
lOth EUROPEAN MECHANICS OF MATERIALS 
CONFERENCE (EMMC10) 

Kazimierz Dolny, Poland, June 11-14, 2007 
 
 
 
 
 
 
 
 

MULTI-PHASE 
AND MULTI-COMPONENT 

MATERIALS  
UNDER DYNAMIC  

LOADING 

W. K. Nowacki and Han Zhao (Eds.) 

 

 

 

 
Institute of Fundamental Technological Research of PAS, Warsaw 

Laboratoire de Mécanique et Technologie (LMT), Cachan 



EMMC-10 Conference “Multi-phase and multi-component materials under dynamic loading” 
11-14.06.2007 Kazimierz Dolny, Poland 

 
 
 

ON  QUASI-STATIC  PROPAGATION  OF  THE  PHASE  
INTERFACE  IN  THIN-WALLED  INELASTIC  BODIES 

 
 

V. EREMEYEV*, W. PIETRASZKIEWICZ ** 

 
*South Federal University & South Scientific Center of RASci, Rostov-on-Don, Russia 

**Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Gdańsk, Poland 
 

e-mail: eremeyev@math.rsu.ru
 
 

Abstract: Applying the general non-linear theory of shells undergoing 
phase transitions, we derive the balance equations along the singular 
curve modelling the phase interface in the shell. From the integral forms 
of balance laws of linear momentum, angular momentum, and energy as 
well as the entropy inequality we obtain the local static balance equation 
along the curvilinear phase interface. We also derive the thermodynamic 
condition allowing one to determine the interface position within the 
deformed shell midsurface. The special case of the pure mechanical 
theory is also considered. 

Keywords: non-linear shell, phase transition, continuity conditions, 
quasi-static loading  

 
 
1. Introduction 
 
Phase transitions (PTs) play an important role in different problems of continuum 
mechanics. Behaviour of some modern materials is very sensitive to the stress-
induced PTs. See, for example, the experimental data on shape memory alloys 
given by Pieczyska et al. (2006), and Feng and Sun (2006), where thin-walled 
specimens such as a thin plate or a thin tube were used. 

Equilibrium conditions of elastic thin-walled structures (plates and shells) 
undergoing PT of martensitic type were formulated by Eremeyev and 
Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) within the dynamically 
and kinematically exact theory of shells presented in books by Libai and 
Simmonds (1998) and Chróścielewski et al. (2004). From experimental data we 
know that PT depending on strain rates and inelastic effects may considerably 
influence the stress state of the solid. 

The aim of this paper is to extend the results of Eremeyev and 
Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) by taking into account 
some inelastic effects of the shell material phases. 
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2. Shell equilibrium conditions 
 
Within the general theory of shells, the shell displacement is described by the 
translation vector E∈u  of the shell base surface M  and the proper orthogonal 
tensor  describing an energetically mean rotation of the shell cross-
sections, see Chróścielewski et al. (2004).  

(3)SO∈Q

Consider a two-phase shell such that in the deformed state both material 
phases appear on closed complementary subregions AN  and  of the deformed 
base surface  divided by the curvilinear phase interface . The 
position vector of  is , where s is the undeformed arc length parameter. 
Let x be the position vector of M. Then within the Lagrangian description for any 
continuous deformation χ  we can introduce in 

BN
( )N M= χ D

D )(sCy

( )1M N−= χ  the singular surface 

curve  with the position vector MC ⊂ ( )1( ) ( )C s −= χx yC s

)

. The curve C separates 

the two subregions 1(A AM N−= χ  and 1(B )BM N−= χ . Note that the position 
vectors  or  of the phase interface are a priory not known and should 
be determined together with the vector u  and the proper orthogonal tensor Q  
fields.  

)(sCy )(sCx

 In quasi-static problems discussed here the global equilibrium conditions 
require the total force and the total torque of all loads acting on any part M⊂Π  
to vanish 

    ,da dsν
Π ∂Π

+ =∫∫ ∫f n 0 ( ) ( ) ,da dsν ν
Π ∂Π

+ × + + × =∫∫ ∫c y f m y n 0        (2.1) 

where  and  are the external surface resultant force and couple vectors applied 
at any point of , but measured per unit area of 

f c
N M . Similarly, and  are 

the internal surface contact stress resultant and stress couple vectors defined at an 
arbitrary boundary 

νn νm

R∂ , ( )Πχ=R , and measured per unit length of the boundary 
. ∂Π
According to the Cauchy postulate, the contact vectors and  at any ∂Π  

can be represented through the respective internal surface stress resultant and 
stress couple tensors  and  by the relations 

νn νm

N M νNn =ν  and , with 
 the unit external normal vector of 

νMm =ν

xT M∈ν ∂Π . The tensors  and M  are some 
analogues in shell theory of the first Piola-Kirchhoff stress tensor in 3D 
continuum mechanics. 

N

From (2.1) we obtain the local 2D equilibrium equations of the shell to be 
satisfied in the regular points of M  

,0fN =+sDiv      ( ) ,0cFNNFM =+−+ TT
s axDiv          (2.2) 

where  is the surface gradient of the shell deformation yF sGrad=

( )= χ = +y x x u , ax(.) denotes the axial vector associated with the skew tensor (.), 
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while  and  are the surface gradient and divergence operators on M, 
respectively.  

sGrad sDiv

 If Π  contains a part of the phase interface C , which is the singular curve 
with respect to the surface stress measures, then from (2.1) we also obtain the 
static 1D  balance equations along C  

  [ ] =N 0ν ,   [ ] =M 0ν ,            (2.3) 

where the expression [...] (...) (...)+ −= −  means the jump at C . 

 
3. Kinematic compatibility conditions 
 
Most curvilinear phase interfaces in shells can be either coherent or incoherent in 
rotations, see Eremeyev and Pietraszkiewicz (2004). For the coherent interface 
both fields y and Q are supposed to be continuous at C  and the kinematic 
compatibility conditions along C  are 

 [ ] [ ]V+ =v Fν 0 ,    [ ] [ ]V+ =w Kν 0 ,            (3.1) 

where  is the translational velocity vector, =v u� ν⋅= CV x�  is the normal velocity 

tangent to of the phase curve , and xT M C ( )Tax QQw �=  is the angular velocity 
vector. 

 The phase interface is called incoherent in rotations if only y  is continuous 
at  but the continuity of Q  may be violated. In this case the condition (3.1)C 1 is 
still satisfied, but (3.1)2 may be violated. 

 
4. Constitutive equations  
 
We assume that the surface stress measures N  and  depend only on 
prehistories of the surface natural strain and bending tensors  
defined in Chróścielewski et al. (2004). 

M
, xE T M∈ ⊗E K

 Let us split the surface stress measures and their constitutive equations into 
elastic (equilibrium) and inelastic (dissipative) parts  

     ,DE NNN += .E D= +M M M            (4.1) 
Such a decomposition is widely used, for example in thermoviscoelasticity or 
plasticity. A simple example of decomposition (4.1) in viscoelastic shells was 
proposed by Makowski and Pietraszkiewicz (2002) in the form 

( ) ,E
ψρ ∂

=
∂
E,KN
E

     ( ) ,E
ψρ ∂

=
∂
E,KM
K

  

( ),K,EK,E,NN ��
DD =      ( ),K,EK,E,MM ��

DD =            (4.2) 
where ψ  is the surface free energy density, and ( ) ,0K,0,0E,NN == DD  

. ( ) 0K,0,0E,MM == DD
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5. Energy balance  
 
To take into account the influence of temperature, let us discuss the balance of 
energy in the shell. Thermodynamics of shells from various points of view was 
presented by Green and Naghdi (1970,1979), Murdoch (1976), Zhilin (1976), 
Simmonds (1984, 2005), and Makowski and Pietraszkiewicz (2002). In the papers 
various sets of surface fields responsible for temperature were used, and various 
formulations of the first and second laws of thermodynamics for shells were 
formulated. In order to present here the reasonably simple results we confine 
ourselves to the simplest version of these laws suggested by Murdoch (1976). If 
additionally the temperature changes across the shell thickness are disregarded, at 
the shell midsurface we have the temperature field which describes some through-
the-thickness average temperature. 
 The energy balance of an arbitrary part MΠ ⊂  of the shell midsurface can 
be described by, see Truesdell (1977), 

QAE
dt
d

+= ,              (5.1) 

where , ∫∫=
Π

daE ρε ρ  is the undeformed surface mass density, ε  the internal 

energy density, ( ) ( )A da ν ν
Π ∂Π

= ⋅ + ⋅ + ⋅ + ⋅∫∫ ∫f v c w n v m w ds

ds
Π

 the power of external 

loading,  the heat supply velocity,  the heat 

influxes through the upper (+) and lower (-) shell faces,  the internal surface 
heat supply, аnd  is the heat supply through the internal boundary contour. The 
field  is defined through the surface influx vector q  according to . 

( )Q q q q da qνρ + −
Π

Π ∂

= + + −∫∫ ∫ ±q

Πq

νq

νq ν⋅= qνq
 From (5.1) we obtain the local energy balance  

( ) s
d q q q Div
dt

ρ ε ρ + −
Π= + + − + +q N E M KD Di i , 

where ( )  is the co-rotational time derivative, see Chróścielewski et al. (2004). . D

 When Π  contains a part of the singular surface curve , from (5.1) we also 
obtain the local balance equation along C 

C

  [ ] [ ] [ ] [ ] 0=⋅−⋅+⋅+ νqwmvn ννρεV .          (5.2) 
 
6. Clausius-Duhem inequality  
 
We take the second law of thermodynamics in the simple form proposed by 
Murdoch (1976) 

ds
T
q

da
T
q

T
q

T
qda

dt
d

extext
∫∫∫∫∫
∂

−

−

+

+

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥

ΠΠ

Π

Π

νρρη ,         (6.1) 
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where η  is the surface entropy density. In (6.1), by  и  we denote the 
temperature of the external media surrounding the shell from above and below.  

+
extT −

extT

 The local form of (6.1) is 

  ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥

−

−

+

+

q
T

Div
T
q

T
q

T
q

dt
d

s
extext

1Πρηρ . 

 If a part of  then from (6.1) follows the relation along C C∈Π

  [ ] .01 2 ≤−≡⎥⎦
⎤

⎢⎣
⎡ ⋅− δρη νq
T

V  

The quantity  represents creation of entropy at the interface . If 2δ C 0=δ  then 
the phase transition is called reversible. In such a case the balance equation along 
C reduces to 

[ ] .01
=⎥⎦

⎤
⎢⎣
⎡ ⋅− νq
T

V ρη              (6.2) 

 
7. Thermodynamic continuity condition 
 
The relations (2.3), (4.1), (5.2) and (6.2) derived above can be transformed further 
by excluding the normal velocity V  of the interface. If the field T  is continuous 
at C, that is when [ ] , one can eliminate the field q from  (5.2) and (6.2) 
which leads to 

0=T

[ ] [ ] [ ] 0=⋅+⋅+ wmvn ννρψV ,          (7.1) 

where ηεψ T−=  is the surface free energy density. 
 Further transformations of (7.1) are similar to those given in Eremeyev and 
Pietraszkiewicz (2004). Using (3.1) from (7.1) we obtain 

[ ] 0=⋅ νν C ,             (7.2) 

where   is the surface Eshelby tensor.  C
At the coherent curvilinear interface  

,T T
c ρψ≡ = − −C C A N F M K   

while at the interface incoherent in rotations   
T

i ρψ≡ = −C C A N F . 
 As a result, in the case of quasi-static loading along the interface C we obtain 
the same thermodynamic condition as was given earlier by Eremeyev and 
Pietraszkiewicz (2004) for the case of phase equilibrium. But contrary to the latter 
paper, here we do not assume that the shell is elastic. In our case the constitutive 
equations involve an arbitrary dependence of the surface stress measures on 
prehistories of deformation measures and temperature. 
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8. Transition to mechanics 
 
To construct the purely mechanical theory let us discuss an isothermal process in 
which the temperature field is constant, . Then from the 
relations (5.1) and (6.1) it follows that  

constTTT extext === −+

A
dt
d

≤Ψ .              (8.1) 

Here  means the internal stored energy, while  represents the 

power of external loading. It is possible to show that for elastic shells with phase 
transitions the inequality (8.1) transforms into the equality, which becomes 
equivalent to the weak formulation of the problem based on the variational 
principle of stationary total potential energy, see Eremeyev and Pietraszkiewicz 
(2004). However, when the constitutive equations of the viscoelastic shells are 
used the variational inequality (8.1) leads to the additional balance relation (7.2). 

∫∫=
Π

Ψ daρψ A

 
8. Conclusions 
 
We have derived the balance conditions at the curvilinear phase boundaries in the 
non-linear theory of shells. The conditions have followed from the integral 
balance laws of linear momentum, angular momentum, and energy as well as 
from the entropy inequality. It has been shown that the additional relation at the 
curvilinear phase interface derived by Eremeyev and Pietraszkiewicz (2004) for 
elastic shells should also be satisfied for quasi-static processes in thermoelastic 
shells. In the case of thermoviscoelastic shells the relation contains not only the 
equilibrium parts but also the dissipative parts of the stress resultant and stress 
couple tensors. The relation is valid when there is no entropy creation at the phase 
interface, that is when the phase transition is assumed to be reversible. 
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