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Abstract

We discuss three different ways of defining the strain measures in the non-linear
micropolar continuum: a) by a direct geometric approach, b) considering the strain
measures as the fields required by the structure of local equilibrium conditions,
and c) requiring the strain energy density of the polar-elastic body to satisfy the
principle of invariance under superposed rigid-body deformations. The geometric
approach a) generates several two-point deformation measures as well as some La-
grangian and Eulerian strain measures. The ways b) and c) allow one to choose those
Lagrangian strain measures which satisfy the additional mechanical requirements.
These uniquely selected relative strain measures are called the natural ones. All the
strain measures discussed here are formulated in the general coordinate-free form.
They are valid for unrestricted translations, stretches and changes of orientations of
the micropolar body, and are required to identically vanish in the absence of defor-
mation. The relation of the Lagrangian stretch and wryness tensors derived here to
the ones proposed in the literature is thoroughly discussed.

Key words: micropolar continuum, strain measures, nonlinear elasticity, wryness
tensor

1 Introduction

The micropolar (or the Cosserat type) continuum differs from the classical (or
the Cauchy type) continuum in that in the former one each material particle
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can translate and independently rotate, that is it has six degrees of freedom of
a rigid body. Main ideas leading to the micropolar continuum were discussed
already at the end of XIXth century by Kelvin, Helmholtz, Duhem, Voigt and
Cosserat and were worked out in detail by Cosserat and Cosserat (1909). Later
results obtained within the non-linear micropolar continuum were summarised
for example by Toupin (1964), Truesdell and Noll (1965), Kafadar and Erin-
gen (1971) and Pabst (2005) where many references to earlier original papers
were given. Nowadays the micropolar continuum is used with success to model
various phenomena in many areas of solid and fluid mechanics such as, for ex-
ample, granular media, composites, polycristalline solids, biomaterials, liquid
crystals, foams, magnetic fluids, nano-materials, as well as thin bodies: rods,
plates, and shells.

Yet, the representative references collected at the end of this paper and summa-
rised in Table 1 of Chapter 6 indicate that various approaches were used in
the literature to introduce the Lagrangian strain measures into the non-linear
micropolar continuum. In most papers the strain measures were given simply
by definition or referring to Kafadar and Eringen (1971) and Eringen and
Kafadar (1976), who referred to Cosserat and Cosserat (1909) and called
the measures the Cosserat deformation and wryness tensors. However, the
strain measures originally proposed by Cosserat and Cosserat (1909) had
been written in an awkward notation through components of some fields in
the common Cartesian frame. Today such an approach is hardly readable and
it is not apparent that the strain measures used in many contemporary papers
are exactly those proposed by Cosserat and Cosserat (1909) indeed. Addition-
ally, the stretch and wryness tensors are defined by different authors in various
forms using, for example, a) components in two different curvilinear coordi-
nate systems associated with the undeformed (reference) of deformed (actual)
placements of the body, b) components in the convective coordinate system,
c) Lagrangian or Eulerian descriptions, d) different representations of the ro-
tation group SO(3) in terms of various finite rotation vectors, Euler angles,
quaternions etc., e) formally different tensor operations and sign conventions,
as well as f) requiring or not the strain measures to vanish in the undeformed
placement of the body. Even the gradient and divergence operators as well
as the Cauchy theorem influencing definitions of work-conjugate pairs of the
stress and strain measures are not defined in the same way in the literature.
As a result, we feel that there is a need to bring some order into definitions of
the strain measures to be used in this field.

The aim of this paper is to discuss three different methods of defining the
strain measures of the non-linear micropolar continuum: a) by a direct geo-
metric approach, b) defining the strain measures as the fields work-conjugate
to the respective internal stress and couple-stress tensor fields, and c) apply-
ing the principle of invariance under superposed rigid-body deformations to
the strain energy density of the polar-elastic body. Each of the three ways
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allows one to associate different geometric and/or physical interpretations
to the corresponding strain measures. In the discussion we use mainly the
coordinate-free vector and tensor notation. Orientations of material particles
in the reference and deformed placements, respectively, as well as their changes
during deformation are described in the most general way by the proper or-
thogonal tensors. Our primary strain measures called the natural ones are of
the relative type, for they are required to vanish in the reference placement.

The geometric approach presented in Chapter 3 consists of analysing differ-
ences between the deformed (actual) and undeformed (reference) placements
of the position and orientation differentials of the micropolar continuum, re-
spectively. Elements of geometric approach in Cartesian components were used
already by Cosserat and Cosserat (1909) and more recently by Merlini (1997)
who took explicitly into account the microstructure curvature tensors describ-
ing spatial changes of orientations of the material particles in the reference
and actual placements. These tensors were independently introduced also by
Zubov and Eremeev (1996) and Yeremeyev and Zubov (1999) within the
theory of viscoelastic micropolar fluids, and by Chróścielewski et al. (2004)
within the general theory of shells. The microstructure curvature tensors were
extensively used in discussion of the local symmetry group of elastic shells by
Eremeyev and Pietraszkiewicz (2006).

The basic two-point deformation measures as well as the Lagrangian and
Eulerian strain measures are defined in (15)2,3 and (17)2−5, and their trans-
formations by an orthogonal tensor leading to other deformation or strain
measures are indicated. The relative Lagrangian E, Γ and Eulerian G, ∆
stretch and wryness tensors, having several important features as well as sat-
isfying additional mechanical requirements discussed in Chapters 4 and 5, are
called the natural strain measures of the micropolar continuum. The strain
measures are valid for unrestricted deformation of the micropolar continuum,
are non-symmetric in general, vanish in the reference placement of the body
and in the rigid-body deformation of the micropolar continuum. Our deriva-
tion process itself is concise, direct and seems to be most complete in the
literature.

In an alternative approach developed in Chapter 4 the local equilibrium condi-
tions derived in Appendix are regarded as primary relations of the micropolar
continuum. These conditions are formally multiplied by the kinematically ad-
missible virtual translation and virtual rotation fields, and after transforma-
tions the principle of virtual work for the micropolar continuum is formulated.
In particular, it is found that the resulting internal virtual work density (32)
requires some referential stress and couple stress tensors to perform virtual
work on variations of the Lagrangian strain measures established in Chapter
3. As a result, we prove that the natural strain measures are the required kine-
matic fields work-conjugate to the appropriate stress measures of the microp-
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olar continuum indeed. This alternative way of defining the strain measures
as those required by the structure of the local equilibrium conditions seems
not to have been often used in the literature on micropolar continuum, except
in the early papers by Reissner (1973, 1975). However, such an approach
was used in the general theory of shells, see for example Simmonds (1984),
Makowski and Stumpf (1990), Libai and Simmonds (1998), Chróścielewski
et al. (2004), Pietraszkiewicz et al. (2005) and Eremeyev and Pietraszkiewicz
(2006).

In the third approach discussed in Chapter 5 we seek a reduced form of the
strain energy density of the polar-elastic body following from the principle of
invariance under superposed rigid-body deformations. This way of introducing
the Lagrangian strain measures is most common in the literature and various
such procedures were used, for example, by Kafadar and Eringen (1971),
Stojanović (1972), Zubov (1990), Zubov and Eremeev (1996), and Nikitin
and Zubov (1998). Using the results by Svendsen and Bertram (1999) we
confirm again that invariance of the strain energy density is assured when it
is the function of the Lagrangian strain measures defined in Chapter 3.

In Chapter 6 we provide a thorough review of various definitions of the La-
grangian strain measures of the non-linear micropolar continuum proposed in
several representative papers in the field. In those works different notation, sign
conventions, notions of gradient and divergence operators, coordinate systems,
form of the Cauchy theorem, description of rotations, etc. are applied. In most
papers the measures are introduced simply by definition. To compare them
with our measures we bring the strain measures defined in the papers into the
common coordinate-free form. The results summarised in Table 1 show that
the stretch and wryness tensors used in many papers do not agree with each
other and with our Lagrangian strain tensors defined in (13), (17) and/or (20).
Most definitions differ only by transpose of the measures, or by opposite signs,
or the measures do not vanish in the absence of deformation. Such differences
are not essential for the theory, although one should be aware of them. But we
have also discovered a few strain measures which are incompatible with our
Lagrangian stretch and wryness tensors. One should avoid such incompatible
strain measures when analysing problems of physical importance using the
micropolar continuum model.

2 Kinematics of the micropolar continuum

Let the body B consisting of material particles X, Y, ... deform in the three-
dimensional (3D) Euclidean physical space E whose translation vector space
is E.
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According to Cosserat and Cosserat (1909), Truesdell and Toupin (1960),
Toupin (1964) and Eringen and Kafadar (1976), for example, each material
particle of the micropolar continuum has six degrees of freedom of a rigid
body.

In the reference (undeformed) placement κ(B) = Bκ ⊂ E the material particle
X ∈ B is given through its position vector x ∈ E relative to a point o ∈ E
and by three orthonormal directors ha ∈ E , a, b = 1, 2, 3, fixing orientation
of X in E (see Fig. 1). If ia ∈ E are orthonormal base vectors of a common
inertial frame {o, ia} then ha = Hia, where H = ha ⊗ ia ∈ SO(3) (summed
over the range of a) is the structure tensor of Bκ, the proper orthogonal one:
H−1 = HT , detH = +1. In the micropolar continuum the vectors ha may
also be viewed as the natural base vectors of the three-orthogonal system of
arc-length coordinates sa such that ha = ∂x/∂sa.

d2

d3

d1

yx

h3

h1 h2

i2

i3

i1

o

x

y

Figure 1. Micropolar body deformation.

In the actual (deformed) placement γ(B) = Bγ = χ(Bκ) ⊂ E the position
of X becomes defined by the vector y ∈ E, taken here for simplicity relative
to the same point o ∈ E , and by three orthonormal directors da ∈ E , or
by the structure tensor D = da ⊗ ia ∈ SO(3) of Bγ . As a result, the finite
displacement of the micropolar continuum can be described by two following
smooth mappings:

y = χ(x) = x + u(x) , da = Q(x)ha , (1)

where u ∈ E is the translation vector, and Q = DHT = da ⊗ ha ∈ SO(3) is
the proper orthogonal microrotation tensor: Q−1 = QT , detQ = +1. Two in-
dependent fields u = u(x) and Q = Q(x) describe translational and rotational
degrees of freedom of the micropolar continuum, respectively.
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The finite displacements (1) allow one to introduce two strain measures of
the micropolar continuum which are different, in general, from only one strain
tensor used in classical continuum mechanics as discussed, for example, by
Truesdell and Toupin (1960), Truesdell and Noll (1965), or Wang and Trues-
dell (1973). In what follows we discuss three different ways of defining the
two strain measures of the 3D micropolar continuum.

3 Strain measures by geometric approach

Within the geometric approach we define the strain measures by analysing
difference of the fields describing position and orientation differentials of the
material particles of the micropolar continuum in the 3D physical space.

Let C be a smooth curve in Bκ given by x = x(s), where s is the arc length
parameter. Then x = x(s) and H = H(s), and their differentials are

dx =

(
d
ds

x

)
ds = x′ds = (Gradx)dx ,

dH =

(
d
ds

H

)
ds = H′ds = (GradH)dx , dx ∈ E ,

Gradx = I ∈ E ⊗ E , GradH ∈ SO(3) ⊗ E ,

(2)

where I is the identity (metric) tensor of E ⊗ E, and Grad is the gradient
operator in Bκ.

In this paper, for the fixed origin o ∈ E the gradient of a vector field v(x) ∈ E
is the 2nd-order tensor field Gradv(x) ∈ E⊗E and the gradient of the 2nd-order
tensor field A(x) ∈ E⊗E is the 3rd-order tensor field GradA(x) ∈ E⊗E⊗E,
both defined by the relations, see for example Ogden (1984),

[Gradv(x)]a =
d
dt

v(x + ta)|t=0 ,

[GradA(x)]a =
d
dt

A(x + ta)|t=0 , for any t ∈ R , a ∈ E .
(3)

In components relative to ha we have

v = vaha , A = Aabha ⊗ hb ,

Gradv = v,c ⊗hc , GradA = A,c ⊗hc , (.),c ≡ ∂(.)/∂sc .
(4)

In particular, the gradients of products of the 2nd-order tensor A(x), B(x)
and the vector v(x) fields in Bκ are given by

Grad (Av) = (A,c v + Av,c ) ⊗ hc = vGradAT + AGradv , (5)
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 Grad (AB) = (A,c B+AB,c ) ⊗ hc =
(
BTAT ,c

)T ⊗ hc + A (B,c ⊗hc)

=
(
BT GradAT

)1.2
T

+ AGradB .

(6)

Equivalent to (3) and (4) definitions of the gradient operator were used for
example by Truesdell and Toupin (1960), Truesdell and Noll (1965), and
Wang and Truesdell (1973).

However, using the operator ∇ = hc∂/∂xc alternative definitions of the gra-
dient of v(x) and A(x) not equivalent to (3) leading to

∇v = hc ⊗ v,c , ∇A = hc ⊗ A,c , (7)

were used, for example, in the books by Antman (2005), Lurie (1990, 2005),
Naumenko and Altenbach (2007), and Zubov (1997). In this paper we shall
not use these alternative definitions (7).

Since d(HHT ) = 0 = (dH)HT +H(dHT ), the tensor (dH)HT = −[(dH)HT ]T

is skew-symmetric and can be represented by its axial vector b depending
linearly on dx, so that

(dH)HT = b× I = I × b , b = Bdx ,

dha = b× ha , b =
1

2
ha × dha , B =

1

2
ha × Gradha.

(8)

Using (5) and the identity v × A = ε : (v ⊗ A) valid for any vector v and
2nd-order tensor A, for B in (8)2 we obtain other representations

B =
1

2
ha ×

(
haHGradHT

)
=

1

2
ε :
(
HGradHT

)
, (9)

where the 3rd-order skew tensor ε = −I × I, represented here in ha base, is
the Ricci tensor of the space E ⊗ E ⊗ E, and the double dot product : of
two 3rd-order tensors A, B represented in the base ha is defined as A : B =
AamnBmnbha ⊗ hb. In (8) and (9), B ∈ E ⊗E is the microstructure curvature
tensor in the undeformed (reference) placement of the micropolar continuum.
Two tensors I, B are the basic measures of local geometry of the reference
placement Bκ.

In the actual (deformed) placement Bγ differentials of y = y(s) and D = D(s)
along the corresponding material curve D = χ(C) are

dy = y′ds = (grady)dy = (Grady)dx = Fdx ,

dD = D′ds = (gradD)dy = (GradD)dx , dy ∈ E ,

grady = I ∈ E ⊗ E , GradD ∈ SO(3) ⊗ E ,

(10)
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where grad denotes the gradient operator in Bγ defined analogously to (3),
and F = Grady is the classical deformation gradient tensor. In the general
curvilinear coordinates xi of Bγ with the base vectors gi = ∂y/∂xi, i = 1, 2, 3,
gradient of the vector field v(y) ∈ E takes the form gradv = v,i ⊗ gi.

Again, the skew-symmetric tensor (dD)DT can be represented by its axial
vector c depending linearly on dy, so that

(dD)DT = c × I = I × c , c = Cdy ,

dda = c × da , c =
1

2
da × dda ,

C =
1

2
da × gradda =

1

2
da ×

(
daDgradDT

)
=

1

2
ε :
(
DgradDT

)
,

(11)

where C ∈ E ⊗ E is the microstructure curvature tensor in the actual (de-
formed) placement of the micropolar continuum, and ε is now represented in
the da base. Two tensors I, C are the basic measures of local geometry of the
actual placement Bγ.

Since QTQ,c = −(QTQ,c )T is skew it can be expressed through the axial
vector γc,

QTQ,c = γc × I = I× γc ,

γc = −1

2
ha ×

(
haQ

TQ,c
)

= −1

2
ε :
(
QTQ,c

)
.

(12)

This allows one to introduce the 2nd-order tensor

Γ = γc ⊗ hc = −1

2
ha ×

(
haQ

T GradQ
)

= −1

2
ε :
(
QT GradQ

)
,

QT GradQ = I × Γ.
(13)

The tensor Γ characterizes uniquely the 3rd-order tensor QT GradQ skew with
regard to first two tensor places. The tensor Γ is frequently called the wryness
tensor in the literature, cf. Kafadar and Eringen (1971).

Using the chain rule gradda = (Gradda)F
−1 with (1), (5) and (12), (13) the

tensor C can now be represented by

C =
1

2
(Qha) × [Grad (Qha)]F

−1

=
1

2
Q
[
ha ×

(
QTQ,c ha ⊗ hc

)]
F−1 +

1

2
Q (ha × Gradha)F

−1

=
1

2
Q
{
ha ×

[
ha

(
QTQ,c

)T ⊗ hc

]}
F−1 + QBF−1

= −1

2
Q
[
ha ×

(
haQ

TQ,c
)
⊗ hc

]
F−1 + QBF−1

= Q (Γ + B)F−1 .

(14)
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The relative changes of lengths and orientations of the micropolar continuum
during deformation are governed by differences of differentials (2) and (10)
brought to the comparable orientation by the tensor Q,

dy − Qdx = Xdx = Gdy, Cdy −QBdx = Φdx = ∆dy,

X = F− Q, G = I −QF−1 = XF−1,

Φ = CF −QB, ∆ = C − QBF−1 = ΦF−1 .

(15)

Scalar products of each of (15)1 by itself leads to the quadratic forms

dx · XTXdx = dy · GTGdy, dx · ΦTΦdx = dy · ∆T∆dy. (16)

However, the relative changes of lengths and orientations can also be calculated
by the alternative back-rotated expressions

QT dx − dx = Edx = Ydy, QT Cdy −Bdx = Γdx = Ψdy,

E = QTF − I = QT X,

Y = QT − F−1 = EF−1 = QTG = QTXF−1,

Γ = QTCF − B = QT Φ,

Ψ = QTC − BF−1 = ΓF−1 = QT∆ = QTΦF−1.

(17)

From (9), (17)5 and the chain rule we obtain the following relations for ∆:

∆ = QΓF−1 = −1

2
da × (daQ

T gradQ) = −1

2
Qε : (QT gradQ). (18)

Scalar products of each of (17)1 by itself give the alternative quadratic forms

dx · ETEdx = dy ·YTYdy, dx · ΓTΓdx = dy · ΨTΨdy. (19)

From (16) and (19) it follows that each of the tensors X, E, or G, Y and Φ, Γ
or ∆, Ψ is the corresponding measure of deformation, stretch or orientation
change of the non-linear micropolar continuum in the Lagrangian or Eulerian
description, respectively.

The quadratic forms (16) and (19) do not change if X, E, Φ, Γ and their
counterparts are replaced by RX, RE, RΦ, RΓ, etc., respectively, where R
is a proper orthogonal tensor. Hence, any so transformed tensor can also be
regarded as the possible strain measure of the non-linear micropolar contin-
uum. In particular when such a transformation with R = QT is applied to the
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measures X, G, Φ, ∆ entering the quadratic form (16) the measures become
E, Y, Γ, Ψ, i.e. those entering the quadratic form (19).

It follows from (15) and (17) that X, Φ (and Y, Ψ) are two-point tensors with
the left leg associated with the deformed placement and the right leg with the
undeformed one (and reverse for Y, Ψ). Such measures may also be called the
deformation measures. The tensors E, Γ are the relative Lagrangian strain
measures, while the tensors G, ∆ are the relative Eulerian strain measures.

Let us note some interesting features of the relative strain measures:

(1) All the measures are given in the common coordinate-free notation; their
various component representations can easily be generated, if necessary.

(2) Definitions of the measures are valid for finite translations and rotations
as well as for unrestricted stretches and changes of microstructure orien-
tation of the micropolar body.

(3) The measures are expressed in terms of the rotation tensor Q; for any
specific parametrization of the rotation group SO(3) by various finite
rotation vectors, Euler angles, quaternions, etc. appropriate expressions
for the measures can easily be found, if necessary.

(4) All the strain measures vanish in the rigid-body deformation y = Ox+a,
D = OH with a constant vector a and a constant proper orthogonal
tensor O defined for the whole body.

(5) In the absence of deformation from the reference placement, that is when
F = Q = I, the relative strain measures identically vanish.

(6) The relative Lagrangian and Eulerian strain measures are not symmetric,
in general: ET �= E, ΓT �= Γ, and GT �= G, ∆T �= ∆.

If the feature (5) is not required then instead of E and Γ we can use the
following Lagrangian strain measures:

U = QTF = E + I , Π = QTCF = Γ + B ,

Π =
1

2
ha ×

(
haHGradHT − haQ

T GradQ
)

=
1

2
ε :
(
HGradHT − QT GradQ

)
.

(20)
While U in (20)1 is still very simple, the formula (20)2 for Π in terms of H
and Q becomes quite complex, in general. This a why the wryness tensor Π
was introduced only in one paper by Shkutin (1980) as ΠT , see Chapter 6.

Applying the relative changes (15)1 and (17)1 our relative Lagrangian strain
measures E, Γ and their Eulerian counterparts G, ∆ are defined uniquely.
Hence, the measures U, Π and their Eulerian counterparts (which are not
discussed here) are defined uniquely as well. In our purely geometric approach
there is no need for discussion whether these measures might be defined as
transposed tensors or with opposite signs. The derivation process itself is con-
cise, elegant and direct.
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In most of the papers reviewed in Table 1 of Chapter 6 the strain measures
were introduced into the non-linear micropolar continuum simply by defini-
tion, without detailed derivation of those measures. Some papers refer directly
to the original book by Cosserat and Cosserat (1909), where the strain mea-
sures were derived in part by the geometric approach in an awkward notation
through components in the common Cartesian frame. Nowadays such an ap-
proach is difficult to follow and fully understand. The results of Besdo (1974),
where some elements of the geometric approach were used, seem to be incom-
patible with our strain measures (see discussion in Chapter 6). Most of the
authors introducing the strain measures refer to Kafadar and Eringen (1971),
who used the principle of material frame-indifference of the polar-elastic body
to define the strain measures identified as UT and Γ in our geometric ap-
proach. Unfortunately, their derivation process is not complete as well (see
again discussion in Chapter 6). Although Merlini (1997) proposed two-point
deformation measures, for the polar-elastic body he used the back-rotated
strain measures coinciding with our E and Γ. It seems that the derivation of
the strain measures by geometric approach presented here is the most complete
one in the literature.

4 Principle of virtual work and work-conjugate strain measures

Already Reissner (1973) noted that the internal structure of two local equi-
librium equations of the micropolar elastic body requires specific two strain
measures expressed through two independent translation and rotation vectors
as the only field variables. This allowed him to define Cartesian components
of such strain measures which may be identified as our stretch UT and wry-
ness ΠT tensors (see Chapter 6). In this Chapter we develop this idea in the
general case of the non-linear micropolar continuum using the coordinate-free
approach.

The local coordinate-free form of the equilibrium conditions (65) for the mi-
cropolar continuum is derived in the Appendix. Let us introduce in Bγ two
arbitrary smooth vector fields v, ω ∈ E. Then (65) generate the integral
identity

∫∫∫
Bκ

{
(Div T + f)·v +

[
DivM − ax

(
FT − TTFT

)
+ m

]
·ω
}

dv

−
∫∫

∂Bκf

{(nT − t∗)·v + (nM− m∗)·ω} da = 0 .
(21)
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Let us apply the relation (61) to represent terms with divergence in (21),

(Div T) · v = Div (Tv) − TT : (Gradv) ,

(Div M) · ω = Div (Mω) − MT : (Gradω) .
(22)

The axial term in (21) can be transformed as follows:

−ax
(
FT −TTFT

)
· ω = [ε : (FT)] · ω = −ω · [(I × I) : (FT)]

= − (ω × I) : (FT) = −Ω : (FT) = +TT : (ΩF) ,
(23)

where the skew tensor Ω = I× ω = ω × I, ω = ax(Ω) has been introduced.

The second terms in (22) when used in (21) can be transformed by the diver-
gence theorem
∫∫∫
Bκ

Div (Tv) dv =
∫∫

∂Bκ

(nT) · v da ,
∫∫∫
Bκ

Div (Mω) dv =
∫∫

∂Bκ

(nM) · ω da .

(24)
When (22), (23) and (24) are introduced into (21) this identity becomes

∫∫∫
Bκ

[
TT : (Gradv − ΩF) + MT : Gradω

]
dv

=
∫∫∫
Bκ

(f ·v + m·ω) dv +
∫∫

∂Bκf

(t∗·v + m∗·ω) da

+
∫∫

∂Bκd

[(nT)·v + (nM)·ω] da .

(25)

The vector field v may be interpreted, in particular, as the kinematically ad-
missible virtual translation v ≡ δy and the vector field ω as the kinematically
admissible virtual rotation ω ≡ ax(δQQT ) in Bγ , such that v = ω = 0 on
∂Bκd, where δ is the symbol of virtual change (variation). Then the last sur-
face integral in (25) identically vanishes, two integrals in the second row of
(25) describe the external virtual work, while the first volume integral in (25)
describes the internal virtual work performed by the stress measures on the
work-conjugate virtual strain measures. In this interpretation the formula (25)
represents the principle of virtual work in the non-linear micropolar contin-
uum.

But for such v and ω,

δF = δ (Grady) = Grad (δy) = Gradv ,

(δQ)QT = −Q
(
δQT

)
= ω × I =Ω , δQT = −QT Ω ,

(26)
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and from (17)2 we obtain

δE = δU = (δQT )F + QT δF= −QT ΩF + QT Gradv = QT (Gradv − ΩF) .

(27)

Since C =
1

2
da × (Gradda)F

−1, we can apply the relations δda = ω×da and
δF−1 = −F−1(δF)F−1 following from da = Qha and F−1F = 0, respectively,
and obtain

δC =
1

2
(ω × da) × (Gradda)F

−1 +
1

2
da × Grad (ω × da)F

−1 −C(Gradv)F−1 .

(28)
The virtual change of Γ in (17)4 together with (28) leads to

δΓ = δΠ = (δQ)TCF + QT (δC)F + QTC(δF)

= −QT (ω × I)CF + QT (δC)F + QTCGradv

=
1

2
QT [−ω × (da × Gradda) + (ω × da) × Gradda

+da × Grad (ω × da)] .

(29)

But we have the identities

−ω × (da × Gradda) + (ω × da) × Gradda = −da × (ω × Gradda) ,

da × Grad (ω × da) = −da × (da × Gradω) + da × (ω × Gradda) ,

−da × (da × Gradω) = −da(da · Gradω) + (da · da)Gradω = 2Gradω .

(30)
Introducing (30) into (29)3 we finally obtain

δΓ = δΠ = QT Gradω . (31)

It follows from (25) with (27) and (31) that the internal virtual work density
under the first volume integral of (25)1 can now be given by the expressions

σ = TT : (QδE) + MT : (QδΓ) = S : δE + K : δΓ = S : δU + K : δΠ ,

(32)
where

S = QTTT , K = QTMT , (33)

are the stress and couple-stress tensors whose natural components are referred
entirely to the reference (undeformed) placement. The stress measures S, K are
work-conjugate to the respective relative Lagrangian strain measures E, Γ and
also to U, Π. These pairs of stress and strain measures are most convenient
in the discussion of constitutive equations of the micropolar continuum.
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The alternative way of introducing the strain measures presented in this Chap-
ter confirms correctness of the Lagrangian strain measures defined in (17)2,4

and (20)1. Additionally, such an approach allows one to analyse other possible
work-conjugate pairs of the stress and strain measures within the non-linear
micropolar continuum. Some of such pairs have recently been discussed by
Ramezani and Naghdabadi (2007).

5 Invariance of strain energy density of the polar-elastic body un-
der superposed rigid-body deformations

In this Chapter we confine our attention to the simplest micropolar body – the
polar-elastic body. In this case the constitutive relations are defined through
the strain energy density Wκ per unit volume of the undeformed placement κ.
At any point x ∈ Bκ, labelled by the undeformed position vector x and the
microstructure curvature tensor B, the density Wκ can be assumed to depend,
in general, on the deformed position vector y, the deformation gradient tensor
F, the microrotation tensor Q, and its gradient GradQ:

Wκ = Wκ(y,F, Q, GradQ; x,B) . (34)

As any constitutive relation, the form of Wκ in (34) should satisfy the principle
of material frame-indifference or the principle of objectivity formulated in the
form suitable for classical continuum mechanics by Noll (1958), see Trues-
dell and Noll (1965). There has been an extensive discussion in the literature
about the proper understanding of this principle, because its different formula-
tions seem to reflect different physical contents. See for example recent papers
by Murdoch (2003), Muschik and Restuccia (2002), Bertram and Svendsen
(2001), Svendsen and Bertram (1999) and the book by Bertram (2005). In
particular, Svendsen and Bertram (1999) found that the principle of material
frame-indifference contains in fact three independent postulates: the princi-
ple of invariance under Euclidean transformations, the principle of invariance
under superposed rigid-body motions, and the principle of form-invariance of
the constitutive equations under change of observer. If any two of them are
satisfied the third one becomes satisfied as well. Hence, from the material
frame-indifference it follows, in particular, that Wκ should be invariant under
superposed rigid-body deformations.

In classical continuum mechanics two deformations χ(x) and χ∗(x) of the body
differ by a rigid-body transformation if they are related as χ∗(x) = Oχ(x)+a,
where a is a constant vector and O a constant rotation tensor, both defined for
the whole body. Corresponding deformation gradients are related as F∗(x) =
OF(x). However, in micropolar continuum mechanics Q∗(x) cannot be found
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from the rigid-body transformation, because Q(x) is an independent field not
expressible by χ(x). Therefore, after Kafadar and Eringen (1971) and Le
and Stumpf (1998) we assume that under the rigid-body transformation the
directors da are rotated as y: d∗

a(x) = Oda(x), or Q∗(x) = OQ(x). In other
words, we assume that da are objective vectors. Applying (6) we also obtain
that GradQ∗(x) = OGradQ(x). Then the principle of invariance under the
superposed rigid-body motion requires the values of Wκ to be the same for
both deformations χ(x) and χ∗(x),

Wκ(y, F, Q, GradQ; x,B) = Wκ(Oy + a,OF, OQ, OGradQ; x,B) . (35)

Since a and O are arbitrary, in order to assure invariance of Wκ in (35) the
density should not depend on y and Q. Then, if O ≡ QT , the function Wκ

can be reduced to

Wκ = Wκ(Q
TF, QT GradQ; x,B) , (36)

which by (13)2 and (17)2 becomes equivalent to

Wκ = Wκ (E + I, I × Γ; x,B) = W κ (E, Γ; x,B) . (37)

As a result of this discussion we again confirm that the relative Lagrangian
strain measures E, Γ (or the ones U, Π) are required to be the independent
fields in the elastic strain energy density in order it to be invariant under
superposed rigid-body deformations.

6 Discussion and comparative review of some other Lagrangian
non-linear strain measures

The geometrical approach discussed in Chapter 3 generates many different
strain measures related to each other by proper orthogonal transformations.
Among these measures are the relative Lagrangian stretch E and wryness Γ
tensor having several distinctive features. Additionally, the structure of equi-
librium conditions discussed in Chapter 4 and invariance of the strain energy
density of the polar-elastic body analysed in Chapter 5 both require the La-
grangian strain measures E, Γ or U, Π. Taking together the results of the
three ways of introducing the measures, the relative tensors E and Γ seem to
be the most appropriate Lagrangian strain measures for the non-linear microp-
olar continuum. We shall call them the natural stretch and wryness tensor,
respectively.

Let us review some definitions of the Lagrangian strain measures proposed in
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the representative literature on non-linear micropolar continuum and compare
them with our natural measures E, Γ or the measures U, Π.

The paper by Kafadar and Eringen (1971) is among the most referred to
in the literature. The authors used two independent systems of curvilinear
coordinates: XK in Bκ with the reference base vectors GK , K=1,2,3, and
xk in Bγ with the spatial base vectors gk, k = 1, 2, 3. The deformation was
described by three deformation functions xk = xk(XL) and the change of
orientation by nine components Qk

.K = Qk
.K(XL) in the tensor basis gk ⊗ GK

of the proper orthogonal tensor field Q = Q(x) satisfying the constraints
QT = Q−1, detQ = +1. Requiring the strain energy density Wκ of the polar-
elastic body to remain form-invariant under a rigid-body motion, three first-
order PDE were derived, see their formula (25). These equations were regarded
as the statement of objectivity for the polar elasticity. Then the authors stated
without further details that ...”After lengthy manipulations it may be shown
that the general solution of (25) is “ ... Wκ = Wκ(EKL, ΓKL), where

EKL = xk,K QkL , ΓKL =
1

2
εKMNQkM

. . ;LQ. N
k , (38)

and ; means the covariant differentiation in the reference metric GKL = GK ·
GL. The same components of the strain measures (38) were used by Maugin
(1974) and in Cartesian coordinates by Pabst (2005).

Identifying that xk,K gk ⊗GK = Grady = F and Qk
. Kgk ⊗GK = Q, the fields

EKL are just components in the tensor basis GK ⊗ GL of the Lagrangian
stretch tensor FT Q, that is the tensor UT given in (20)1.

To identify ΓKL in (38)2 let us note that by extending the components into
the coordinate-free form we can perform the following transformations:

Γ =
1

2
εKMNQkM

. . ;LQ. N
k GK ⊗ GL

= −1

2
εNMKGK

(
Q. N

k QkM
. . ;L

)
⊗GL

= −1

2
GN ×

(
δN
P Q. P

k δk
j Q

jM
. . ;L

)
GM ⊗GL

= −1

2
GN ×

[
GN ·

(
GP ⊗ Q. P

k gk
)
·
(
gj ⊗ QjM

. . ;LGM ⊗GL
)]

= −1

2
GN ×

(
GNQT GradQ

)

= −1

2
ε :
(
QT GradQ

)
.

(39)

In particular, we are always able to introduce in Bκ such a system of coordi-
nates XK in which the natural base vectors GK would coincide locally with
the reference orthonormal directors ha of the orthogonal arc-length coordi-
nates sa. Then (39) becomes identical with the tensor Γ in (13). Therefore,

16



 

 

 

ACCEPTED MANUSCRIPT 

 
ΓKL of Kafadar and Eringen (1971) are components of our Γ in the tensor
basis GK ⊗ GL indeed.

Stojanović (1972) used three non-complanar and non-orthonormal directors
d(α), α = 1, 2, 3, rigidly rotated by the tensor Q from the fields D(α) in the
reference placement Bκ. Introducing two independent curvilinear coordinate
systems as in Kafadar and Eringen (1971) it was assumed that D(α) are par-
allel vectors satisfying D(α),L = DK

(α);LGK = 0. Thus the initial microstruc-
ture curvature tensor B was ignored by definition. The directors d(α)[y(x)] =
QD(α)(x) together with the position vectors in the deformed placement y(x)
were considered as the basic independent field variables. Requiring objec-
tivity of the strain energy density Wκ = Wκ

(
F, d(α), Gradd(α); x

)
of the

polar-elastic material and its consistency with thermodynamics it was found
(see his Eqn. (4.23)) that in quasi-static problems Wκ should be of the form
Wκ = Wκ (CKL, FKL; x), where

CKL = CLK = gmnx
m
. ;Kxn

. ;L , FKL = gmnx
m
. ;KΦn

.L ,

Φn
. L =

1

2
εnijQiNQN

. j;L .
(40)

Here CKL are components in GK ⊗ GL of the Green type symmetric strain
tensor C = FTF used in the classical continuum mechanics, which in our case
can also be interpreted through our stretch tensor U defined in (20)1 as C =
UTU.

The components QiNQN
.j;L in (40) correspond to QGradQT and those Φn

. L to
1

2
ε :
(
QGradQT

)
in the coordinate-free notation, so that FKL are components

in GK ⊗ GL of the tensor FT 1

2
ε :
(
QGradQT

)
. Let us perform the following

transformations:

QGradQT = QQT ,L ⊗GL = −Q,L QT ⊗ GL

= −Q
(
QTQ,L

)
QT ⊗GL = −Q (I × γL)

= I × (−QΓ)QT ⊗ GL ,

so that QΓ =
1

2
ε :
(
QGradQT

)
. Therefore, the bending measure of Stojanović

(1972) coincides with our FT QΓ.

Besdo (1974) used the curvilinear convected coordinates ξi, i = 1, 2, 3, and
three base vectors: gi in the actual (deformed) placement, g̃i in the reference
(undeformed) placement identified with the reference directors in Bκ, and ĝi

identified with the directors in Bγ which are rotated from g̃i by the finite
rotation vector φ = φ e, where φ is the angle of rotation about the axis
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described by the unit vector e. Then the mixed components of three strain
measures of the micropolar continuum were defined as (see Besdo (1974),
formulae (5.6) and (5.7))

εi
.j = g̃i · ĝj − δi

j , γi
.j = δi

j − ĝi · g̃j ,

κi
.j =

1

2
εikm (gk,j ·gm − ĝk,j ·ĝm) ,

(41)

where (..),j is the partial derivative relative to ξj.

In the undeformed basis g̃i ⊗ g̃j the Lagrangian strain measures were defined
by Besdo (1974), formulae (5.9), as

ε̃ = εi
.jg̃i ⊗ g̃j = ĝj ⊗ g̃j − I , γ̃ = γi

.jg̃i ⊗ g̃j , κ̃ = κi
.jg̃i ⊗ g̃j . (42)

The stretch measure ε̃ can alternatively be written as ε̃ = Q − I which is
not compatible with our E defined in (17)1. The second Lagrangian stretch
measure γ̃ is not present at all in our approach. In the coordinate-free notation
we have γ̃ = I−QT = −ε̃T , which means that γ̃ is not an independent stretch
measure indeed.

The wryness measure κ̃ in (42) with (41)2 can be written in the coordinate-free
form in terms of our tensor fields as (we omit here those complex transforma-
tions)

κ̃ = F
[
1

2
ε :
(
F−1GradF

)
+ B

]
− Q (Γ + B) . (43)

Since the first term in (43) contains the deformation gradient F it is difficult
to establish the geometric meaning of κ̃.

Shkutin (1980, 1988), whose results we translate into a more understandable
notation of Pietraszkiewicz and Badur (1983), used convected curvilinear
coordinates θi and three base vectors: the undeformed gi associated with Bκ,
the deformed ḡi associated with Bγ , and the rotated di obtained from gi by
the rotation performed with the finite rotation vector θ = 2 tanφ/2 e. Shkutin
(1980), by his formulae (1.4), (1.6) and (3.9), introduced two strain measures
with components

εij = (ḡi − di) · dj , lij =
1

2

(
dk × dk,i

)
· dj . (44)

We can extend the components εij into the coordinate-free Lagrangian stretch
tensor using Q instead of θ:

ε = εijg
i ⊗ gj = [(Fgi − Qgi) · (Qgj)] g

i ⊗ gj

=
[
gi

(
FTQ − I

)
gj

]
gi ⊗ gj = FT Q − I ,

and ε here coincides with our ET in (17)1.
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Extending analogously the components lij into the coordinate-free form we
obtain

lT = lijg
j ⊗ gi =

1

2

{[(
Qgk

)
× (Qgk) ,i

]
· (Qgj)

}
gj ⊗ gi

=
1

2

{[
gk ×

(
QTQ,i gk + gk,i

)]
· gj

}
gj ⊗ gi

= −1

2
gk ×

(
gkQ

T GradQ
)

+
1

2
gk × Gradgk

= Γ + B = Π .

(45)

Thus, lij are just components in gi ⊗ gj of our ΠT defined in (20)1.

Badur and Pietraszkiewicz (1986), by their formulas (2.4), defined the strain
measures by

U = RTF, K =
1

2
ε :
(
RT GradR

)
, (46)

with R coinciding with our Q. Hence, the stretch tensor U is identical with
U in (20). The wryness tensor K coincides with −Γ defined in (13).

Reissner (1987) formulated the strain measures in the common Cartesian
frame assuming that ha ≡ ia, da = Qia , and using the convected initially
Cartesian coordinate system xa in which ia,c = 0 and the initial microstructure
tensor B ≡ 0. In our notation his definitions of Cartesian components of the
strain measures are (see his Eqn. (4) and (9))

eab = y,a ·db − δab , kab =
1

2
εbmndm,a ·dn . (47)

In the Cartesian tensor basis ia⊗ib the stretch tensor (47)1 takes the coordinate-
free form e = FT Q−I which can be identified with our ET introduced in (17)1.
To identify the meaning of kab we perform the following transformations:

kT = kabib ⊗ ia =
1

2
ibεbmn [(Qin) · (Qim) ,a ] ⊗ ia

=
1

2
ibεbmn

(
inQ

TQ,a im
)
⊗ ia = −1

2
ibεbnm (QpnQpm,a ) ⊗ ia

= −1

2
ε :
(
QT GradQ

)
.

(48)

Thus, the components kab of the Reissner wryness tensor can be identified
with the Cartesian components of our wryness tensor ΓT ≡ ΠT .

Zubov (1990) introduced the following Lagrangian strain measures:

U = (∇y)Q , −L × I =
(
∇QT

)
Q , (49)

where the gradient operator was defined as in (7). Taking into account that
∇y = (Grady)T ≡ FT , the stretch tensor U in (49)1 is just our UT in (20)1.
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To interpret the wryness tensor L in (49)2 let us represent it in the undeformed
base ha leading to

−L × I = ha ⊗ QT ,a Q = −ha ⊗ QTQ,a = −ha ⊗ γa × I = −ΓT × I .

Thus, the Lagrangian bending measure L of Zubov (1990) is just ΓT in our
approach. The strain measures (49) were then used by Zubov and Eremeev
(1996), Zubov (1997), and Yeremeyev and Zubov (1999).

To describe orientation of the material particles Dłużewski (1993) used three
Euler angles φα, α = 1, 2, 3, treated as angular coordinates of the vector
φ = (φα) in the object orientation space R being the constant curvature space.
Deformation of the polar continuum was described by two maps y = y(x) and
φ = (φα)(x), and the strain measures were defined as

C = QTF , Γ = QT Gradφ . (50)

The stretch tensor C here coincides with our U in (20)1. However, the wryness
tensor Γ in (50)2 is difficult to interpret in terms of our Γ in (13) or (17)2 due
to the use of the unconventional orientation space R by Dłużewski (1993).

Merlini (1997), formula (1), introduced the two-point deformation measures
of the micropolar continuum, called the linear and angular strain, respectively,
by

χ = F − Q , ω = Q ax
(
QT GradQ

)
, (51)

where the axial tensor A of QT GradQ was defined to satisfy QT GradQ =
I × A. According to the relation (13), A here coincides with our Γ and we
obtain

ω = −Q
1

2
ε :
(
QT GradQ

)
. (52)

Thus, the two-point tensors χ and ω here are just QE and QΓ in terms
of our natural strain measures, respectively. But in the strain-energy density
of polar-elastic body Merlini (1997) used the back-rotated strain measures
ε = QT χ and β = QT ω, called extension and distortion, which coincide with
our strain measures E and Γ, respectively.

Steinmann and Stein (1997) in their Section 3 introduced the non-symmetric
strain measures of the non-linear micropolar continuum to be U = QTF and
K = ax

(
QT GradQ

)
. The stretch tensor U coincides with our tensor U defined

in (20)1. The axial tensor of the 3rd-order tensor QT GradQ was defined by
Steinmann and Stein (1997) again as satisfying the relation QT GradQ =

I × K, and for the axial tensor they obtained K = −1

2
ha ×

(
haQ

T GradQ
)

which coincides with our Γ defined in (13).

Nikitin and Zubov (1998) modified the strain measures (49) by defining them
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as follows:

U = QT F , QT Q,a ⊗ha = I × L . (53)
Now U from (53)1 coincides with our U defined in (20)1, while from (13) and
(12) it follows that L in (53)2 coincides with our Γ. Nikitin and Zubov (1998)
expressed L through the finite rotation vector θ = 2 tanφ/2 e.

Grekova and Zhilin (2001) used the curvilinear convected coordinate system
qi, i = 1, 2, 3, with the base vectors ri, r

j in the reference placement Bκ. They
introduced by definition the following Lagrangian strain measures:

A = (∇y)Q , K =
(
rj ⊗ φi

)
Q , (54)

where

φi =
(
Q,i Q

T
)
· · ε/2 = −1

2
ε :
(
Q,i Q

T
)

=
1

2
ε :
(
QQ,Ti

)

are the axial vectors of the skew tensors Q,i Q
T , that is Q,i Q

T = I×φi, and
· · means two subsequent contractions of the multiplied tensors.

The stretch tensor A in (54)1 is just our UT defined in (20)1. To identify the
meaning of K in (54)2 let us remind that using (12) we obtain

I × φi = Q
(
QTQ,i

)
QT = Q (I × γi)QT = I × Qγi , φi = Qγi ,

KT = QT
(
Qγi ⊗ ri

)
= −1

2
ε :
(
QT GradQ

)

Hence, KT in (54) is equivalent to the wryness tensor Γ of Kafadar and Eringen
(1971) and our (13). This definition of K was earlier introduced by Zhilin
(1976) as the second deformation tensor of a directed surface.

Nistor (2002) used the initially Cartesian convected coordinates xi , so that
ha ≡ ia, and the components of the strain measures were defined in the com-
mon Cartesian frame as

cij = yk,i Qkj , γij =
1

2
εjmnQpnQpm,i . (55)

In the coordinate-free notation cij are the Cartesian components of the stretch
tensor c = FT Q which corresponds to our UT in (20)1. Performing transfor-
mations similar to (48) for the components γij in (55)2 we obtain

γT = γijij ⊗ ii = −1

2
ijεjnmQpnQpm,i ⊗ii = −1

2
ε :
(
QT GradQ

)
.

Therefore, from (13) it follows that γT corresponds to our Γ ≡ Π, which also
allows one to interpret γij as the components kab defined in (47) by Reissner
(1987).
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Ramezani and Naghdabadi (2007) referring to Kafadar and Eringen (1971)
introduced the coordinate-free form of two Lagrangian strain measures

U = FT Q , Γ =
1

2
ε :
(
QT GradQ

)
. (56)

The stretch tensor U coincides with our UT , while the wryness tensor differs
by sign from our Γ and the one of Kafadar and Eringen (1971).

From the review above summarised in Table 1 we can draw interesting con-
clusions. It is apparent that both strain measures introduced by Stojanović
(1972) and Besdo (1974) are incompatible with our Lagrangian strain mea-
sures E,Γ or U, Π. Also the wryness tensor defined by Dłużewski (1993)
seems to differ from our tensor Γ in the way which is difficult to interpret.
In all other papers summarised in Table 1 the strain measures are defined in
the mixed way: the stretch tensor does not vanish in the reference placement
while the wryness tensor does. The results by Shkutin (1980) are reversed: his
stretch tensor is of the relative type while his wryness tensor does not vanish
in the reference placement.

The stretch tensors proposed by Kafadar and Eringen (1971), Reissner (1987),
Zubov (1990), Nistor (2002), and Ramezani and Naghdabadi (2007) are
defined as transpose of our Lagrangian stretch tensor U, while the stretch
tensor of Shkutin (1980) coincides with transpose of our E. Similarly, the
wryness tensors by Reissner (1987) and Nistor (2002) coincide with transpose
of our Γ, the one by Shkutin (1980) is transpose of our Π, while Badur and
Pietraszkiewicz (1986), and Ramezani and Naghdabadi (2007) defined their
wryness tensor with opposite sign to our Γ. The wryness tensors defined by
Kafadar and Eringen (1971), Steinmann and Stein (1997), and Nikitin and
Zubov (1998) agree with our natural wryness tensor Γ defined in (13) and
(17)4. Only Merlini (1997) in the later part of his paper used the Lagrangian
strain tensors coinciding with our natural strain measures E, Γ. Nobody as
yet used both Lagrangian strain tensors coinciding with our strain measures
U, Π.

7 Conclusions

We have discussed three different ways of defining the strain measures in the
non-linear micropolar continuum.

The geometric approach has combined definitions of the relative changes of
lengths and orientations of the body with appropriate quadratic forms in the
Euclidean vector space. This has led to several two-point deformation mea-
sures as well as to the family of Lagrangian, global and relative strain measures
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Table 1
Definitions of the stretch and wryness tensors

Paper The stretch tensor The wryness tensor

Kafadar and Eringen (1971) FTQ −1
2ε : (QT GradQ)

Stojanović (1972) FTF FT 1
2ε : (QGradQT )

Besdo (1974) Q − I F
[

1
2ε :

(
F−1GradF

)
+ B

]
−Q (Γ + B)

Shkutin (1980) FTQ − I −1
2

[
ε : (QT GradQ)

]T
+BT

Badur and Pietraszkiewicz (1986) QTF 1
2ε : (QT GradQ)

Reissner (1987) FTQ −1
2

[
ε : (QT GradQ)

]T
Zubov (1990) FTQ −1

2

[
ε : (QT GradQ)

]T
Dłużewski (1993) QTF QT Grad φ

Merlini (1997) F − Q, −Q1
2ε : (QT GradQ),

QTF − I −1
2ε : (QT GradQ)

Steinmann and Stein (1997) QTF −1
2ε : (QT GradQ)

Nikitin and Zubov (1998) QTF −1
2ε : (QT GradQ)

Grekova and Zhilin (2001) FTQ 1
2ε : (QT GradQ)

Nistor (2002) FTQ −1
2

[
ε : (QT GradQ)

]T
Ramezani and Naghdabadi (2007) FTQ 1

2ε : (QT GradQ)

The present paper QTF − I −1
2ε : (QT GradQ)

and their Eulerian counterparts. All the measures are related to each other by
orthogonal transformations. Due to several distinctive features of the relative
Lagrangian and Eulerian strain measures combined with additional mechani-
cal arguments presented in two other approaches, we have called such relative
strain measures the natural ones.

In the alternative approach developed here global equilibrium conditions of
forces and couples acting on an arbitrary part of the micropolar body have
been regarded as primary relations. After formal transformations it has been
proved that the back-rotated nominal stress and couple stress tensors are re-
quired to perform virtual work on corresponding variations of the Lagrangian
strain measures derived by the geometric approach. Thus, we have indepen-
dently confirmed that the structure of equilibrium conditions of the micropolar
continuum requires the Lagrangian strain measures coinciding with the ones
derived here.
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Finally, we have confirmed once more that the invariance of the strain energy
density of the polar-elastic body under superposed rigid-body deformations
requires the density to be expressed through our Lagrangian strain measures
as well.

Review of the representative literature in this field has shown that the La-
grangian strain measures were defined in some papers in the form incompati-
ble with our Lagrangian strain measures. In most other papers the measures
were defined either as transpose of our natural strain measures, or with oppo-
site signs, or they did not vanish in the absence of deformation. One should
be aware of those differences when analysing problems of physical importance
using the micropolar continuum model.

We believe that in the present paper we have presented enough arguments to
conclude that the relative stretch tensor E and the relative wryness tensor
Γ introduced here by three different approaches are the most appropriate
Lagrangian strain measures to be used in the non-linear micropolar continuum.
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Appendix. Local form of the equilibrium conditions

Let any part P of the micropolar body, identified with its sufficiently regular
reference placement Pκ = κ(P) ⊂ Bκ, be in an equilibrium state. Then in the
referential description the global balances of forces and couples of Pκ take the
form, see for example Eringen and Kafadar (1976), Eringen (1999), Lurie
(2005), ∫∫

∂Pκ

t(n) da +
∫∫∫
Pκ

f dv = 0 ,

∫∫
∂Pκ

(
y × t(n) + m(n)

)
da +

∫∫∫
Pκ

(y × f + m) dv = 0 .
(57)

Here f and m are the volume force and couple vectors applied at any point
y = χ(x) of the deformed body, but measured per unit volume of Pκ, while
t(n) and m(n) are the surface traction and couple vectors applied at any point
of ∂Pγ , but measured per unit area of ∂Pκ, respectively.

If n is the unit vector externally normal to ∂Pκ, then using the Cauchy theorem
the vectors t(n) and m(n) are expressible as linear functions of the respective
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stress T and couple-stress M tensors, called also the nominal type stress and
couple-stress tensors in the literature, according to

t(n) = nT , m(n) = nM . (58)

This version of the Cauchy theorem follows a long tradition of defining the
stress tensor in classical elasticity, see for example Love (1927), and Sneddon
and Berry (1958). According to this tradition the first index of the stress
tensor indicates direction of the normal to the cross section, on which acts the
internal stress force vector, while the second index indicates direction of the
component of the stress force.

The 2nd-order tensors T and M in (58) are mixed tensors whose left-hand
sides are associated with the reference placement and right-hand sides with
the deformed one. The transposed tensors TT = TR and MT = MR may
be regarded as the 1st Piola-Kirchhoff type stress and couple-stress tensors,
respectively. The form (58) of the Cauchy theorem was used, for example, by
Eringen and Kafadar (1976), Atkin and Fox (1980), Billington (1986), Dai
(2003), and Ramezani and Naghdabadi (2007).

The divergence of the 2nd-order tensor field A(x) on Bκ convenient to use with
(58) is usually defined as the vector field DivA(x) satisfying

[DivA(x)]a = Div [A(x)a] ∀a ∈ E , (59)

which in components relative to ha takes the form

DivA = ha ·A,a = Aab,a hb . (60)

In particular, the divergence of product of the 2nd-order tensor A(x) and
vector v(x) fields on Bκ is given by

Div (Av) = ha · (A,a v + Av,a ) = (Div A)v + AT : (Gradv) , (61)

where the double dot product : of two 2nd-order tensors A,B is defined by
A : B = tr (ATB) = AabBab.

According to Billington (1986), Section 1.10, the divergence theorems corre-
sponding to the conventions (3), (58), (59) and (60) are

∫∫
∂Pκ

nT dv =
∫∫∫
Pκ

DivT dv ,
∫∫
∂Pκ

nM da =
∫∫∫
Pκ

DivM dv ,

∫∫
∂Pκ

(y × nT)da =
∫∫∫
Pκ

[
y × DivT − ax

(
FT − TTFT

)]
dv ,

(62)

where ax (A) is the axial vector of the skew 2nd-order tensor A. In this paper
we shall use the conventions (58)–(62) together with (3).
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However, many authors used alternative forms of the Cauchy theorem t(n) =
TRn , m(n) = MRn and/or the alternative definition of divergence of the 2nd-
order tensor field A(x) satisfying

[DivA(x)] a = Div
[
AT (x)a

]
∀a ∈ E ,

DivA = A,b ·hb = Aab,b ha ,
(63)

see for example Stojanović (1972), Wang and Truesdell (1973), Gurtin
(1981), Marsden and Hughes (1983), Scarpetta (1989), or Dłużewski (1993).
When these alternative conventions were applied, the corresponding diver-
gence theorem would lead to, for example,

∫∫∫
Pκ

DivTR dv =
∫∫
∂Pκ

TRn da ,
∫∫∫
Pκ

DivMR dv =
∫∫
∂Pκ

MRn da . (64)

In this paper we shall not use these alternative conventions (63) and (64).

Let t∗(x) and m∗(x) be the external force and couple vector fields prescribed
on the part ∂Bγf , but measured per unit area of ∂Bκf , respectively. Then
using (58)–(62), from (57) after some transformations we obtain the local
equilibrium equations and corresponding dynamic boundary conditions

DivT + f = 0, DivM− ax
(
FT − TTFT

)
+ m = 0 in Pκ ⊂ Bκ ,

nT − t∗ = 0 , nM − m∗ = 0 along ∂Pκf ⊂ ∂Bκf ,
(65)

The corresponding kinematic boundary conditions are given by the relations

y = y∗ , Q = Q∗ along ∂Pκd ⊂ ∂Bκd = ∂Bκ \ ∂Bκf , (66)

where y∗, Q∗ are given functions of x.

One can derive seven other formally different coordinate-free local forms of
equilibrium conditions. Some of them following from other combinations of
definitions of the gradient, divergence and/or Cauchy theorem are given by
Maugin (1974), Scarpetta (1989), Lurie (1990), Zubov (1990, 1997), Stein-
mann and Stein (1997), Maugin (1998), Yeremeyev and Zubov (1999), and
Dai (2003).
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