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Abstract

We show how to determine the midsurface of a deformed thin shell from the following set of data: known geometry of
the undeformed midsurface, the surface strains and the surface bendings. It is assumed that the two latter fields had been
obtained beforehand by solving a problem posed for the so-called intrinsic field equations of the non-linear theory of thin
shells. Two different methods of determining the deformed midsurface in space are worked out: (a) directly from its first
and second fundamental form using some results from mathematical analysis; (b) integrating the system of first-order
PDEs for the surface deformation gradient. In both cases the corresponding integrability conditions are discussed; it is
shown that they are equivalent to the compatibility conditions of the non-linear theory of thin shells.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The intrinsic formulation of the geometrically non-linear theory of thin, isotropic elastic shells, originally
suggested by Chien (1944) in terms of the surface strains cab and bendings ,ab of the shell midsurface, was
refined by Danielson (1970) and Koiter and Simmonds (1973) and worked out in detail by Opoka and Pie-
traszkiewicz (2004), where many references related to this topic are given. In the latter paper the governing
field equations were expressed via the membrane stress resultants Nab and the midsurface bendings ,ab as pri-
mary unknowns. Compared with the complexity of the field equations formulated in displacements as
unknowns, discussed e.g. by Pietraszkiewicz and Szwabowicz (1981) and Pietraszkiewicz (1984), the intrinsic
formulation is relatively simple. It consists of six quadratic intrinsic shell equations (ISEs) with four intrinsic
0020-7683/$ - see front matter � 2007 Published by Elsevier Ltd.

doi:10.1016/j.ijsolstr.2007.02.022

* Corresponding author. Tel.: +48 58 3411271; fax: +48 58 3416144.
E-mail addresses: pietrasz@imp.gda.pl (W. Pietraszkiewicz), mls@am.gdynia.pl (M.L. Szwabowicz).

Please cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
formed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022

mailto:pietrasz@imp.gda.pl
mailto:mls@am.gdynia.pl


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

2 W. Pietraszkiewicz, M.L. Szwabowicz / International Journal of Solids and Structures xxx (2007) xxx–xxx

SAS 5875 No. of Pages 10, Model 3+

1 March 2007 Disk Used Jayalakshmi (CE) / Gnanasekar (TE)
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

dynamic and/or kinematic boundary conditions, two of which are quadratic and the other two are linear in the
unknowns. Having found Nab, the midsurface strains cab can then be calculated from inverted linear consti-
tutive relations.

Yet, the intrinsic formulation has never gained popularity within engineering community it deserves. The
main reason is that having calculated cab and ,ab from the ISEs we can easily establish the first and second
fundamental forms of the deformed shell midsurface, but not its unique deformed position in space itself.
One would expect that during over 60 years from the pioneering Chien paper, and after various modified
and/or refined versions of the non-linear ISEs proposed in the literature, several methods should have been
developed for establishing the deformed shell midsurface from known cab and ,ab. But after a thorough search
of the literature we are surprised to admit that we are not aware of any such a method published elsewhere.
The only result which is related to this problem was given by Zubov (1989) in the context of the non-linear
theory of dislocations in thin elastic shells. We shall comment on his proposal in Section 5 and compare it
with our direct and simpler approach developed there.

In this paper we consider the following complementary problem:
Given the surface strain and bending tensor fields, cab = cab(hk) and ,ab = ,ab(hk), respectively, prescribed on

some middle surface M of an undeformed thin shell find the position vector y = y(ha) of the midsurfaceM in the

deformed configuration.

The problem discussed here is related to the classical problem of differential geometry: immersion a 2D
manifold into the 3D Euclidean space. Indeed, from known M as well as cab and jab one can easily establish
the components of two fundamental forms of M by �aab = aab + 2cab and �bab ¼ bab � ,ab, where aab and bab are
the metric and curvature components of M, respectively. Then according to the theorem of Bonnet (1867), the
two fundamental forms of the surface M determine locally its position in the 3D Euclidean space up to a rigid-
body motion. From mathematical point of view this solves the problem of existence of such a surface. But in
the non-linear theory of shells such a statement for M is not satisfactory, because in engineering one usually
needs to know uniquely the position of M in space described by the position vector y = y(ha). This can be
achieved only by formulating an appropriate system of PDEs and solving it with a unique set of boundary
and/or initial conditions.

Some elements of determination of a surface in space from prescribed two fundamental forms can be found
in books on differential geometry by Spivak (1979), do Carmo (1976), Ciarlet (2005), as well as in the recent
papers by Ciarlet and Larsonneur (2002), and Ciarlet and Mardare (2005). In Section 3 we use some of those
results and develop the two-step method of unique determination of M from prescribed aab and bab. In the
first step we formulate a system of two linear, first-order PDEs for the column vector field X and show that
this system can be converted to an equivalent set of ODEs along curves covering densely the entire domain of
the surface coordinates. Then, the set of ODEs is solved by the method of successive approximations, leading
to the general formula (14). In the second step the position vector x of M is found by quadrature (15). The
solution depends on two sets of initial conditions X0 and x0 imposed at an arbitrarily chosen point x0 2M
which fix uniquely the position of M in the ambient 3D Euclidean space. Since �aab and �bab are known if
aab, bab and cab, ,ab are given, this two-step method is directly applied in Section 4 to establish the unique
position of M in the space as well. Although the method developed here is based on known results which
are somewhat hidden in the works on classical differential geometry and analysis, its formulation within
the non-linear theory of thin shells is new.

In Section 5 we introduce the surface deformation gradient F of the shell midsurface and derive the linear
system (23) of two PDEs for F which integrability conditions are equivalent to the compatibility conditions of
the non-linear theory of thin shells. The solution of this system is given in the form (31) by the method of suc-
cessive approximations, and the deformed position of the midsurface y = y(ha) follows then by the quadrature
(22). The method developed here is direct, compact and is new, as well.

We briefly remind in Section 5 that in a similar method Zubov (1989) used the spatial deformation gradient
G evaluated at the shell midsurface M. It is shown that G contains redundant part as compared with F, which
is not necessary in the non-linear shell problem discussed here. Thus, additional care should be taken to sep-
arate the redundant part of G from the important one.

In both methods of solution discussed here the governing systems of equations, (6) in the first method and
(23) in the second one, turn out to be the total differential systems. Existence of local solutions follows in both
Please cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
formed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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cases from theorems of Frobenius and Frobenius–Dieudonné (see Maurin, 1980) provided that suitable inte-
grability conditions are satisfied. This latter question is carefully examined. Only for some special geometries
of the undeformed midsurface and for particularly simple types of deformation states one might expect to find
analytical solutions of the problem. In realistic, highly non-linear problems of engineering importance one will
have to rely on numerical methods combined with specialized computer programs which have to be developed.

2. Preliminaries

A shell is a 3D solid body identified in a reference (undeformed) configuration with a region B of the phys-
ical space E that has E for its 3D translation vector space. In the region B we introduce the normal system of
curvilinear coordinates {h1, h2, f}, such that � h

2
6 f 6 h

2
is the distance from the shell midsurface M to the

points in B and h is the thickness of the undeformed shell. In the theory of thin shells discussed here h is
assumed to be constant and small in comparison with other shell dimensions.

In the theory of shells the midsurface M is usually defined (locally) by the position vector x = xk(ha)ik,
a = 1, 2, k = 1, 2, 3, x 2 E, relative to some fixed origin o 2 E and an orthonormal Cartesian frame {ik}.
At each point x 2M gradients of the coordinates ha constitute the so-called contravariant surface base,
aa = grad(ha), and partial derivatives of x, ox

oha � x;a ¼ aa, the covariant surface base. We have the relations
Plea
form
Pab � aa ¼ db
a ; aab ¼ aa � ab;

aab ¼ aa � ab ¼ ðaabÞ�1
; detðaabÞ ¼ a > 0;
E
Dwhere db

a denotes the Kronecker symbol, while aab are the covariant and aab the contravariant components of
the surface metric tensor a, respectively. The unit normal vector n ¼ 1ffiffi

a
p a1 � a2 determines locally the orienta-

tion of M.
Let eab = eab denote the permutation (Levi-Civita) symbol, i.e. e12 = �e21 = 1, e11 = e22 = 0. The covariant

components of the surface permutation tensor e are given by eab = (aa · ab) Æ n and the following relations hold
true:
C
T

eab ¼
ffiffiffi
a
p

eab; eab ¼ 1ffiffiffi
a
p eab;

eabe
kl ¼ dk

ad
l
b � dl

ad
k
b; eakeblaab ¼ akl; eabaakabl ¼ ekl:
EThe shape of the surface is described by the second fundamental tensor b, called also the shape operator,

through its covariant components
 Rbab ¼ �n;a � ab ¼ n � aa;b:
U
N

C
O

RFor comprehensive exposition of other definitions and concepts we refer the reader to classical books on dif-
ferential geometry and tensor calculus, but the references such as Chernykh (1964), Green and Zerna (1968),
Pietraszkiewicz (1977), Ciarlet (2005) explain these questions directly in the context of the theory of thin shells.

3. Local existence of a surface

According to the classical theorem of Bonnet (1867), called also the theorem of local existence of surfaces,
the two fundamental forms: the first I = aabdhadhb and the second II = babdhadhb, determine a surface in the
3D Euclidean space up to a rigid-body motion. A more modern version of this theorem answers also the con-
verse question (Spivak, 1979, vol. 3, p. 86): what conditions must satisfy some pair of fields of quadratic forms,

I = I(ha) and II = II(ha), defined on an open, simply-connected two-dimensional domain U to become a first and

second fundamental forms of some surface?

The answer follows from considerations on local solvability of a system of PDEs, whose coefficients are
determined by aab and bab. Since these components are by definition the scalar products between all pairs from
the set of four vector fields, two covariant base vectors aa = aa(h

k) and two partial derivatives of n = n(hk), the
above question will be answered if we determine the latter fields in terms of the fields aab = aab(hk) and bab = -
bab(hk). This problem is governed by two sets of relations: the equations of Gauss
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
ed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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Plea
form
aa;b ¼ Ck
abak þ babn ð1Þ
and the equations of Weingarten
n;b ¼ �bk
bak; where bk

b ¼ bblalk ð2Þ
and the coefficients appearing in (1) are the Christofell symbols Ck
ab of the second kind which can be computed

from the metric coefficients aab by the formula
Ck
ab ¼ 1

2
aklðala;b þ alb;a � aab;lÞ: ð3Þ
FIt will be easier to analyze this problem if we employ the following matrix notation. At every point p 2 U let us

define a column vector
O
O

X ¼
a1

a2

n

2
64

3
75; ð4Þ
Rwhere for now n need be neither a unit vector nor orthogonal to the remaining two entries in X, and two
square 3 by 3 scalar matrices
PAa ¼
C1

1a C2
1a b1a

C1
2a C2

2a b2a

�b1
a �b2

a 0

2
64

3
75; ð5Þ
E
DSince every entry Xi, i = 1,2,3, in the column vector X is an element of a three-dimensional linear vector space

R3, X is itself an element of the direct sum of three consecutive copies of R3, i.e. X 2 R3 � R3 � R3, and thus
belongs to a nine-dimensional linear vector space. Now the differential system that governs the relation be-
tween coefficients of the two fundamental forms and the vector fields aa = aa(hk), n = n(hk) may be written
down in the form of two vector equations
 T

X;a ¼ AaX; ð6Þ
E
Cwhere the entries Ck

ab in the matrices Aa are given by (3). Thus, we are looking for an unknown column vector
X satisfying the linear system (6).

The system (6) is a total differential system. By the theorem of Frobenius, see for example Maurin (1980),
local solutions exist if and only if the integrability condition eabX,ab = 0 is satisfied everywhere in the domain
in which the matrices Aa are prescribed. Hence, the system is completely integrable if the matrix equation
R

eabðAa;b þAaAbÞ ¼ 0 ð7Þ
O
Rholds in U. Therefore, the necessary next step consists in verifying what conditions in terms of aab and bab

must be satisfied for the solution to exist.
Straightforward transformations show that after substitution of (5)–(7) one obtains the so-called Gauss-

Mainardi-Codazzi (GMC) equations of the surface M
Rj
:bkl ¼ bj

kbbl � bj
lbbk; bbkjl � bbljk ¼ 0; ð8Þ
C

where (.)ja is the covariant derivative in the metric of M and the Riemann–Christoffel tensor is defined by
NRj
:bkl ¼ Cj

bl;k � Cj
bk;l þ Cq

blC
j
qk � Cq

bkC
j
ql: ð9Þ
UThe GMC equations (8) are presented in various equivalent forms in the literature, depending on the author
and intended application, see for example Spivak (1979), do Carmo (1976), Koiter (1966). One of them fre-
quently used in the non-linear theory of thin shells (see Pietraszkiewicz, 1977) is the following:
eabeklðCa:lb;k þ Cj
alCj:bk þ balbbkÞ ¼ 0; ð10Þ

eklbbkjl ¼ 0;
where Cj:ab ¼ ajkC
k
ab are the Christoffel symbols of the first kind.
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
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The questions discussed up to now remain within the scope of differential geometry of surfaces. But tech-
niques used for solving systems like (6) belong to the theory of differential equations and are disconnected
from the geometric background of the problem. Here, the first step consists in showing that the problem
can be converted to an equivalent infinite set of systems of ODEs along curves covering densely the entire
domain U.

Suppose that some two fields of quadratic forms, whose coefficients are continuously differentiable in U,
satisfy the integrability condition (7). Then, by the theorem of Frobenius–Dieudonné, see Maurin (1980),
for every initial condition Xðha

0Þ ¼ X0 prescribed at a point p0 2 U with coordinates ha
0 there exists, possibly

in some smaller domain Û � U, a unique solution X(ha) satisfying this initial condition, and all such solutions
depend continuously on the initial value X0. More recent results along this line are due to Ciarlet and Larson-
neur (2002) and Ciarlet and Mardare (2005). In particular, the latter paper shows how to extend the solution
to the closure U of the domain, which permits to establish existence of a surface with a boundary.

Consider a particular solution X of the system (6) and a curve C : ½a; b� 3 s! haðsÞ leaving from some point
p0 2 U to another point p 2 U. Suppose the value of X at p0 is X0. Note that the restriction XjC of this solution
to the curve C satisfies the following system of ODEs:
Plea
form
RdXjC
ds
¼ ACXjC; ð11Þ
Pwhere the matrix AC is given by
AC ¼ Aa
dha

ds
: ð12Þ
DLet us reverse the argumentation. Now consider the initial value problem for the system of ODEs
EdX	

ds
¼ ACX	
E
C

Tfor some abstract vector field X* along the same curve C with the same initial condition X*(0) = X0. By the
standard results from the theory of ordinary differential equations this problem has a unique solution
X*(s). Therefore, X*(s) must be identical with the restriction of X to C on the interval where it exists, i.e.
we must have XjC ¼ X	ðsÞ.

Thus, instead of solving the system (6) directly, we may compute a particular solution X(ha) corresponding
to some initial condition Xðha

0Þ ¼ X0 by covering the domain U with a set of paths leaving radially from the
initial point p0 2 U and then solving an initial value problem for the system of ODEs
R

dX

ds
¼ ACX; AC ¼ Aa

dha

ds
ð13Þ
R

along each of the paths.
There is still the question of the initial conditions themselves and the constraints
C
O

hX a;X bi ¼ aa � ab ¼ aab;

hX a;X 3i ¼ aa � n ¼ 0;

hX 3;X 3i ¼ n � n ¼ 1:
U
NWe want any solution X to satisfy at every point where it exists, the initial points inclusive. It is proved in do

Carmo (1976, p. 312), that setting the initial value at some arbitrarily chosen point p0 with coordinates ha
0 to,

say
X0 ¼
v1

v2

v3

2
64

3
75;
such that
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
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Plea
form
va � vb ¼ aabðha
0Þ; v3 ¼

v1 � v2

jv1 � v2j
;

automatically yields solutions satisfying these constraints everywhere. The proof relies on computing the posi-
tion vector x(ha) with the use of (15) from a given solution X and reverse confirmation of the thesis.

The solutions to the initial value problem (13) may be obtained with the use of any of the well-known tech-
niques, numerical techniques inclusive. In particular, using the method of successive approximations one ends
up with the solution in the form of the infinite series
FX ¼
X1
i¼0

X̂i; ð14Þ
where the terms X̂i are given by the recursive formulae
P
R

O
O

X̂0 ¼ X0;

..

.

X̂i ¼
Z p

p0

ACðsÞX̂i�1ðsÞds;

..

.

with the first term X̂0 equal to the given initial value.
Note that for i > 0 we have
 D

dX̂i

ds
¼ ACX̂i�1:
 E

Therefore,
 TdX

ds
¼
X1
i¼1

ACX̂i�1 ¼ AC
X1
i¼1

X̂i�1 ¼ ACX;
E
C

and thereby the series (14) formally satisfies the system (13). By passing to the limit with p! p0 we obtain
X̂i ! 0 for all i > 0 and hence X! X0, so the initial condition is satisfied. For the proof of convergence see
Maurin (1980).

Having solved (6) one obtains the position vector of the surface from the quadrature
R

xðhaÞ ¼ x0 þ
Z p

p0

aadha; ð15Þ
R
N
C

Owhere x0 is the initial value of x at some arbitrarily chosen point x0 2M labeled by ha
0.

Thus, the entire solution depends on two sets of arbitrarily chosen initial conditions: the column vector X0

and the vector x0. These two vectors fix uniquely the position of the surface in the ambient Euclidean space.
Since they may be chosen arbitrarily, aab and bab really determine a surface only to within a rigid-body motion.
In particular applications to shell problems, wherein there exist separate side conditions, imposed for instance
along the boundary of M and used previously for obtaining the fields of strains and bendings, one should
carefully choose the values of X0 and x0 to ensure that these side conditions are not violated. This can always
be achieved if the intrinsic shell problem had been solved correctly.
U

4. Determination of the deformed midsurface of a thin shell

Consider a deformation v of the shell, i.e. a map v : B! B. The theory of thin shells is based on an assump-
tion that the 3D deformation of the shell can be approximated with a sufficient accuracy by deformation of its
reference (usually middle) surface. During deformation the thin shell is represented by a material surface capa-
ble of resisting to stretching and bending. We assume that ha are the material (convected) coordinates and that
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
ed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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the image of the midsurface M under v coincides with the deformed midsurface M, i.e. M ¼ vðMÞ. Then, the
position vector y = yk(ha)ik of M relative to the same fixed frame {o, ik} is
Plea
form
yðhaÞ ¼ v½xðhaÞ�; ð16Þ

and the field of displacements can be obtained as
uðhaÞ ¼ yðhaÞ � xðhaÞ: ð17Þ
O
F

In the convected coordinates all quantities defined and the relations written earlier for M hold true also on M.
To indicate which of the two configurations is meant, we shall provide all symbols pertaining to the deformed
one with a bar above the symbol, e.g. �aa, �aab, �a, �bab, �b, eab, �n, Ck

ab, Rj
:bkl, etc., and leave those pertaining to the

undeformed configuration unmarked.
Deformation of the shell midsurface is described by two Green type surface strain and bending tensors with

covariant components
cab ¼ 1
2
ð�aab � aabÞ; ,ab ¼ �ð�bab � babÞ: ð18Þ
P
R

O

Our goal is to find the position y = y(ha) of M and/or the displacement field u = u(ha) defined in (17) from the
position vector x = x(ha) and two given fields cab = cab(ha) and ,ab = ,ab(ha) which have already been found as
solutions of the intrinsic shell equations by Opoka and Pietraszkiewicz (2004).

Having solved (15) for x(ha) we can use definitions of the strain and bending components (18) for determi-
nation of covariant components of the metric and curvature tensors of M
�aab ¼ aab þ 2cab; �bab ¼ bab � ,ab ð19Þ
Dand then mimic the procedure described in Section 3. This leads to the system
X;a ¼ AaX
T
Eanalogous to (6), where X is now defined through �aa, �n and Aa through Ck

ab, �bab in analogy to (4) and (5),
respectively. One should then repeat all arguments and steps of Section 3 which then lead to determination
of the position vector y in the form analogous to (15)
CyðhaÞ ¼ y0 þ
Z p

p0

�aadha;
R
R

Ewhere y0 is the initial value of y at any point y0 ¼ v½x0ðha
0Þ� 2M. Then, the displacements follow naturally

from (17).

5. Surface deformation gradient

Closer to the spirit of mechanics, let us employ in this Section the concepts describing local deformation of
the shell midsurface. The surface gradient $s of deformation y = v(x) of the shell midsurface, taken relative to
the undeformed midsurface M, allows us to introduce the tensor field F 2 E 
 T xM defined by
O

F ¼ rsvðxÞ ¼ y;a 
 aa; ð20Þ
Cwhich allows one to write the relations
y;a ¼ Faa: ð21Þ
NMathematically, F so defined is the Frechét derivative of the deformation v. Thus, given F(ha) we can deter-
mine position of the deformed shell midsurface by the quadrature
U

y ¼ y0 þ
Z p

p0

Faadha; ð22Þ
where again y0 = y(x0), and the corresponding displacement field follows then from (17).
Because y;a ¼ �aa 2 T yM � E, partial derivatives of F = �ak 
 ak can be written as
F;a ¼ FAa; ð23Þ
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
ed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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where the two tensors Aa are given by
Plea
form
Aa ¼ ðCj
ka � Cj

kaÞaj 
 ak þ bj
aaj 
 nþ �bka

1ffiffiffi
�a
p ða1 � a2Þ 
 ak: ð24Þ
When geometry of M and components of the surface strains cab and bendings jab are known, the tensors Aa

defined in (24) are known as well. Thus, our problem is governed by the linear system (23) of two PDEs for the
unknown F. This is again a total differential system whose integrability conditions F,ab � F,ba = 0 yield the
tensor equation
 FeabðAa;b � AaAbÞ ¼ 0: ð25Þ
Let us reveal the geometric meaning of (25). Taking the second partial derivatives of (23) we obtain
P
R

O
O

F;ab ¼ Cj
ka;b � Cj

ka;b
� �

�aj 
 ak þ Cq
ka � Cq

ka

� �
Cj

qb�aj þ �bqb�n
� �


 ak

þ Cj
qa � Cj

qa

� �
�aj 
 �Cq

kaak þ bq
bn

� �
þ �bka;b�n
 ak � �bka

�bj
b�aj 
 ak

þ �bqa�n
 �Cq
kbak þ bq

bn
� �

þ bj
a ;b�aj 
 nþ bk

a Cj
kb�aj þ �bkb�n

� �

 n� bj

abbk�aj 
 ak

¼ Cj
ka;b þ Cq

kaC
j
qb � Cq

bkC
j
qa � �bj

b
�bka � Cj

ka;b � Cq
kaC

j
qb þ Cq

kbC
j
qa � bj

abbk

� �
�aj 
 ak

þ Cj
qabq

b � Cj
qabq

b þ bj
a ;b þ Cj

qbbq
a

� �
�aj 
 n

þ Cq
ka

�bqb � Cq
ka

�bqa þ �bka;b � Cq
kb

�bqa

� �
�n
 ak þ �bqabq

b þ bq
a
�bqb

� �
�n
 n: ð26Þ
E
D

The second partial derivatives F,ba follow from (26) by interchanging indices a ¢ b. As a result, in the expres-
sion F,ab � F,ba some terms cancel out while others can be grouped using definitions (9) and notions of the
surface covariant derivatives, so that the integrability conditions (25) become equivalent to
C
TF;ab � F;ba ¼ Rj

:kba � �bj
b
�bka þ �bj

a
�bkb � Rj

:kba þ bj
bbka � bj

abkb

� �
�aj 
 ak

þ bj
ajb � bj

bja

� �
�aj 
 nþ �bkakb � �bkbka

� �
�n
 ak ¼ 0; ð27Þ
Ewhere (.)ka means covariant derivative in the metric of M.
Vanishing of the tensor conditions (27) is equivalent to vanishing of their components
RRj
:kba � �bj

b
�bka þ �bj

a
�bkb � Rj

:kba � bj
bbka þ bj

abkb

� �
¼ 0; ð28Þ

�bkajjb � �bkbjja ¼ 0; bj
ajb � bj

bja ¼ 0: ð29Þ
U
N

C
O

R

According to (9) and (8), the conditions (28) represent difference between the Gauss equation of the deformed
and undeformed shell midsurfaces M and M, respectively, while (29) may be analogically viewed for the Mai-
nardi-Codazzi equations. If we introduce ()(18)–(29) and perform transformations given in detail by Pie-
traszkiewicz (1977), the conditions become identical to the compatibility conditions of the non-linear
theory of thin shells expressed in terms of the strains cab and bendings jab, which were derived first by Chien
(1944) and rederived by Galimov (1953) and Koiter (1966).

The solution to the system of equations (23) can again be given by choosing arbitrarily two points p0,
p 2 U, so that paths drawn on U between such points cover the entire domain U. In a local chart any path
C 2 U may be specified by two equations hajC ¼ haðsÞ, where s denotes the arc length chosen so that
s(p0) = s0. The system (23), when restricted to C, reduces to an ODE of the form
dF

ds
¼ FA; A ¼ Aa

dha

ds
ð30Þ
for an unknown tensor field F.
General solution of (30) can again be given by the method of in the form
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
ed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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Plea
form
F ¼ F0Fs; F0 ¼ Fðs0Þ; Fs ¼
X1
i¼0

Hi; ð31Þ

H0ðsÞ ¼ I; HiðsÞ ¼
Z s

s0

Hi�1ðtÞAðtÞdt; i P 1:
F

The tensor field Fs = F(s) was called the matricant by Gantmakher (1959).
A somewhat similar approach to the one presented in this section was proposed by Zubov (1989, 1997) in

the context of the non-linear theory of dislocations in thin elastic shells. In those works the spatial deformation
gradient G evaluated at the shell midsurface was applied, not the surface deformation gradient F used in our
method. To reveal the difference, let the 3D neighborhood of the midsurfaces M and M be parametrized by
the normal coordinates so that the corresponding position vectors are
 Op ¼ xþ fn; q ¼ yþ f�n;
R
Owhere f is the distance from the corresponding midsurfaces to points in the shell space. This parametrization

implies assumption of the Kirchhoff–Love kinematic constraints, such that material fibers that are normal to
M remain normal to M and do not change their lengths. The spatial gradient $ of the 3D deformation
q = v(p), evaluated at the midsurface M, leads to the tensor field G 2 E 
 E introduced by Pietraszkiewicz
(1977)
 P

G ¼ rvðxþ fnÞjf¼0 ¼ �aa 
 aa þ �n
 n; detðGÞ ¼
ffiffiffi
�a
a

r
> 0; ð32Þ
which implies the relations
 D�aa ¼ Gaa; �n ¼ Gn: ð33Þ
U
N

C
O

R
R

E
C

T
EThe tensor field G(ha) supplies first-order approximation of the three-dimensional state of shell deformation

under the Kirchhoff–Love constraints in the neighborhood of its midsurface. Thus, given G(ha) we can also
determine from (33)1 position of the deformed midsurface by the same quadrature (22), and the corresponding
displacement field follows then from (17). Please note that in this approach the relation (33)2 is not necessary
at all to determine y and u.

Partial derivatives of G can also be written in the form similar to (23) with somewhat more complex def-
inition of the tensor analogous to Aa, and the general solution for G can also be found by the method of suc-
cessive approximations. However, the 3D tensor G contains some excessive information as compared with the
tensor F, what is associated with the additional term �n
 n present in (32)1. Within the non-linear theory of
thin shells additional care should be taken to separate the excessive part of G from the important one. For
example, in the right polar decomposition G = RU used by Pietraszkiewicz (1989) it became necessary to rep-
resent the 3D stretch tensor as U = a + g + n 
 n. It was found that in shell theory only the tangential part
a + g is important, where g 2 T xM
 T xM is the relative surface stretch tensor. The normal part n 
 n of
U does not play any role here. Our method developed in terms of F is direct, more compact and therefore
should be more efficient in applications.

6. Conclusions

We have presented explicitly two different methods to determine the deformed position of the shell middle
surface from the known undeformed midsurface as well as the surface strains and bendings. The first method
consists of extending to the deformed midsurface an approach based on some results given in differential
geometry for determination of the surface position from components of its first and second fundamental
forms. In the second approach the same goal has been achieved by integrating the linear system of PDEs
for a surface deformation gradient tensor and then the deformed position of the shell midsurface has been
obtained by quadrature.

Our results are complementary to the intrinsic formulation of the geometrically non-linear theory of this
elastic shells given by Opoka and Pietraszkiewicz (2004) in terms of the membrane stress resultants and ben-
dings as primary variables of the BVP. Now we want to work out a numerical algorithm based on the results
se cite this article in press as: Pietraszkiewicz, W., Szwabowicz, M.L., Determination of the midsurface of a de-
ed shell ..., Int. J. Solids Struct. (2007), doi:10.1016/j.ijsolstr.2007.02.022
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R
E
C

T
E
D

P
R

O
O

F

given here and an appropriate computer program to solve some realistic examples of highly non-linear prob-
lems of the flexible shells. It is expected that the results will show some advantages of using the general and
relatively simple intrinsic formulation of the non-linear theory of thin shells in solving such shells problems.
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