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Abstract
9

We show how to determine the midsurface of a deformed thin shell from known geometry of the undeformed midsurface as well as the
surface strains and bendings. The latter two fields are assumed to have been found independently and beforehand by solving the so-called11
intrinsic field equations of the non-linear theory of thin shells. By the polar decomposition theorem the midsurface deformation gradient is
represented as composition of the surface stretch and 3D finite rotation fields. Right and left polar decomposition theorems are discussed. For13
each decomposition the problem is solved in three steps: (a) the stretch field is found by pure algebra, (b) the rotation field is obtained by
solving a system of first-order PDEs, and (c) position of the deformed midsurface follows then by quadratures. The integrability conditions15
for the rotation field are proved to be equivalent to the compatibility conditions of the non-linear theory of thin shells. Along any path on the
undeformed shell midsurface the system of PDEs for the rotation field reduces to the system of linear tensor ODEs identical to the one that17
describes spherical motion of a rigid body about a fixed point. This allows one to use analytical and numerical methods developed in analytical
mechanics that in special cases may lead to closed-form solutions.19
� 2008 Published by Elsevier Ltd.
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1. Introduction

Pietraszkiewicz and Szwabowicz [1] worked out two ways25
of determining the midsurface of a deformed shell from pre-
scribed fields of surface strains ��� and bendings ���. The two27
latter fields were assumed to be known from solving a problem
posed for the so-called intrinsic field equations of the geomet-29
rically non-linear theory of thin elastic shells. Such intrinsic
shell equations, originally proposed by Chien [2], were refined31
by Danielson [3] and Koiter and Simmonds [4] and worked out
in detail by Opoka and Pietraszkiewicz [5].33
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In this paper we develop an alternative novel approach to the
same problem. Our present approach is based on the polar de- 35
composition of the midsurface deformation gradient F = RU =
VR, where U and V are the surface right and left stretch tensors, 37
respectively, whereas R is a 3D finite rotation tensor. Detailed
transformations are provided for the right polar decomposition 39
in which the problem of finding the deformed midsurface is
solved in three steps:

41
(1) From known surface strains ��� the stretch field U is found

by purely algebraic operations leading to the explicit for- 43
mula (36).

(2) From known U and ��� the rotation field R is calculated 45
by solving the linear system of two PDEs (24) whose in-
tegrability conditions are proved to be equivalent to the 47
compatibility conditions of the non-linear theory of thin
shells. 49
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(3) With known R and U the deformed shell midsurface is1
found by the quadrature (46).

The main steps of the analogous solution using the left polar3
decomposition are also concisely presented in Section 6. In
both cases we note, in particular, that along any path on the5
undeformed shell midsurface the linear system (24) or (52)
reduces to a system of ODEs for unknown R that turns out to be7
identical to a system describing spherical motion of a rigid body
about a fixed point. Many closed-form solutions of this system9
of ODEs are already known in analytical mechanics of rigid-
body motion (see [6,7]). This allows one to expect closed-form11
solutions also for the position of the deformed shell midsurface
for a variety of shell initial geometries and deformation states.13

2. Shell geometry and deformation

A shell is a 3D solid body identified in a reference (unde-15
formed) configuration with a region B of the physical space
E that has E for its 3D translation vector space. In the region17
B we introduce the normal system of curvilinear coordinates
{�1, �2, �} such that −h/2���h/2 is the distance from the19
shell midsurface M to the points in B, and h is the thickness
of the undeformed shell, see Fig. 1. In the theory of thin shells21
discussed here h is assumed to be constant and small in com-
parison with the other two dimensions of the shell.23

The midsurface M is usually defined (locally) by the position
vector x = xk(��)ik , �= 1, 2, k = 1, 2, 3, relative to some fixed25
origin o ∈ E and an orthonormal Cartesian frame {ik}. With
each point x ∈ M we can associate two linearly independent27
covariant surface base vectors a� = �x/��� ≡ x,�, the dual

(contravariant) surface base vectors a� satisfying a� · a� = ��
� ,29

where ��
� denotes the Kronecker symbol, the covariant a�� =

a� · a� and contravariant a�� = a� · a� = (a��)−1 components31
of the surface metric tensor a with det(a��) = a > 0, and the
unit normal vector n = (1/

√
a)a1 × a2 locally orienting M,33

see Fig. 2. We can also introduce the covariant components

M

h
2
h
2

h

ζ

ϑ2

ϑ1

B

Fig. 1.35

b�� = −a� · n,� = a�,� · n of the surface curvature tensor b,
and the covariant components 	�� = (a� × a�) · n of the surface 37
permutation tensor � with 	�� = √

ae��, e12 = −e21 = 1, e11 =
e22 = 0. 39

The surface base vector fields a�(�

) and n(�
) satisfy the

Gauss–Weingarten equations 41

a�,� = �

��a
 + b��n, n,� = −b


�a
, (1)

where the Christofell symbols �

�� of the second kind appear- 43

ing as coefficients in (1) are related to the surface metric com-
ponents by the formulas 45

�

�� = 1

2a
�(a��,� + a��,� − a��,�) = −a� · a
,�. (2)

The second covariant derivatives of a� satisfy the relations 47

a�|
� − a�|�
 = (b�

b�� − b�

�b�
)a� + (b�
|� − b��|
)n
= R�

.�
�a�, (3)

where 49

R�
.�
� = ��

�
�,
 − ��
�
,� + �


����


 − �


�
�
�

� (4)

are components of the surface Riemann–Christoffel tensor and 51
(.)|� denotes the surface covariant differentiation in the metric
of M defined, for example, in [8–11]. From (3) we obtain the 53
Gauss–Mainardi–Codazzi (GMC) equations

b�

b�� − b�

�b�
 = R�
.�
�, b�
|� − b��|
 = 0. (5) 55

For comprehensive exposition of other definitions and concepts
we refer the reader to classical books on differential geometry 57
and tensor calculus, but the references such as [9,10,12,13]
explain these questions directly in the context of the theory of 59
thin shells.

Consider a deformation � of the shell, i.e. a map �:B → B. 61
The theory of thin shells is based on an assumption that the 3D
deformation of a shell can be approximated with a sufficient 63
accuracy by deformation of its reference (usually middle) sur-
face. As a result, during deformation the shell is represented by 65
a material surface capable of resisting stretching and bending.

In the deformed configuration the shell is represented by a 67
midsurface M. We assume that �� are the material (convected)
coordinates and that the image of the midsurface M under � 69
coincides with M, i.e. M = �(M). Then the position vector
y = yk(��)ik of M relative to the same fixed frame {o, ik} is 71

y(��) = �[x(��)], (6)

and the field of displacements can be obtained from 73

u(��) = y(��) − x(��). (7)

In convected coordinates all quantities defined and the relations 75
written earlier for M hold true on M as well. To indicate
which of the two configurations is meant, we shall provide all 77
symbols pertaining to the deformed one with a bar above the

symbol, e.g. a�, a��, ā, b��, 	̄��, n̄, �̄


��, R̄�

.�
�, etc., and leave 79
those pertaining to the undeformed configuration unmarked,
see Fig. 2. 81
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The deformation state of the shell midsurface is usually de-1
scribed by two Green type surface strain and bending tensors
with covariant components3

��� = 1
2 (a�� − a��), ��� = −(b�� − b��). (8)

In this paper we want to find the position vector y = y(��) of5
M and/or the displacement field u = u(��) defined in (7) from
the position vector x = x(��) and two fields ��� = ���(�
) and7

��� =���(�
). The latter fields are assumed to have been found
beforehand by solving the so-called intrinsic field equations of9
the non-linear theory of thin shells worked out by Opoka and
Pietraszkiewicz [5]. Two different ways leading to this goal11
have recently been proposed by Pietraszkiewicz and Szwabow-
icz [1]. Below we develop an alternative novel approach lead-13
ing to the solution of this problem.

3. Polar decomposition of the midsurface deformation15
gradient

Let ∇s be the surface gradient operator at x ∈ M. Differ-17
entiating the deformation y = �(x) (in the Fréchet sense) we
obtain the midsurface deformation gradient field defined by19

F = ∇s�(x) = y,� ⊗ a�. (9)

Due to the identity y,�=ā� the deformation gradient can also be21
regarded as the two-point tensor field F=ā�⊗a� ∈ TyM⊗TxM

which maps material elements dx ∈ TxM into dy ∈ TyM,23
so that dy = F dx. For the coordinate-free notation Gurtin and
Murdoch [14] as well as Man and Cohen [15] proposed to dis-25
tinguish the gradients y,� ⊗ a� and ā� ⊗ a� by relating them
through the canonical inclusion Iy ∈ E ⊗TyM and perpendic-27
ular projection Py ∈ TyM ⊗ E operators. In the present paper
there is no need to use such a formal approach, for here we use29

convected coordinates and tensor analysis in mixed notation. 31
Thus, formal differences between codomains of y,� and ā� (as
well as x,� and a�) are apparent from the context. 33

Since both tangent planes, TxM and TyM, lie in the same
3D Euclidean space, there is a rotation R that takes one to the 35
other. This in conjunction with the theorem of Tissot (see [16])
justifies the following two representations for F: 37

F = RU = VR, (10)

where U ∈ TxM⊗TxM and V ∈ TyM⊗TyM are the right and 39
left stretch tensors, respectively, both symmetric and positive
definite, and R ∈ E ⊗ E is a proper orthogonal tensor, so that 41
the relations RTR = RRT = I hold and I is the unit tensor in
E. In analogy to continuum mechanics, but with some abuse 43
of this calling, we shall refer to (10) as the right and left polar
decompositions of the tensor F, respectively. A comprehensive 45
justification of (10) is given below.

According to the theorem of Tissot an arbitrary map acting 47
between two surfaces immersed in E preserves orthogonality of
either exactly one orthogonal pair of families of curves drawn 49
on these surfaces or preserves orthogonality of all such orthog-
onal pairs (when the map is a conformal map). Denote the di- 51
rections tangent to the pair of orthogonal families of curves by
e� (� = 1, 2) on M and e� on M. Consider the linear map de- 53
fined by (9) between the planes tangent to M and M at the
point x and its image y = �(x), respectively. Therefore the fol- 55
lowing equations hold true:


1ē1 = Fe1, 
2ē2 = Fe2, e1 · e2 = 0, e1 · e2 = 0, (11) 57

where 
�, � = 1, 2, are some real numbers. Together with the
fields of unit normals n = e1 × e2 and n = ē1 × ē2, the fields 59
of directions on both surfaces provide us with two fields of
orthonormal 3D frames related by the map �. Therefore there 61
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must exist a proper orthogonal tensor R that transforms (strictly1
speaking: rotates) the unbarred frame into the barred one

ē1 = Re1, ē2 = Re2, n̄ = Rn, (12)3

and this tensor has the representation

R = ē1 ⊗ e1 + ē2 ⊗ e2 + n̄ ⊗ n. (13)5

Substituting the right-hand sides of the first two equations (12)
for e� into the first two equations (11) we obtain7


1Re1 = Fe1, 
2Re2 = Fe2,

which may be further transformed to9


1e1 = RTFe1, 
2e2 = RTFe2. (14)

By the above and the equations Fn=FTn=0 the tensor U=RTF11
is a surface tensor whose principal directions are e� and the
numbers 
� are the corresponding eigenvalues. We still need to13
prove that U is symmetric.

Note that the directions e� constitute a Cartesian basis in the15
plane tangent to M. Therefore there must exist four numbers
U�� such that17

U = U11e1 ⊗ e1 + U12e1 ⊗ e2 + U21e2 ⊗ e1 + U22e2 ⊗ e2.

Yet, by the orthogonality of the directions e� and by (14), we19
must have U12=U21=0 and it follows that U11=
1 and U22=
2.
Hence U is symmetric and has the spectral representation21

U = 
1e1 ⊗ e1 + 
2e2 ⊗ e2. (15)

Thus, the decomposition F = RU exists.23
Furthermore, the following transformation confirms validity

of the decomposition (10)2:25

F = RU = RURTR = VR

and, by (12) and (15), the surface tensor V = RURT has the27
spectral representation

V = 
1ē1 ⊗ ē1 + 
2ē2 ⊗ ē2. (16)29

For future use it is convenient to introduce the non-holonomic
base vectors s� and s� in TxM, called the stretched base vectors31
and defined by

s� = Ua�, s� = ā��s�, s� · s� = ��
� ,33

s� · s� = ā��, s� · s� = ā��. (17)

Using (17) we can write35

U = s� ⊗ a� = U�
�a� ⊗ a�, U−1 = a� ⊗ s� = (U−1)��a� ⊗ a�,

R = ā� ⊗ s� + n ⊗ n, R−1 = s� ⊗ ā� + n ⊗ n. (18)37

Note that U is non-singular by definition and, as such, invertible.
Its inverse can be computed with the use of the formula39

U−1 = − 1

det(U)
�U�, (U−1)�� =

√
a

a
	�
	��U

�

 , (19)

which follows from application of the Cayley–Hamilton theo-41
rem to the tensor U�.

Let us introduce two further surface tensor fields on M: the 43
so-called relative surface strain and bending measures � and μ,
respectively, defined as 45

� = U − a, μ = RT(n,� ⊗ a�) + b, (20)

� = �� ⊗ a�, �� = s� − a� = ���a�, ��� = ���, (21) 47

μ = μ� ⊗ a�, μ� = RTn,� − n,� = ���a�, ��� 	= ���.

(22)

These relative measures, introduced already by Alumäe [17] in 49
a descriptive manner, are related to the measures � and � via
the following formulas (see [18]): 51

��� = ��� + 1
2�


��
�,

��� = 1
2 [(�


� + �

�)�
� + (�


� + �

�)�
�]

− 1
2 (b


��
� + b

��
�). (23) 53

4. Field of rotations

The relation between the field of rotations R = R(�
) on M 55
and partial derivatives of R is governed by two linear PDEs

R,� = R × k�, (24) 57

where the two vectors k� were introduced by Shamina [19]
in the context of deformation of 3D continuum and called the 59
vectors of change of curvature of the coordinate lines.

Let us derive Eq. (24) for completeness. In view of the or- 61
thogonality of R we have RTR = I, which differentiated along
the surface coordinates leads to 63

R,T
�R + RTR,� = 0,

or in an equivalent form 65

RTR,� = −(RTR,�)
T.

Hence, the two tensors RTR,� are skew-symmetric and, there- 67
fore, each of them has an axial vector k� such that

RTR,� = k� × I = I × k�. (25) 69

Multiplying (25) by R from the left-hand side we obtain exactly
(24). Solving (25) for k� we can express k� in terms of rotations 71

k� = 1
2 (I × I) · (RTR,�). (26)

We shall now consider solvability of the following problem: 73
given two vector fields k� =k�(�


) find the corresponding field
of rotations R = R(�
). 75

Given the fields k� = k�(�

) we obtain the system of two

linear PDEs (24) for the unknown field of rotations R =R(�
). 77
This is a total differential system whose local solutions exist if
and only if the integrability conditions ���R,��=0 are satisfied. 79
To express these conditions in terms of the axial vectors k� we
need to derive the formula for second derivatives of the rotation 81

R,�� = R,� × k� + R × k�,�

= (R × k�) × k� + R × k�,�

= R[(I × k�)(I × k�) + I × k�,�].
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Hence 	��R,�� = 0 are satisfied when1

	��[(I × k�)(I × k�) + I × k�,�] = 0. (27)

It is straightforward to show with the use of vector algebra that3
the first component in (27) may be transformed as follows:

(I × k�)(I × k�) = [(a
 ⊗ a
 + n ⊗ n) × k�] × k�

= a
 ⊗ [k�(a
 · k�) − a
(k� · k�)]
+ n ⊗ [k�(n · k�) − n(k� · k�)]

= k� ⊗ k� − (k� · k�)I,5

so that (27) becomes

	��I × k�,� + 	��k� ⊗ k� − 	��(k� · k�)I = 0.7

Here the term 	��(k�·k�)I vanishes identically, and the last term

is a skew-symmetric tensor whose axial vector is − 1
2 	��k�×k�.9

Hence, the system (24) may have solutions if and only if

	��(k�,� − 1
2 k� × k�) = 0. (28)11

In the context of the theory of thin shells the integrability condi-
tion (28) was derived independently by Chernykh and Shamina13
[8] and Pietraszkiewicz [20].

Let us reveal the geometric meaning of the integrability con-15
ditions (28). Differentiating (10)1 twice, and remembering that
the left-hand side represents the integrability conditions for F,17
which was proved in [1], we obtain

F,�� − F,�� = 0 = (R,�� − R,��)U + R(U,�� − U,��). (29)19

The left-hand side of (29) was explicitly calculated in [1]. Dif-
ferentiating twice F = ā
 ⊗ a
 term by term to obtain F,��,21
then exchanging the indices ��� and calculating the difference
F,�� − F,��, we obtained23

F,�� − F,�� = (R̄�
.
�� − b̄�

�b̄
� + b̄�
� b̄
�

− R�
.
�� + b�

�b
� − b�
�b
�)ā� ⊗ a


+ (b�
�|� − b�

�|�)ā� ⊗ n

+ (b̄
�||� − b̄
�||�)n̄ ⊗ a
 = 0, (30)

where (.)||� denotes the surface covariant derivative in the met-25
ric of M.

It is apparent that vanishing components in the conditions27
(30) represent exactly the differences between the GMC equa-
tions of the deformed and undeformed shell midsurfaces. If we29
introduce here the relations (8) and perform transformations
given in detail by Koiter [21], the conditions (30) become iden-31
tical to the compatibility conditions of the non-linear theory of
thin shells.33

One immediately notices that the second term U,�� − U,��
in the right-hand side of (29) vanishes due to interchangeability35
of the second partial derivatives of U ∈ TxM ⊗ TxM. The
only term left, the first one in the right-hand side of (29), can37
equivalently be written as

R × [(k�,� − 1
2 k� × k�) − (k�,� − 1

2 k� × k�)]U = 0. (31)39

Since both R and U are non-singular it immediately follows
from (31), (30) and (29) that the integrability conditions (28) 41
are equivalent to the compatibility conditions of the non-linear
theory of thin shells. 43

Given the fields of stretches U (or �) and rotations R, from
(9), (10) and (17) we obtain the system of two linear, vector 45
first-order PDEs for the deformed position vector y,

y,� = Rs� = RUa�. (32) 47

The local solutions of (32) exist provided that the integrabil-
ity conditions 	��y,�� = 0 hold true. These conditions can be 49
transformed as follows:

	��y,�� = 	��(R,�s� + Rs�,�)

= 	��[(R × k�)s� + R(a�,� + ��,�)]
= 	��R(k� × s� + ��,�) = 0. 51

Multiplying the above from the left-hand side by RT we obtain
the integrability conditions coinciding with those derived in 53
[18]

	��(��,� + k� × s�) = 0. (33) 55

We can also calculate the second partial derivatives of y in an
equivalent way as follows: 57

	��y,�� = 	��ā�,� = 	��(�̄��

ā
 + b̄��n̄) = 0. (34)

Therefore, the integrability condition (33) is equivalent to the 59

identities following from the symmetry of �̄


�� and b̄�� in lower

indices. These identities will be used in Section 5.2 to modify 61
the components of k�.

Summarizing, the position vector y of the deformed midsur- 63
face M can be found in three consecutive steps:

(1) Find U from known � by pure algebra in TxM ⊗ TxM. 65
(2) Calculate R from known U and ��� by solving the system

of two linear PDEs (24) whose integrability conditions are 67
(28).

(3) Find y from known R and U by integrating the system of 69
two linear PDEs (32) whose integrability conditions are
(33). 71

In Section 5 we perform in detail all transformations necessary
to complete these three steps. 73

5. Determination of deformed position of the shell
midsurface 75

5.1. Determination of the surface stretch

From (10)1, (20) and (8) it follows that 77

FTF = U2 = a + 2�,

and the invariants of U2 in terms of those of � are 79

tr(U2) = 2 + 2 tr(�),

det(U2) = 1 + 2 tr(�) + 4 det(�). 81
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The Cayley–Hamilton theorem for U reads1

U2 − tr(U)U + det(U)a = 0,

from which we obtain3

U = 1

tr(U)
[U2 + det(U)a]. (35)

Taking the trace of (35) we can express it through the invariants5
of U2 by

tr(U) =
√

tr(U2) + 2
√

det(U2) > 0, det U =
√

det U2 > 0.7

Therefore, introducing all the above results into (35) we obtain
U expressed explicitly in terms of �9

U = {1 + √
1 + 2 tr(�) + 4 det(�)}a + 2�√

2{1 + tr(�) + √
1 + 2tr(�) + 4 det(�)}

. (36)

5.2. Determination of the rotation11

The vectors k� can be represented through the components
in the base a�, n according to [18] by13

k� = 	
��
�a� + k�n. (37)

In (37) there are six components �
�, k� which should15
be expressed through our data: three U


� (or �

�) and

three ���.17
By the definition (20), by (18)2 and (1) we can express the

four tangential components ��� of k� through U

� (or �


�) and19
���,

��� = a� · (s
 ⊗ ā
 + n ⊗ n̄)(−b̄
�ā
) + b��

= b�� − (U−1)
�(b
� − �
�). (38)21

Two normal components k� of k� can be expressed through U

�

(or �

�) with the help of integrability conditions (33) which in23

components in the base a�, n read

	���
�|� + 	��(��
� + ��

�)	�
k� = 0,

	���

�(b
� − �
�) − 	����� = 0. (39)25

Multiplying the first of (39) by 	
�(U−1)


�	
�, using (19) and

performing some transformations we can solve it for k� and27
obtain

k� = −
√

a

ā
	�
(�


� + �

�)�
�|
. (40)29

It is easy to show by direct analysis that when ��� and k� are
expressed by (38) and (40), respectively, the third integrability31
condition of (39) is identically satisfied.

The system of two linear PDEs (24) can now be integrated33
provided that the integrability conditions (28) are satisfied. In
the intrinsic formulation of non-linear shell equations by Opoka35
and Pietraszkiewicz [5] three compatibility conditions were
used as the principal part of six intrinsic shell equations for37
N�� and ���. The fields U


� (or �

�) as linear functions of N��,39

together with ��� through which we formulate the problem,
satisfy the compatibility conditions within the accuracy of the 41
first approximation to the elastic strain energy density of the
shell. Therefore, the integrability conditions (28) are satisfied 43
with the same accuracy in any geometrically non-linear problem
of thin elastic shells. As a result, the system (24) is completely 45
integrable.

The first step in solving the system (24) consists in showing 47
that the problem can be converted to an equivalent infinite set
of systems of ODEs along curves covering densely the entire 49
domain M. If the integrability condition (28) is satisfied then
by the theorem of Frobenius–Dieudonné (see [22]) for every 51
initial value R(��

0)=R0 prescribed at some point x0 ∈ M with
coordinates ��

0 there exists a unique solution R(��) satisfying 53
this initial value, and all such solutions depend continuously
on R0. 55

Consider a particular solution R of the system (24) and a
curve C: [a, b] 
 s → ��(s) leaving from some point x0 ∈ M, 57
labeled by s0, to another point x ∈ M, labeled by s. Suppose
the value of R at s0 be R0. Note that the restriction R|C of 59
this solution to the curve C satisfies the following system of
ODEs: 61

dR|C
ds

= R|C × kC , (41)

where the vector kC is given by 63

kC = k�
d��

ds
. (42)

Let us reverse the argumentation. Now consider the initial value 65
problem for the system of ODEs

dR∗

ds
= R∗ × kC

67

along the same curve C with the same initial condition R∗(s0)=
R0. By the standard results from the theory of ODEs this prob- 69
lem has a unique solution R∗(s). Therefore, it must be identical
with the restriction of R to C on the interval where it exists, 71
i.e. we must have R|C = R∗(s).

This way, instead of solving the system (24) directly, we may 73
compute a particular solution R(��) corresponding to some
initial condition R(��

0) = R0 by covering the domain M with 75
a dense set of paths leaving radially from the initial point
x0 and solving the initial value problem for the system of 77
ODEs

dR
ds

= RK, K = I × k, k = k�
d��

ds
, (43) 79

k� = 	�
[b�� − (U−1)
�(b
� − �
�)]a


−
√

a

ā
	�
U


� �
�|
n.

Solution to the initial value problem (43) may be obtained with 81
the use of any of the well-known techniques, numerical tech-
niques inclusive. In particular, applying the method of succes- 83
sive approximations (see [22]) the general solution of (43) can 85
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be presented in the form1

R = R0Rs , Rs =
∞∑
i=0

Oi , (44)

O0(s) = I, Oi (s) =
∫ s

s0

Oi−1(t)K(t) dt, i�1,
3

where R0 = R(s0) is the rotation tensor at s = s0.
Introducing (44) into (43) we can directly show that the5

infinite series Rs solves Eq. (43) with the initial value R(s0) =
R0. The series is convergent and it can be proved (see [22])7
that in our case it converges to a rotation field Rs along C, and
that the solution is unique for any prescribed initial value.9

One may point out a number of special cases when Eq. (43)
has the solution in closed form. In particular, when k = k(s)i,11
i.e. when k has a constant direction along C, then di/ds = 0
and the tensors Oi satisfy the conditions OiOj =Oj Oi for any13
i, j . Then the solution (44) can be presented in the exponential
form15

R(s) = exp

(
I × i

∫ s

s0

k(t) dt

)
. (45)

A still simpler solution may be obtained if k itself is constant17
along C, i.e. when dk/ds = 0. Then from (45) it follows that

R(s) = exp(sI × k).19

Note that the tensor equation (43) is identical with the one
describing the spherical motion of a rigid body about a fixed21
point, where s is time and k is the angular velocity vector in the
spatial representation (see for example [23–25]). In analytical23
mechanics many ingenious analytical and numerical methods
of integration of Eq. (43) have been devised for various special25
classes of the function k = k(s). A number of such closed-
form solutions were summarized, for example, by Gorr et al.27
[6]. Thus, the results already known in analytical mechanics
of rigid-body motion may be of great help when analyzing29
problems discussed here for thin elastic shells.

5.3. Determination of deformed position of the midsurface31

With R and U already known, the system of two vector
PDEs (32) for the deformed position y is well defined. Since33
the integrability conditions (34) are identically satisfied, we can
solve the system by quadratures and obtain35

y = y0 +
∫ x

x0

Rs� d��, (46)

where y0 = y(x0).37

6. Determining the deformed midsurface via the left polar
decomposition39

Transformations analogous to the ones presented above can
also be applied to the left polar decomposition of F,41

F = VR, (47)

where now 43

R = r� ⊗ a� + n̄ ⊗ n, RT = R−1,

det(R) = +1,

V = ā� ⊗ r� = U�
�r� ⊗ r� = VT, 45

V−1 = r� ⊗ ā� = (U−1)��r� ⊗ r� = V−T, (48)

and the non-holonomic rotated base vectors r� and r� of TyM 47
are defined by

r� = Ra� = V−1ā�, r� · r� = a��, 49

r� = a��r�, r� · r� = a��, r� · r� = ��
� . (49)

Given the fields of rotation R=R(�
) and stretch V=V(�
), we 51
obtain from (9) and (47) the system of two linear, vector first-
order PDEs for the position vector of the deformed midsurface 53

y,� = Vr� = VRa�. (50)

Therefore, the vector y can be found from (50) in three con- 55
secutive steps analogous to those discussed in Section 5.

Differentiating the identity RRT = I = r
 ⊗ r
 + n̄ ⊗ n̄ along 57
the surface coordinate lines we find that R,�RT =−(R,�RT)T.
Therefore, R,�RT are also the skew-symmetric tensors express- 59
ible through their axial vectors l� according to

R,�RT = l� × I = I × l�, 61

l� = Rk� = 	
��
�r� + k�n̄. (51)

Given the fields l� = l�(�
) from (51)1 we obtain the system of 63
two linear PDEs

R,� = l� × R (52) 65

for the field R = R(�
). This is again the total differential sys-
tem and its local solutions exist iff the integrability conditions 67
	��R,�� = 0 are satisfied, that is when

	��R,�� = 	��[l�,� × R + l� × (l� × R)]
= 	��[l�,� × I + (l� × I)(l� × I)]R
= 	��(l�,� × I + l� ⊗ l�)R = 0. (53) 69

But 	��l� ⊗ l� is a skew-symmetric tensor whose axial vector

is − 1
2 	��l� × l�. Since R is non-singular, the integrability con- 71

ditions of (52) are equivalent to

	��(l�,� + 1
2 l� × l�) = 0. (54) 73

Note the opposite sign of the second term of (54) as compared
with (28). 75

Performing transformations analogous to (3)–(31) one can
show that (54) is also equivalent to the compatibility conditions 77
of the non-linear theory of thin shells.

The solution to (52) can be found analogously to the one 79
presented in Section 5.2. We again cover the domain M
with a dense set of paths leaving radially from any initial 81
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point x0 ∈ M and then solve the initial value problem for the1
system of ODEs

dR
ds

= LR, L = l × I, l = l�
d��

ds
,3

l� = 	�
[b�� − (U−1)
�(b
� − �
�)]r


−
√

a

ā
	�
(�


� + �

�)�
�|
n̄. (55)

The general solution to (55)1 can be given in the form5

R = R0Rs , R =
∞∑
i=0

Pi ,

P0(s) = I, Pi (s) =
∫ s

s0

L(t)Pi−1(t) dt, i�1. (56)
7

The tensor ODE (55)1 is also equivalent to the one describing
spherical motion of a rigid body about a fixed point, but now9
written in the material representation. From mathematical point
of view, both representations (55)1 and (43)1 are equivalent11
and can be transformed to each other by the rotation tensor R.
Therefore, their solutions are also equivalent.13

Because V=RURT, the left stretch tensor V can be calculated
through � and R by the relation15

V = {1 + √
1 + 2 tr(�) + 4 det(�)}r� ⊗ r� + 2���r� ⊗ r�√
2{1 + tr(�) + √

1 + 2 tr(�) + 4 det(�)}
.

(57)

When R and V are known the position vector y can be found17
by integrating directly the system of two PDEs (50). Since the
integrability conditions (34) of (50) are identically satisfied, the19
position vector of the deformed shell midsurface follows from
the quadratures21

y = y0 +
∫ x

x0

VRa� d��. (58)

7. Conclusions23

We have worked out two novel, alternative, three-step meth-
ods of determining the deformed shell midsurface from known25
geometry of the undeformed midsurface as well as the pre-
scribed surface strains and bendings. The methods have been27
based on the right and/or left polar decompositions of the de-
formation gradient of the shell midsurface. In both cases the29
corresponding surface stretch fields are obtained by pure alge-
bra, the 3D rotation fields are calculated by solving the linear31
systems of first-order PDEs, and positions of the deformed shell
midsurface are then found by quadratures.33

Along any path on the undeformed shell midsurface the sys-
tem of PDEs for the rotation field has been reduced to the dense35
set of linear ODEs which are identical with the ones describ-
ing motion of a rigid body about a fixed point. It is expected37
that the two methods proposed here will be more efficient in
applications than those developed in [1], for it should be pos-39
sible here to use ingenious theoretical and numerical methods41

developed in analytical mechanics, which in special cases may
lead to the analytical solution in closed form. 43

We also note that this approach has recently been success-
fully used in a similar problem of classical differential geom- 45
etry: determination of the surface from components of its two
fundamental forms, see Pietraszkiewicz and Vallée [26]. 47
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