫

∂Mf

(n∗ · δu + m∗ · w) ds + n∗
e · δue + m∗

e · we − n∗
i · δui − m∗

i · wi . (8)

In (8), δuC and wC = δRRT are the virtual translation and rotation of the interface C, and corresponding virtual displace-
ments at the initial and end points of C are denoted by δui, wi and δue, we, respectively.

The principle (7)1 with (7)2 and (8) states that among all possible values of u, Q in M \C, uC , R along C, and positions
of the phase interface xC the actual solution renders the functional (7)2 stationary.

Calculating δI with I defined by (7)2 consists of two parts. In the first part we have to repeat all transformations given
in detail in [1] for I without the integral over C in (7)2 as well as without the integral over C and out of integral terms in
(8). Due to the limited volume of this paper we do not repeat here those transformations and refer the reader to the final
result given in [1], f. (26).

Variation of the additional integral in (7)2 performed with the help of (5) and the theorem for differentiation of curvilinear
integrals [10] (f. (1.158), (2.223)) with a movable surface curve leads to

δ

∫
C

WC ds =
∫

C

δWCds +
∫

C

kgV WCds

=
∫

C

(n · δcε + m · δcκ) ds +
∫

C

kgV WCds

=
∫

C

{n · (δu′
C − wC × y′C) + m · w′

C} ds +
∫

C

kgV WCds

= (n · δuC + m · wC)
∣∣xe

xi
−

∫
C

{n′ · δuC + (m′ + y′C × n) · wC} ds +
∫

C

kgV WCds , (9)

where δc is the corotational variation, kg = −∂τ

∂s
· ν is the geodesic curvature of C, ν is the external unit normal to ∂M ,

V = δxC ·ν, and we have used the relations for δcε and δcκ given in [3]. The stress resultant n and stress couple m vectors
in the spatial representation are given by the constitutive equations

n =
∂WC

∂ε
, m =

∂WC

∂κ
. (10)

Introducing (9) and (8) into (7)1 and using the results of transformations given in [1], f. (26) we obtain

δI = −
∫∫

M\C

{(
nα

∣∣
α

+ f
) · δu +

(
mα

∣∣
α

+ y,α ×nα + c
) · w

}
da

+
∫

∂Mf

{(nν − n∗) · δu + (mν − m∗) · w} ds

+
∫

∂Md

(nν · δu + mν · w) ds

−
∫

C

{V [[ W ]] − kgV WC + [[ nν · δu ]] + [[ mν · w ]]

+ (n′ + fC) · δuC + (m′ + y′C × n + cC) · wC} ds (11)

+ (ne − n∗
e) · δue + (me − m∗

e) · we − (ni − n∗
i ) · δui − (mi − m∗

i ) · wi = 0 , (12)

where

nα =
∂W

∂εα
, mα =

∂W

∂κα
, nν = Nν = nανα , mν = Mν = mανα , (13)

να = ν · aα , and N, M are the stress resultant and stress couple tensors of the Kirchhoff type, respectively.
Vanishing of the first two rows of (11) leads to known local equilibrium equations and dynamic boundary conditions of

the general theory of regular shells, see [1]. The third and sixth rows of (11) vanish identically if the kinematic boundary
conditions along ∂Md are satisfied, for then δu = w = δue = we = δui = wi = 0 along ∂Md.
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4 Extended dynamic continuity conditions

From (11) it also follows that at the curvilinear phase interface the following local, extended, dynamic continuity conditions
have to be satisfied:

V [[W ]]−kgV WC +[[nν · δu ]]+ [[mν ·w ]]+(n′ + fC) · δuC +(m′ + y′C × n + cC) ·wC = 0 alongC , (14)

ni = n∗
i , mi = m∗

i at xi = C ∩ ∂Mf ,

ne = n∗
e , me = m∗

e at xe = C ∩ ∂Mf .
(15)

The fields V , δu±, w±, δuC , wC in (14) are still not independent at C, in general. Performing more detailed analysis
of (14) for different types of PTs we can introduce additional information about the behavior of the virtual fields and their
interrelation.

Assuming that y(x) and Q(x) are smooth fields in the interiors of MA and MB we can define one-sided limits y±, F±,
Q±, (GradsQ)± when x → xC . The functions y±(s) and Q±(s) are continuously differentiable along C.

4.1 Coherent interface

For the coherent interface all the relations (6) are assumed to be satisfied. Then applying the Maxwell theorem [24] we
obtain the local kinematic compatibility conditions [1]

[[ δu ]] + V [[ Fν ]] = 0 , [[ w ]] + V [[ Kν ]] = 0 along C , (16)

Fν = y,α να , Kν = κανα , (17)

which allow one to relate [[ δu ]] and [[ w ]] with V .
Let us represent the jumps of products in (14) by the identities

[[ Nν · δu ]] = 〈Nν〉 · [[ δu ]] + [[ Nν ]] · 〈δu〉 , [[ Mν · w ]] = 〈Mν〉 · [[ w ]] + [[ Mν ]] · 〈w〉 . (18)

Introducing (16) and (18) into (14) we obtain

V {[[ W ]] − kgWC − 〈Nν〉 · [[ Fν ]] − 〈Mν〉 · [[ Kν ]]} + [[ Nν ]] · 〈δu〉 + [[ Mν ]] · 〈w〉
+ (n′ + fC) · δuC + (m′ + y′C × n + cC) · wC = 0 .

(19)

At the coherent interface C from (6) it follows that 〈δu〉 = δuC and 〈w〉 = wC . Therefore

V {[[ W ]] − kgWC − 〈Nν〉 · [[ Fν ]] − 〈Mν〉 · [[ Kν ]]}
+ (n′ + [[ Nν ]] + fC) · δuC + (m′ + y′C × n + [[ Mν ]] + cC) · wC = 0 .

(20)

For now independent virtual fields V , δuC , and wC the relation (20) requires that the following local continuity condi-
tions be satis£ed along C:

[[ W ]] − 〈Nν〉 · [[ Fν ]] − 〈Mν〉 · [[ Kν ]] = kgWC ,

n′ + [[ Nν ]] + fC = 0 , m′ + y′C × n + [[ Mν ]] + cC = 0 .
(21)

The continuity conditions (15) and (21) are more complex than those derived in [1], f. (37)1,2 and (39), because now
they bring additional information about the elastic strain energy associated with the phase interface itself as well as the
resultant forces and couples acting along C and at the initial xi and end xe points of C. The conditions (15) and (21)2,3 are
formally the same as the ones of the exact, resultant, dynamic continuity conditions of the branching and intersecting shells
[19] derived by direct through-the-thickness integration of equilibrium conditions of continuum mechanics. This suggests
that the conditions (15) and (21) can also be formulated exactly by direct through-the-thickness integration of appropriate
3D equilibrium conditions of the shell-like body undergoing PT in a thin tube of matter about the singular surface curve C.

4.2 Interface incoherent in rotations

For the interface incoherent in rotations only the relations of the first row of (6) are assumed to be satisfied. In this case
the interface C can be singular with regard to Q, F, and GradsQ. From the Maxwell theorem [24] follows only the first
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8 W. Pietraszkiewicz, V. Eremeyev, and V. Konopińska: Elastic shells undergoing phase transitions

compatibility condition (6)1, while the second one (6)2 can now be violated, in general. Here 〈δu〉 = δuC as well, but
〈w〉 	= wC , in general. Then the continuity condition (14) can be transformed into

V {[[ W ]] − kgWC − 〈Nν〉 · [[ Fν ]]} + [[ Mν · w ]]

+ (n′ + [[ Nν ]] + fC) · δuC + (m′ + y′C × n + cC) · wC = 0 .
(22)

With now independent virtual fields V , w±, δuC , wC the relation (22) is equivalent to the following set of local dynamic
continuity conditions along the interface C incoherent in rotations:

[[ W ]] − 〈Nν〉 · [[ Fν ]] = kgWC , M±ν = 0 ,

n′ + [[ Nν ]] + fC = 0 , m′ + y′C × n + cC = 0 .
(23)

The second conditions in the first row of (23) indicate that here there appears the kind of a hinge along C at which the
resultant surface couples should vanish. The conditions (23) express just the balance of forces and couples at the interface
C incoherent in rotations.

The dynamic continuity conditions (21)1 and (23)1 are the relations which allow one to establish position of the singular
curve C on M in the thermodynamic equilibrium state of phase transition.

4.3 Capillary energy of the phase interface

Let us consider a special case of curvilinear energy of the phase interface by analogy to the one used in the theory of
capillary surfaces [25, 26]. In this case the functional of curvilinear energy can be assumed to be given by the integral
along D

σ

∫
D

ds , ds =
√

y′C · y′Cds, and WC = σ
√

y′C · y′C ≡ σ
√

1 + 2h · ε + ε · ε, (24)

where σ is the constant line tension, while s is the length parameter along D. Other possible types of constitutive equations
of one-dimensional continua are given in [10]. The concept of line tension is widely used not only in the theory of capillarity
but also in the theory of dislocations where the line tension describes the energy of a tube surrounded the dislocation, see
[27]. For the constitutive equation (24) we can simplify the continuity conditions along the phase interface (21) and (23).
Indeed, if we use (10) then from the equation (24) we obtain

n =
σ√

y′C · y′C
y′C , m = 0. (25)

Thus, by using (25) we obtain that n × y′C = 0. If we further assume that cC = 0 the third equation of (21) reduces to
[[ Mν ]] = 0 while the fourth one of (23) is satisfied identically.

Note that
1√

y′C · y′C
y′C is the unit vector tangent to the curve D. Then using the Frenet formulas we obtain that(

1√
y′C · y′C

y′C

)′
= kµ, where k is the principal curvature of the curve D and µ is the principal unit normal to D.

Then with the additional assumption that fC = 0 the second equation of (21) or the third one of (23) reduces to

kµ + [[ Nν ]] = 0. (26)

The equation (26) is a 1D analog of the well-known Laplace equation in the theory of capillarity [25, 26].

5 Example

Let us solve a simple axisymmetric plane problem of PT in an infinite plate with a central hole of radius a taking into
account the curvilinear energy given by (24), Figure 2. This example was considered in [1] in the case σ = 0. It is assumed
that in the undeformed state the whole plate consists of one material phase marked by “B”. Then to the hole boundary the
radial translation u∗ = −u∗ er with a constant magnitude u∗ is prescribed. As a result, in the deformed equilibrium state
of phase transition there may appear in a region a < r < b a new material phase marked by “A”. Our goal is to find the
radius b of the interface circle C.
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In the polar coordinate system θ1 = r, θ2 = ϕ the axisymmetric plane deformation and corresponding strain and
bending measures are given by

y = y(r)er, u = u(r)er = (y(r) − r)er, Q = 1, yC = Ber, xC = ber,
er = cos ϕi1 + sinϕi2, eϕ = − sin ϕi1 + cos ϕi2,

εr =
du

dr
er ≡ u′ er, εϕ = ueϕ, κr = κϕ ≡ 0,

E = Erer ⊗ er + Eϕeϕ ⊗ eϕ, Er = u′, Eϕ =
u

r
,

(27)

where er and eϕ are the unit base vectors, Er and Eϕ are physical components of strain, while B or b and y(r) or u(r) are
unknowns of the BVP.

To avoid awkward computations of [1] we assume that the elastic strain energy densities WA and WB can be assumed
in the simple form

WA,B = CA,B
1

(
E2

r + E2
ϕ

)
+ ∆A,B ≡ CA,B

1

(
u′2 +

u2

r2

)
+ ∆A,B , (28)

where ∆A,B is a constant. Usually we determine the strain energy density with accuracy to a constant, but here we may
take into account that the reference values of the densities of the two phases at zero strains may be different, in general. If
we assume that ∆B = 0, then ∆A describes an energetic barrier for the formation of the new phase ”A”. Further we take
∆A ≡ CA

1 ∆ 	= 0 where ∆ is a dimensionless parameter. The one-constant constitutive equation (28) means that the strain
energy densities of two material phases differ only by values of elastic constants CA,B

1 while other elastic constants in the
constitutive equation of isotropic shell discussed in [1] are equal zero.

For the deformation (27) and the constitutive equations (25) and (28) we have

NA,B = NA,B
r er ⊗ er + NA,B

ϕ eϕ ⊗ eϕ, MA,B ≡ 0, n = σeϕ, m = 0, WC = σ
B

b
,

NA,B
r = 2CA,B

1 u′, NA,B
ϕ = 2CA,B

1

u

r
.

(29)

Solving the equilibrium equations we obtain [1]

uA,B(r) = uA,B
0 r +

uA,B
1

r
, (30)

where uA,B
0 and uA,B

1 are integration constants.
Using kinematic boundary conditions and kinematic continuity conditions

uA(a) = u∗, uA(b) = uB(b), and uB(r) → 0 for r → ∞, (31)
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Fig. 3 Phase diagram for two-phase plate.

we obtain that uB
0 = 0, uB

1 = uA
1 + b2uA

0 , and uA
0 =

u∗

a
− uA

1

a2
. The integration constant uA

1 can be found from the reduced

third equation (23):

[[ Nν ]] ≡ [
NA

r (b) − NB
r (b)

]
er =

σ

b
er,

while the a priory unknown radius b of the phase interface circle C from the first of equations (21) or (23):

CA
1

[
u′

A
2(b) +

u2
A(b)
b2

]
−CB

1

[
u′

B
2(b) +

u2
B(b)
b2

]
+∆A− 1

2
[
NA

r (b) + NB
r (b)

]
[u′

A(b) − u′
B(b)] =

σB

b2
. (32)

The two-phase solution exists only if u∗ > u∗
0, where u∗

0 = a
σ̄ c + 2

√
σ̄ c2 − σ̄ − ∆ + σ̄2 + ∆ c2

2(c2 − 1)
, c =

CB
1

CA
1

> 0, and

σ̄ =
σ

CA
1 a

. The solution indicates that within 0 < u∗ < u∗
0 there is only one material phase “B” in the plate. When the

assumed boundary translation reaches the critical value u∗ = u∗
0 the second more “soft” material phase “A” is created with

a smaller modulus of elasticity than that of the phase “B”. Finally, when u∗ > u∗
0 the plate consists of two regions with two

different material phases separated by the circular interface C of radius b. The value of b depends upon the ratio c between
the material constants CB

1 and CA
1 , as well as upon σ̄ and ∆ (see Figure 3).

Note that in this problem the line tension affects position of the phase interface C if the value of σ̄ is big enough. If
σ̄ � 1 then in the limit σ̄ → 0 we obtain the results given in [1] . In the theory of phase transitions of 3D elastic bodies [9]
the surface tension essentially affects the new phase nucleation if the curvature of nucleation surface is big enough. In the
example considered here the nucleation curve of the new phase is a ring which curvature is not so big to affect the phase
transition for small values of the line tension.

After determining the integration constants the total energy I is a function of parameters x ≡ b/a and ū ≡ u∗/a and is
given by the relation

1
2πa2CA

1

I(x, ū) =
1

c x2 + x2 − c + 1
{
2ū2

(
x2 + c x2 + c − 1

)
+ 2ūσ̄x

+
1
4

[
2∆ (c + 1) x4 + 4 σ̄ (c + 1) x3 − (

4∆ c + σ̄2
)
x2

+4 σ̄ (1 − c) x + 2∆ c − 2∆ + σ̄2
]}

.

(33)
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b0

I

I|u∗>u∗
0

I|u∗< u∗
0

Fig. 4 Dependence of the total energy on the interface radius b for different values of u∗.

u∗u∗|σ̄=1u∗|σ̄=00

I
I1

I2|σ̄=1

I2|σ̄=0

Fig. 5 Total energies for two-phase solution I2 and for one-phase solution I1.

By differentiation it may be shown that the equation (32) is equivalent to the equation
∂I

∂x
= 0. It is easy to show that when

u∗ > u∗
0 there exists only one solution for the phase interface circle of radius b. Dependence of the total energy (33) on b

is given in Figure 4, where only one minimum exists if u∗ > u∗
0.

The solution corresponding to the two-phase equilibrium state is energetically preferable. Let us calculate the value of
the functional I on the two-phase solution as well as on the corresponding one-phase solution for different values of σ̄.
Then the total potential energy I2 corresponding to the two-phase equilibrium state is always lower than I1 corresponding
to the one-phase state, see Figure 5.

6 Conclusions

The non-linear quasi-static boundary-value problem of PTs in shells proposed in [1] has been extended by taking into ac-
count the elastic strain energy density of the interface as well as the resultant forces and couples acting along the curvilinear
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interface itself. From the variational principle of total potential energy we have derived the extended dynamic continuity
conditions to be satisfied at the interface. The conditions allow one to establish position of the interface curve in the
thermodynamic equilibrium state of PT.

We have applied the general dynamically and kinematically exact shell model. Therefore, all simplified versions of shell
theory with PT can be derived by an appropriate specialization of our results.

The variational principle (7) and the dynamic continuity conditions (21) and (23) may be useful in determining the
equilibrium position of a movable singular curve in the shell describing other types of singular phenomena. For example,
by analogy to the theory of dislocations in 3D bodies [27] the approach developed here may be useful in determining the
equilibrium of thin films with dislocations and/or thin-walled structures with singular curvilinear defects of any nature.
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