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Abstract: The general non-linear theory of elastic shells undergoing 
stress-induced phase transition of martensitic type is developed. Our 
formulation is based on the statically and kinematically exact shell 
model. We also take into account the strain energy density of capillarity 
type as well as forces and couples applied along the curvilinear phase 
interface itself. The boundary value problem is formulated in the weak 
form through the variational principle of stationary total potential 
energy. In particular, we derive the refined static continuity conditions 
at the coherent interface and at the interface incoherent in rotations. 
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1. Introduction 
 
Some non-classical materials may undergo diffusionless phase transitions (PTs) of 
martensitic type. Several mechanical models of such processes are summarized in 
books, for example by Podstrigach and Povstenko (1985), Grinfeld (1991) and 
Romano (1993). In particular, Povstenko (1991) proposed to treat the surface 
interfaces and three-phase curvilinear junctions in 3D continuum as 2D and 1D 
continua of the Cosserat (1909), respectively. 

Thin films made of shape memory alloys can considerable alter their shapes 
under appropriate environmental changes. To model PTs in such thin bodies 
Eremeyev and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) used the 
statically and kinematically exact theory of shells presented in books by Libai and 
Simmonds (1998) and Chróścielewski et al. (2004). In such a shell model the 2D 
equilibrium conditions are derived by a direct through-thee-thickness integration 
of the equilibrium conditions of 3D continuum mechanics. Within the shell model 
the PT occurs at a movable surface curve separating shell regions with different 
material phases. One has only to complete the relations of the non-linear theory of 
regular shells with appropriate continuity conditions at the curvilinear phase 
interface. These conditions are necessary and sufficient for establishing the 
position of the interface in the thermodynamic equilibrium state of the shell. 
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In this report the curvilinear phase interface is endowed with the curvilinear 
strain energy density modeling the generalized capillary type phenomena, in 
analogy to the 2D phenomena in 3D bodies discussed for example by Finn (1986) 
or Rusanov (2005). We also take into account additional forces and couples 
applied along the interface curve itself. These loads may result from exact 
reduction to the 1D problem of the 3D phenomenon in a thin tube about the 
interface surface curve performed in analogy to the results by Konopińska and 
Pietraszkiewicz (2007) for branching and self-intersecting shells. They may 
directly model also curvilinear defects of any nature in thin-walled structures, 
such as dislocations for example, see Gurtin (2000). 

 
2. Weak formulation of the equilibrium BVP 
 
Deformation of the elastic shell is described by the displacement vector  and 
the proper orthogonal (rotation) tensor 

E∈u
(3)SO∈Q  of the shell base surface M , 

see Chróścielewski et al. (2004). In shells undergoing PT of martensitic type we 
also need to know the position vector C E∈x  of the phase interface curve 

 in the undeformed placement, where  is the 3D vector space, see 
Eremeyev and Pietraszkiewicz (2004). 
C M⊂ E

The equilibrium boundary value problem (BVP) for the shell with PT can be 
formulated in the weak form: Given the external resultant surface forces and 
couples find a solution  in the configurational space 

 satisfying the kinematic boundary conditions 
along 

( , , )Cu Q x
{ ; (3) }S M E SO E× ×

,= =*u u Q Q* f\dM M M∂ = ∂ ∂  such that for any kinematically 

admissible virtual displacement field { ,  the following 
principle of the total potential energy is satisfied: 

( ), }T
Caxδ δ δ=u w QQ x

0 , d d d .
A BA B CM M CI I W a W a W s Aδ = = + + −∫∫ ∫∫ ∫                                      (2.1) 

Here ( , )A AW W= E K  and ( , )B BW W= E K  are the 2D elastic strain energy 
densities associated with the subregions AM  and BM  of M  with different 
material phases, respectively. The densities AW  and  depend only on the 
surface natural strain and bending tensors 

BW
, xE T M∈ ⊗E K . ( , )C CW W=  is the 

1D elastic strain energy density associated with the undeformed phase interface 
curve  itself. In general,  can be assumed to depend upon the natural 
curvilinear strain and bending tensors 

C CW
, xE T C∈ ⊗  of the interface C  given for 

example in Chróścielewski et al. (2004).  

In (2.1),  is the potential of external loads such that A

\

* * * * * *

( )d ( )d

( )d
f

C C C CM C C

e e e e i i i iM

A a a

a .

δ δ δ

δ δ δ∂

= + + +

+ + + + − −

∫∫ ∫

∫

f u c w f u c w

n u m w n u m w n u m w

i i i i

i i i i i i
          (2.2) 
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Here Cδu  and  are the virtual translation and rotation vectors of the interface 
curve , with  

Cw
C ,i iδu w  and ,e eδu w  denoting the corresponding virtual 

displacements at the initial and end points of intersection of  with the boundary 
contour 

C
M∂ , respectively. The principle (2.1) with (2.2) states that among all 

possible values of  in ,u Q \M C  and positions  of the interface C  the actual 

solution { ,
Cx

, }s s s
Cu Q x  renders the functional stationary. 

Calculating Iδ  with I  given by (2.1)2 and (2.2) consists of two parts. In the 
first part we just refer to all transformations given in detail by Eremeyev and 
Pietraszkiewicz (2004) for I  without the integral along C  in (2.1)2 as well as 
without the integral along C  and the out-of-integral terms in (2.2). Variation of 
the integral along  in (2.1)C 2, performed with the help of theorems for 
differentiation of curvilinear integrals over the time-dependent singular surface 
curve  given in Podstrigach and Povstenko (1985) and Cermelli et al. (1998), 
leads to  

C

d ( )d d

( ) | { ( )

d .

e

i

e

i

e

i

xc c
C g C xC C C

x
C C x C C CC

x
g C C C xC

W s s k VW s W

s

k VW s W

δ δ δ δ

δ δ

δ

= + + +

′ ′ ′= − + ×

+ +

∫ ∫ ∫
∫

∫

n m x

n u + m w n u + m y n w

x

i i i

i i i i

i

}d

C C

           (2.3) 

In (2.3), cδ  is the corotational variation, gk  is the geodesic curvature of C , 

CV δ= ix , xT M∈  is the external unit normal to C , C′= x  is the unit tangent 
to C, cδ  and cδ  are given in Chróścielewski et al. (2004), and the stress 
resultant and stress couple vectors along C  are defined by  and 

, respectively. 
/CW= ∂ ∂n

/CW= ∂ ∂m
Introducing (2.3) and (2.2) into (2.1)1 and using the results of Eremeyev and 

Pietraszkiewicz (2004) we obtain 

( )
\

* * *

( ) { ( ) }

{( ) ( ) }d

( )d

{ [ ] [ ] [ ]

( ) ( ) }d

( ) ( ) ( ) (

f

d

T T
s sM C

M

M

g CC

C C C C C

e e e e e e i i i i

dI Div Div ax a

s

s

V W k VW

s

ν ν

ν ν

ν ν

δ δ

δ

δ

δ

δ

δ δ

∂

∂

= − + + −

+ −

+ +

− − + +

′ ′ ′+ + ×

+ − − − − − −

∫∫
∫
∫
∫

* *

N + f u M NF FN + c w

n n u + m - m w

n u m w

n u m w

n + f u m + y n + c w

n n u + m m w n n u m m

i i

i i

i i

i i

i i
i i i *)

0 ,
i i

Ce C e e Ci Ci iW Wδ δ+ − =

w
x x

i
i i

    (2.4) 

where sGrad=F y  is the surface deformation gradient,  and  
 are the shell stress resultant and stress couple tensors of the 

Kirchhoff type for which the constitutive equations were discussed by Eremeyev 

/W= ∂ ∂N E
/W= ∂ ∂M K

  



V. KONOPIŃSKA ET AL. 376

and Pietraszkiewicz (2006),  and , the expression 
 means the jump at , while Grad

νn = N νm = M
[...] (...) (...)+= − − C s and Divs are the surface 
gradient and divergence operators on M , respectively. 

Vanishing of the first two rows of (2.4) gives the known exact equilibrium 
equations and static boundary conditions of the general theory of regular shells, 
see Libai and Simmonds (1998) or Chróścielewski et al. (2004). The third and 
sixth rows of (2.4) vanish identically along dM∂  where the kinematic boundary 
conditions are satisfied. The last terms in (2.4) vanish identically if the end points 
xe and xi of C belong to dM∂ . When ( , )Ci Ce fx x M∈∂  these terms also vanish if 

Ciδ x  and Ceδ x  are normal to . We are not aware of any physical process of PT 
in shells which would require taking into account that 

C

Cδ ≠x i  at the end points 
of . Therefore, we assume that C Ci i Ce eδ δ ≡x xi i  and omit terms of the last 
row of (2.4) from further considerations. As a result, these terms do not influence 
the thermodynamic equilibrium conditions of the two-phase shell. 
 

3. Static continuity conditions 
 
In this paper we discuss only such types of PT which do not lead to fragmentation 
of the shell. This is possible in two types of PT. 

The phase interface is called coherent if both fields y and Q are continuous at 
: C

, [ ] , [ ] ,

, [ ] , [ ] .
C

C

−

−

′= =

′= =

0 0

0 0

+

+

y = y = y y y

Q = Q = Q Q Q
                                                         (3.1) 

The coherent phase interface may be singular with regard to F  and , but 
not with regard to 

sGrad Q
y  and Q  themselves. Then from the Maxwell theorem we 

establish the local kinematic compatibility conditions along , see Eremeyev and 
Pietraszkiewicz (2004),  

C

[ ] [ ] , [ ] [ ]V V ,δ + = + =0u F w K 0                                                         (3.2) 

which relate [ ]δu  and [  with V . Therefore, along the coherent interface only 
the virtual fields 

]w
, ,C CV δu w  are independent. For such an interface from the 

fourth, fifth and sixth rows of (2.4) after some transformations we obtain the local 
static continuity conditions along  C

* *

* *

[ ] [ ] [ ] ,

[ ] , [ ]

, at

, at

g C

C C

i i i i i f

e e e e e f

W k

x C M

x C M

− − =

′ ′ ′+ = + × + + =

− = − = ∩∂

− = − = ∩∂

0 0

0 0

0 0

N F M K

n + N f m y n M c

n n m m = ,

n n m m =

i i
.

,

C

W

                                     (3.3) 
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where 1... {(...) (...) }
2

+= + −  is the mean value at C . 

The phase interface is called incoherent in rotations if only y  is continuous 
at  but the continuity of Q  may be violated. In this case the conditions 
indicated in the first row of (3.1) are still satisfied, but those in the second row of 
(3.1) may be violated. Such an interface can be singular with regard to 

C

, , and sGradQ F Q  but not with regard to y  and the second kinematic 
compatibility condition (3.2) can now be violated. As a result, along the interface 
incoherent in rotations the virtual fields  are independent. At 
such an interface after appropriate transformations we obtain the following set of 
local static continuity conditions 

, , , andCV δ±w u wC

[ ] [ ] , ,

[ ] ,
g C

C C

W k W ±− = =

′ ′ ′ ,C+ = + × + =

0

0 0

iN F M

n + N f m y n c
                                                 (3.4) 

together with static continuity conditions at the initial and end points of  given 
in the third and fourth row of (3.3). 

C

 
4. Capillary energy of the interface 
 
Let us consider a special case of curvilinear strain energy density  of the phase 
interface by analogy to the one used in the theory of capillary surfaces, see Finn 
(1986) and Rusanov (2005). In our 1D case the term responsible for the 
curvilinear energy in the functional (2.1) can be assumed to be given by the 
integral 

CW

C CC dsσ ′ ′⋅∫ y y  so that  

.C CW σ ′ ′= ⋅ Cy y                                                                                         (4.1) 

Here σ  is the line tension which is constant along the deformed curvilinear 
interface ( )D Cχ= . Other possible types of constitutive equations of one-
dimensional continua modeling the curvilinear interface can be found in 
Podstrigach and Povstenko (1985). The concept of line tension is widely used not 
only in the theory of capillarity but also in the theory of dislocations, where the 
line tension takes into account the energy of a tube surrounding the dislocation.   

When the strain energy density (4.1) is used we can simplify the continuity 
conditions along the phase interface (3.3) and (3.4). Indeed, from the equation 
(4.1) we obtain 

,C
C C

.σ ′=
′ ′

0n y m
y yi

=                                                                            (4.2) 
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Thus, using (4.2) we find that C′× = 0n y . If we further assume that  the 
third equation of (3.3) reduces to 

C = 0c

[ ] = 0M  while the fourth one of (3.4) becomes 
identically satisfied. 

Note that /C C′ ′ ⋅ C′y y y  is the unit vector tangent to the interface curve D. 
Then from the Frénet formulas it follows that 

1 ,C C C
C C

k
′

⎛ ⎞
′ ′ ′= ⋅⎜ ⎟⎜ ⎟′ ′⋅⎝ ⎠

y y y
y y

                                                                  (4.3) 

where k is the principal  curvature of the interface curve D , and  is the principal 
unit normal to D. Then with the additional assumption that C = 0f  the second 
equation of (3.3) or the third one of (3.4) reduces to 

[ ] .C Ckσ ′ ′⋅ + = 0y y N                                                                            (4.4) 

The equation (4.4) is a 1D analog of the Laplace equation well-known in the 2D 
theory of capillarity, see Finn (1986) and Rusanov (2005). 

 
5. Conclusions 
 
The equilibrium boundary value problem of elastic shells undergoing phase 
transitions of martensitic type has been developed. In our approach the statically 
and kinematically exact theory of shells of the Cosserat type has been used. The 
phase transition has been assumed to take place at the movable singular surface 
curve. From the variational principle of stationary total potential energy we have 
derived not only the local equilibrium conditions of the regular shell parts, but 
also the local continuity conditions at the coherent phase interface and at the 
interface incoherent in rotations. These continuity conditions allow one to 
establish position of the interface curve in the thermodynamic equilibrium state. 
Numerical examples of the phase transition in an infinite plate with a circular hole 
given in Eremeyev and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) 
illustrate the results presented in this report. 
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