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Abstract

The natural Lagrangian stretch and wryness tensors of the non-linear Cosserat con-
tinuum are expressed in terms of the general finite rotation vector. These expressions
are then specialized for seven particular definitions of the rotation vectors known
in the literature. It is expected that some of the vectorially parameterized strain
measures derived here may be more convenient than others in specific applications.
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1 Introduction

In the recent paper by Pietraszkiewicz and Eremeyev (2009) we applied three
different ways of defining the strain measures of the non-linear Cosserat con-
tinuum. We found in particular that the most natural definitions for the La-
grangian relative stretch E and wryness (or change of the microstructure cur-
vature) Γ tensors are

E = QT (I + Grad u) − I, Γ = −
1

2
ǫ :

(

QT GradQ
)

. (1)

Here u ∈ E is the translation vector, Q ∈ SO(3) the proper orthogonal micro-
rotation tensor, I the identity (metric) tensor in the undeformed configuration,
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ǫ = −I×I the 3rd-order skew Ricci tensor, × the vector product, and the dou-
ble dot product : of two 3rd-order tensors A,B represented in the orthonormal
base ha, a = 1, 2, 3, is defined as A : B = AamnBmnbha ⊗ hb.

The orthonormal vectors ha were interpreted by Pietraszkiewicz and Eremeyev
(2009) as the natural base vectors of three-orthogonal system of curvilinear
arc-length coordinates sa such that ha = ∂x/∂sa ≡ x,a, where x ∈ E is the
position vector of a material particle in the reference configuration of the body.
Then gradients of the vector v(x) ∈ E and 2nd-order tensor T(x) ∈ E ⊗ E
fields were defined by Gradv = v,a ⊗ha and GradT = T,a ⊗ha, respectively.

While three components of u in (1) are all independent, nine components
of Q in (1) are subjected to six constraints following from the orthogonality
conditions Q−1 = QT , detQ = +1, so that only three rotational parameters
of Q are independent.

In the literature, many techniques how to parameterize the rotation group
SO(3) were developed, see for example Rooney (1977), Guo (1981),
Pietraszkiewicz and Badur (1983), Altman (1986), Atluri and Cazzani (1995),
Borri et al. (2000), Geradin and Cardona (2001), and Chróścielewski et al.
(2004). These parameterizations can roughly be classified as vectorial and non-
vectorial ones. Various finite rotation vectors as well as the Cayley-Gibbs and
exponential map parameters are examples of the vectorial parameterization,
for they all have three independent scalar parameters as Cartesian components
of a generalized vector in the 3D vector space E. The non-vectorial parameter-
izations are expressed either in terms of three scalar parameters that cannot
be treated as vector components, such as Euler-type angles for example, or
through more scalar parameters subjected to additional constraints, such as
unit quaternions, Cayley-Klein parameters, or direction cosines. Each of these
parameterizations has some advantages and drawbacks widely discussed in the
literature.

The aim of this note is to express the strain measures (1) in terms of seven
different vectorial parameters proposed in the literature. Each of these expres-
sions may appear to be more convenient than others when solving specific
problems of the non-linear Cosserat continuum.

2 The vectorial parameterization

The microrotation tensor Q represents the isometric and orientation-preserving
transformation of the 3D vector space E into itself. By the Euler theorem such
a transformation can be expressed in terms of the angle of rotation φ about
the axis of rotation described by the eigenvector e corresponding to the real
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eigenvalue +1 of Q such that

Qe = + e, cos φ =
1

2
(trQ − 1) , sin φ e =

1

2
ax

(

Q −QT
)

, (2)

where trA is the trace of the 2nd-order tensor A, and axW is the axial vector
w of the skew 2nd-order tensor W such that W = w × I = I × w .

In terms of e and φ the microrotation tensor Q can be expressed by Gibbs
(1901) formula, see for example Beatty (1977), Guo (1981), and Pietraszkiewicz
and Badur (1983),

Q = cos φ I + (1 − cos φ) e⊗ e + sin φ e× I. (3)

In the vectorial parameterization of Q one introduces a scalar function p(φ)
generating three components of the finite rotation vector p defined as, see for
example Bauchau and Trainelli (2003),

p = p(φ) e . (4)

The generating function p(φ) in (4) has to be an odd function of φ with the

limit behaviour lim
φ→0

p(φ)
φ

= κ, where κ is a positive real normalization factor

(usually 1 or 1
2
), and p(0) = 0. In terms of (4) the tensor Q and its transpose

can be represented as

Q = cos φ I +
1 − cos φ

p2
p⊗ p +

sin φ

p
p× I ,

QT = cos φ I +
1 − cos φ

p2
p⊗ p−

sin φ

p
p× I .

(5)

The finite rotation vector (4) is the generalized vector. The composition of two
successive rotations Q3 = Q2Q1, when expressed in terms of the corresponding
vectors p1, p2, p3 with angles of rotation φ1, φ2, φ3, reads

cos
φ3

2
= cos

φ1

2
cos

φ2

2
−

sin φ1

2
sin φ2

2

p1p2

p1 · p2 ,

sin φ3

2

p3

p3 =
sin φ1

2
sin φ2

2

p1p2

(

p2

cos φ2

2

p1 +
p1

cos φ1

2

p2 − p1 × p2

)

.

(6)

The equation (6)1 is used to compute φ3, which also gives sin φ3

2
and p3 = p(φ3).

Then (6)2 allows one to establish the vector p3.

Since QTQ,a = −(QT Q,a )T is skew it can be expressed through the axial
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vector γa,

QTQ,a = γa×I, γa = −
1

2
ǫ :

(

QTQ,a
)

= φ,a e+
[

sin φ I−(1−cos φ) e×I
]

e,a .

(7)
The vector γa describes the change of the reference microstructure curvature of
the Cosserat continuum along the arc-length coordinate line sa. It is analogous
to the vector kj of change of curvature of the curvilinear coordinate line θj in
classical continuum mechanics defined as RTR,j = kj × I by Pietraszkiewicz
and Badur (1983), where R was the rotation tensor following from the polar
decomposition F = RU = VR. But in the Cosserat continuum Q is the
independent field not related to u and therefore Q 6= R, in general.

Differentiating the vector p in (4) along the coordinate line sa we obtain the
transformation relations

φ,a =
1

p′
p,a , e,a = −

1

p2
p,a p +

1

p
p,a , p′ =

dp

dφ
, (8)

which introduced into (7) lead to

γa =
1

p

(

1

p′
−

sin φ

p

)

p,a p +
sin φ

p
p,a −

1 − cos φ

p2
p × p,a . (9)

Taking into account that p · p,a = pp,a, we have the identities

p =
1

pp,a
(p⊗ p)p,a , p,a = Ip,a , p× p,a = (p× I)p,a , (10)

and the relation (9) can be given in the equivalent form

γa = Ap,a , A =
sin φ

p
I +

1

p2

(

1

p′
−

sin φ

p

)

p ⊗ p −
1 − cos φ

p2
p × I . (11)

Substituting (5)2 and (11) into (1), the natural Lagrangian stretch E and
wryness Γ tensors can now be represented in terms of the finite rotation vector
p by the general relations

E =

(

cos φ I +
1 − cos φ

p2
p ⊗ p −

sin φ

p
p× I

)

(I + Gradu) − I , (12)

Γ =

[

sin φ

p
I +

1

p2

(

1

p′
−

sin φ

p

)

p ⊗ p −
1 − cos φ

p2
p × I

]

Gradp . (13)
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3 Particular finite rotation vectors

Among definitions of p used most often in the literature let us mention the
finite rotation vectors defined as

θ = 2 tan
φ

2
e , φ = φ e , ̟ = sin φ e , ρ = tan

φ

2
e , (14)

where the generating functions are θ = 2 tan φ

2
, φ, ̟ = sin φ, andρ = tan φ

2
, re-

spectively. Within the non-linear Cosserat continuum the Cayley-Gibbs vector
θ was used for example by Shkutin (1980), Badur and Pietraszkiewicz (1986),
Zubov (1997), and Nikitin and Zubov (1998), while the linear vector φ (called
also the exponential map) by Kafadar and Eringen (1971), Nistor (2002), and
Ramezani and Naghdabadi (2007). The vector θ was used in the non-linear
theory of plates, see for example Hodges et al. (1993), and in the non-linear
theory of composite beams by Hodges (2006), where the extensive review of
the literature was given. In the non-linear theory of Cosserat-type shells and
the classical continuum mechanics the vector ̟ was found to be convenient in
papers by Pietraszkiewicz (1979), and Pietraszkiewicz and Badur (1983), while
the Rodrigues rotation vector ρ was willingly used in analytical mechanics of
rigid-body motion, see for example Pars (1965).

Less popular in the literature till now is the Euler-Rodrigues vector σ, the
Wiener-Milenkovic vector µ, and the Bauchau-Trainelli vector β defined by

σ = 2 sin
φ

2
e , µ = 4 tan

φ

4
e , β = 4 sin

φ

4
e , (15)

whose generating functions are σ = 2 sin φ

2
, µ = 4 tan φ

4
, and β = 4 sin φ

4
, re-

spectively.

Introducing (14) and (15) into (12) and (13) and using appropriate trigono-
metric identities, after complex but elementary transformations we obtain the
formulae for E and Γ expressed in terms of the corresponding finite rotation
vectors. These formulae are given in Tables 1 and 2.

With all the vectorial parameterizations the singularities occur for some values
of φ following from singularities of the generating functions p(φ), when p → ∞,
from singularities of the inverse relations p = p(Q), as well as from singulari-
ties of A and A−1, see Bauchau and Trainelli (2003). Hence, we also indicate
in Tables 1 and 2 the ranges of validity of φ for the analysis to be singular-
free while using these strain measures in problems of the Cosserat continuum.
When in applications there appear arbitrary values of the rotation angle φ,
one needs at least five independent scalar parameters to parameterize the ro-
tation group SO(3) in the globally one-to-one and singular-free manner, see
for example Hopf (1940), Stuelpnagel (1964), and Perelyaev (2006). For the
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finite rotation vectors µ and β, Bauchau and Trainelli (2003) described pro-
cedures how to handle arbitrary rotations by combining appropriate update
and rescaling operations.

With the vectors θ, ρ, µ, or β the formulae for E, Γ in Tables 1 and 2
do not contain any trigonometric expressions of φ. This might suggest some
convenience in further purely algebraic transformations. With the vectors φ,
µ, or β the formulae for E, Γ have broader range of singular-free behaviour.
When |φ| < π the values of µ(φ) and β(φ) are not much different from φ, that
is µ(φ) ≈ φ ≈ β(φ). In the limit the sin-type generating functions ̟, σ, β
converge to φ from below, while the tan-type ones θ, ρ, µ, from above.

Table 1
The natural Lagrangian stretch tensor for different finite rotations vectors

p φ ∈ E

θ ≡ 2 tan φ
2 e (−π, π)

1

1 + θ2

4

[(

1 −
θ2

4

)

I +
1

2
θ ⊗ θ − θ × I

]

(I + Gradu) − I

φ ≡ φ e (−2π, 2π)

(

cos φ I +
1 − cos φ

φ2
φ ⊗ φ −

sin φ

φ
φ × I

)

(I + Gradu) − I

̟ ≡ sinφ e (−π, π)

(

cos φ I +
1 − cos φ

̟2
̟ ⊗ ̟ − ̟ × I

)

(I + Gradu) − I

ρ ≡ tan φ
2 e (−π, π)

1

1 + ρ2

[

(1 − ρ2)I + 2ρ ⊗ ρ − 2ρ × I
]

(I + Gradu) − I

σ ≡ 2 sin φ
2 e (−π, π)

[(

1 −
1

2
σ2

)

I +
1

2
σ ⊗ σ − cos

φ

2
σ × I

]

(I + Gradu) − I

µ ≡ 4 tan φ
4 e (−2π, 2π)

1
(

1 + µ2

16

)2

{[

1 −
µ2

16

(

3

8
−

µ2

16

)]

I +
1

2
µ ⊗ µ −

(

1 −
µ2

16

)

µ ⊗ I

}

(I

+Gradu) − I

β ≡ 4 sin φ
4 e (−2π, 2π)

{[

1 −
β2

2

(

1 −
β2

16

)]

I +
1

2

(

1 −
β2

8

)

β ⊗ β

−

√

1 −
β2

16

(

1 −
β2

8

)

β × I

}

(I + Gradu) − I

When the values of u and φ as well as their spatial gradients are infinitesimal

‖u‖ ≪ 1 , ‖Gradu‖ ≪ 1 , |φ| ≪ 1 , ‖Grad φ‖ ≪ 1,

we also have sin φ ≈ φ, cos φ ≈ 1, and p(φ) ≈ κφ. Then from (3), (15) and (14) it
follows that

p ≈ κϑ , Q ≈ I + ϑ × I ,

where ϑ = φ e is now the infinitesimal rotation vector. Then from (12) and (13) we
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Table 2
The natural Lagrangian wryness tensor for different finite rotations vectors

p φ ∈ Γ

θ ≡ 2 tan φ
2 e (−π, π)

1

1 + θ2

4

(

I −
1

2
θ × I

)

Grad θ

φ ≡ φ e (−2π, 2π)

(

sin φ

φ
I +

φ − sin φ

φ3
φ ⊗ φ −

1 − cos φ

φ2
φ × I

)

Grad φ

̟ ≡ sinφ e (−π, π)

[

I +
1

̟2

(

1

cos φ
− 1

)

̟ ⊗ ̟ −
1 − cos φ

̟2
̟ × I

]

Grad ̟

ρ ≡ tan φ
2 e (−π, π)

2

1 + ρ2
(I − ρ×I)Grad ρ

σ ≡ 2 sin φ
2 e (−π, π)

(

cos
φ

2
I −

1

4 cos φ
2

σ ⊗ σ −
1

2
σ × I

)

Grad σ

µ ≡ 4 tan φ
4 e (−2π, 2π)

1
(

1 + µ2

16

)2

[(

1 −
µ2

16

)

I +
1

8
µ ⊗ µ −

1

2
µ × I

]

Grad µ

β ≡ 4 sin φ
4 e (−2π, 2π)





√

1 −
β2

16

(

1 −
β2

8

)

I +
1 −

(

1 − β2

8

)(

1 − β2

16

)

β2

√

1 − β2

16

β ⊗ β

−
1

2

(

1 −
β2

16

)

β × I

]

Grad β

obtain

E ≈ ε ≡ Grad u− ϑ × I , Γ ≈ γ ≡ Grad ϑ . (16)

The infinitesimal strain measures ε, γ or their transpose were used in many papers
and books in the field of linear Cosserat continuum. Let us mention here the books
by Kröner (1968), Eringen (1999), Nowacki (1986), and Dyszlewicz (2004), where
many references to other papers can be found.

4 Conclusions

Within the non-linear Cosserat continuum, introduction of the finite rotation vector
gives the possibility to formulate the boundary-value problem in terms of displace-
ment and finite rotation vectors as the primary unknown variables. In this note
the natural Lagrangian stretch and wryness tensors derived by Pietraszkiewicz and
Eremeyev (2009) have been expressed in terms of the general finite rotation vector.
These expressions have then been specialized for seven different definitions of the
rotation vectors known in the literature. Each of the particular forms of the strain
measures has some advantages and drawbacks, and each of them may be more con-
venient than others in specific applications.
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In the recent paper by Pietraszkiewicz and Eremeyev (2009) we applied three
different ways of defining the strain measures of the non-linear Cosserat con-
tinuum. We found in particular that the most natural definitions for the La-
grangian relative stretch E and wryness (or change of the microstructure cur-
vature) Γ tensors are

E = QT (I + Grad u)− I, Γ = −1

2
ε :

(
QTGrad Q

)
. (1)

Here u ∈ E is the translation vector, Q ∈ SO(3) the proper orthogonal micro-
rotation tensor, I the identity (metric) tensor in the undeformed configuration,
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ε = −I×I the 3rd-order skew Ricci tensor, × the vector product, and the dou-
ble dot product : of two 3rd-order tensors A,B represented in the orthonormal
base ha, a = 1, 2, 3, is defined as A : B = AamnBmnbha ⊗ hb.

The orthonormal vectors ha were interpreted by Pietraszkiewicz and Eremeyev
(2009) as the natural base vectors of three-orthogonal system of curvilinear
arc-length coordinates sa such that ha = ∂x/∂sa ≡ x,a, where x ∈ E is the
position vector of a material particle in the reference configuration of the body.
Then gradients of the vector v(x) ∈ E and 2nd-order tensor T(x) ∈ E ⊗ E
fields were defined by Grad v = v,a⊗ha and Grad T = T,a⊗ha, respectively.

While three components of u in (1) are all independent, nine components
of Q in (1) are subjected to six constraints following from the orthogonality
conditions Q−1 = QT , det Q = +1, so that only three rotational parameters
of Q are independent.

In the literature, many techniques how to parameterize the rotation group
SO(3) were developed, see for example Rooney (1977), Guo (1981),
Pietraszkiewicz and Badur (1983), Altman (1986), Atluri and Cazzani (1995),
Borri et al. (2000), Geradin and Cardona (2001), and Chróścielewski et al.
(2004). These parameterizations can roughly be classified as vectorial and non-
vectorial ones. Various finite rotation vectors as well as the Cayley-Gibbs and
exponential map parameters are examples of the vectorial parameterization,
for they all have three independent scalar parameters as Cartesian components
of a generalized vector in the 3D vector space E. The non-vectorial parameter-
izations are expressed either in terms of three scalar parameters that cannot
be treated as vector components, such as Euler-type angles for example, or
through more scalar parameters subjected to additional constraints, such as
unit quaternions, Cayley-Klein parameters, or direction cosines. Each of these
parameterizations has some advantages and drawbacks widely discussed in the
literature.

The aim of this note is to express the strain measures (1) in terms of seven
different vectorial parameters proposed in the literature. Each of these expres-
sions may appear to be more convenient than others when solving specific
problems of the non-linear Cosserat continuum.

2 The vectorial parameterization

The microrotation tensor Q represents the isometric and orientation-preserving
transformation of the 3D vector space E into itself. By the Euler theorem such
a transformation can be expressed in terms of the angle of rotation φ about
the axis of rotation described by the eigenvector e corresponding to the real
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eigenvalue +1 of Q such that

Qe = + e, cos φ =
1

2
(trQ− 1) , sinφ e =

1

2
ax

(
Q−QT

)
, (2)

where tr A is the trace of the 2nd-order tensor A, and ax W is the axial vector
w of the skew 2nd-order tensor W such that W = w × I = I×w .

In terms of e and φ the microrotation tensor Q can be expressed by Gibbs
(1901) formula, see for example Beatty (1977), Guo (1981), and Pietraszkiewicz
and Badur (1983),

Q = cosφ I + (1− cosφ) e⊗ e + sinφ e× I. (3)

In the vectorial parameterization of Q one introduces a scalar function p(φ)
generating three components of the finite rotation vector p defined as, see for
example Bauchau and Trainelli (2003),

p = p(φ) e . (4)

The generating function p(φ) in (4) has to be an odd function of φ with the
limit behaviour lim

φ→0

p(φ)
φ

= κ, where κ is a positive real normalization factor

(usually 1 or 1
2
), and p(0) = 0. In terms of (4) the tensor Q and its transpose

can be represented as

Q = cosφ I +
1− cosφ

p2
p⊗ p +

sinφ

p
p× I ,

QT = cosφ I +
1− cosφ

p2
p⊗ p− sinφ

p
p× I .

(5)

The finite rotation vector (4) is the generalized vector. The composition of two
successive rotations Q3 = Q2Q1, when expressed in terms of the corresponding
vectors p1, p2, p3 with angles of rotation φ1, φ2, φ3, reads

cos
φ3

2
= cos

φ1

2
cos

φ2

2
−

sin φ1

2
sin φ2

2

p1p2

p1 · p2 ,

sin φ3

2

p3

p3 =
sin φ1

2
sin φ2

2

p1p2

(
p2

cos φ2

2

p1 +
p1

cos φ1

2

p2 − p1 × p2

)
.

(6)

The equation (6)1 is used to compute φ3, which also gives sin φ3

2
and p3 = p(φ3).

Then (6)2 allows one to establish the vector p3.

Since QTQ,a = −(QTQ,a )T is skew it can be expressed through the axial
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vector γa,

QTQ,a = γa×I, γa = −1

2
ε :

(
QTQ,a

)
= φ,a e+

[
sinφ I−(1−cosφ) e×I

]
e,a .

(7)
The vector γa describes the change of the reference microstructure curvature of
the Cosserat continuum along the arc-length coordinate line sa. It is analogous
to the vector kj of change of curvature of the curvilinear coordinate line θj in
classical continuum mechanics defined as RTR,j = kj × I by Pietraszkiewicz
and Badur (1983), where R was the rotation tensor following from the polar
decomposition F = RU = VR. But in the Cosserat continuum Q is the
independent field not related to u and therefore Q 6= R, in general.

Differentiating the vector p in (4) along the coordinate line sa we obtain the
transformation relations

φ,a =
1

p′
p,a , e,a = − 1

p2
p,a p +

1

p
p,a , p′ =

dp

dφ
, (8)

which introduced into (7) lead to

γa =
1

p

(
1

p′
− sinφ

p

)
p,a p +

sinφ

p
p,a−

1− cosφ

p2
p× p,a . (9)

Taking into account that p · p,a = pp,a, we have the identities

p =
1

pp,a
(p⊗ p) p,a , p,a = Ip,a , p× p,a = (p× I) p,a , (10)

and the relation (9) can be given in the equivalent form

γa = Ap,a , A =
sinφ

p
I +

1

p2

(
1

p′
− sinφ

p

)
p⊗ p− 1− cosφ

p2
p× I . (11)

Substituting (5)2 and (11) into (1), the natural Lagrangian stretch E and
wryness Γ tensors can now be represented in terms of the finite rotation vector
p by the general relations

E =

(
cosφ I +

1− cosφ

p2
p⊗ p− sinφ

p
p× I

)
(I + Grad u)− I , (12)

Γ =

[
sinφ

p
I +

1

p2

(
1

p′
− sinφ

p

)
p⊗ p− 1− cosφ

p2
p× I

]
Grad p . (13)
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3 Particular finite rotation vectors

Among definitions of p used most often in the literature let us mention the
finite rotation vectors defined as

θ = 2 tan
φ

2
e , φ = φ e , $ = sinφ e , ρ = tan

φ

2
e , (14)

where the generating functions are θ = 2 tan φ
2
, φ, $ = sinφ, andρ = tan φ

2
, re-

spectively. Within the non-linear Cosserat continuum the Cayley-Gibbs vector
θ was used for example by Shkutin (1980), Badur and Pietraszkiewicz (1986),
Zubov (1997), and Nikitin and Zubov (1998), while the linear vector φ (called
also the exponential map) by Kafadar and Eringen (1971), Nistor (2002), and
Ramezani and Naghdabadi (2007). The vector θ was used in the non-linear
theory of plates, see for example Hodges et al. (1993), and in the non-linear
theory of composite beams by Hodges (2006), where the extensive review of
the literature was given. In the non-linear theory of Cosserat-type shells and
the classical continuum mechanics the vector$ was found to be convenient in
papers by Pietraszkiewicz (1979), and Pietraszkiewicz and Badur (1983), while
the Rodrigues rotation vector ρ was willingly used in analytical mechanics of
rigid-body motion, see for example Pars (1965).

Less popular in the literature till now is the Euler-Rodrigues vector σ, the
Wiener-Milenkovic vector µ, and the Bauchau-Trainelli vector β defined by

σ = 2 sin
φ

2
e , µ = 4 tan

φ

4
e , β = 4 sin

φ

4
e , (15)

whose generating functions are σ = 2 sin φ
2
, µ = 4 tan φ

4
, and β = 4 sin φ

4
, re-

spectively.

Introducing (14) and (15) into (12) and (13) and using appropriate trigono-
metric identities, after complex but elementary transformations we obtain the
formulae for E and Γ expressed in terms of the corresponding finite rotation
vectors. These formulae are given in Tables 1 and 2.

With all the vectorial parameterizations the singularities occur for some values
of φ following from singularities of the generating functions p(φ), when p→∞,
from singularities of the inverse relations p = p(Q), as well as from singulari-
ties of A and A−1, see Bauchau and Trainelli (2003). Hence, we also indicate
in Tables 1 and 2 the ranges of validity of φ for the analysis to be singular-
free while using these strain measures in problems of the Cosserat continuum.
When in applications there appear arbitrary values of the rotation angle φ,
one needs at least five independent scalar parameters to parameterize the ro-
tation group SO(3) in the globally one-to-one and singular-free manner, see
for example Hopf (1940), Stuelpnagel (1964), and Perelyaev (2006). For the
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finite rotation vectors µ and β, Bauchau and Trainelli (2003) described pro-
cedures how to handle arbitrary rotations by combining appropriate update
and rescaling operations.

With the vectors θ, ρ, µ, or β the formulae for E, Γ in Tables 1 and 2
do not contain any trigonometric expressions of φ. This might suggest some
convenience in further purely algebraic transformations. With the vectors φ,
µ, or β the formulae for E, Γ have broader range of singular-free behaviour.
When |φ| < π the values of µ(φ) and β(φ) are not much different from φ, that
is µ(φ) ≈ φ ≈ β(φ). In the limit the sin-type generating functions $, σ, β
converge to φ from below, while the tan-type ones θ, ρ, µ, from above.

Table 1
The natural Lagrangian stretch tensor for different finite rotations vectors

p φ ∈ E

θ ≡ 2 tan φ
2 e (−π, π)

1
1 + θ2

4

[(
1− θ2

4

)
I +

1
2
θ ⊗ θ − θ × I

]
(I + Grad u)− I

φ ≡ φ e (−2π, 2π)
(

cosφ I +
1− cosφ

φ2
φ⊗ φ− sinφ

φ
φ× I

)
(I + Grad u)− I

$ ≡ sinφ e (−π, π)
(

cosφ I +
1− cosφ
$2

$ ⊗$ −$ × I
)

(I + Grad u)− I

ρ ≡ tan φ
2 e (−π, π)

1
1 + ρ2

[
(1− ρ2)I + 2ρ⊗ ρ− 2ρ× I

]
(I + Grad u)− I

σ ≡ 2 sin φ
2 e (−π, π)

[(
1− 1

2
σ2

)
I +

1
2
σ ⊗ σ − cos

φ

2
σ × I

]
(I + Grad u)− I

µ ≡ 4 tan φ
4 e (−2π, 2π)

1(
1 + µ2

16

)2

{[
1− µ2

16

(
3
8
− µ2

16

)]
I +

1
2
µ⊗ µ−

(
1− µ2

16

)
µ⊗ I

}
(I

+Grad u)− I

β ≡ 4 sin φ
4 e (−2π, 2π)

{[
1− β2

2

(
1− β2

16

)]
I +

1
2

(
1− β2

8

)
β ⊗ β

−
√

1− β2

16

(
1− β2

8

)
β × I

}
(I + Grad u)− I

When the values of u and φ as well as their spatial gradients are infinitesimal

‖u‖ � 1 , ‖Grad u‖ � 1 , |φ| � 1 , ‖Gradφ‖ � 1,

we also have sinφ ≈ φ, cosφ ≈ 1, and p(φ) ≈ κφ. Then from (3), (15) and (14) it
follows that

p ≈ κϑ , Q ≈ I + ϑ× I ,

where ϑ = φ e is now the infinitesimal rotation vector. Then from (12) and (13) we
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Table 2
The natural Lagrangian wryness tensor for different finite rotations vectors

p φ ∈ Γ

θ ≡ 2 tan φ
2 e (−π, π)

1
1 + θ2

4

(
I− 1

2
θ × I

)
Gradθ

φ ≡ φ e (−2π, 2π)
(

sinφ
φ

I +
φ− sinφ

φ3
φ⊗ φ− 1− cosφ

φ2
φ× I

)
Gradφ

$ ≡ sinφ e (−π, π)
[
I +

1
$2

(
1

cosφ
− 1
)
$ ⊗$ − 1− cosφ

$2
$ × I

]
Grad$

ρ ≡ tan φ
2 e (−π, π)

2
1 + ρ2

(I− ρ×I) Gradρ

σ ≡ 2 sin φ
2 e (−π, π)

(
cos

φ

2
I− 1

4 cos φ2
σ ⊗ σ − 1

2
σ × I

)
Gradσ

µ ≡ 4 tan φ
4 e (−2π, 2π)

1(
1 + µ2

16

)2

[(
1− µ2

16

)
I +

1
8
µ⊗ µ− 1

2
µ× I

]
Gradµ

β ≡ 4 sin φ
4 e (−2π, 2π)

√1− β2

16

(
1− β2

8

)
I +

1−
(
1− β2

8

)(
1− β2

16

)
β2

√
1− β2

16

β ⊗ β

−1
2

(
1− β2

16

)
β × I

]
Gradβ

obtain
E ≈ ε ≡ Grad u− ϑ× I , Γ ≈ γ ≡ Gradϑ . (16)

The infinitesimal strain measures ε, γ or their transpose were used in many papers
and books in the field of linear Cosserat continuum. Let us mention here the books
by Kröner (1968), Eringen (1999), Nowacki (1986), and Dyszlewicz (2004), where
many references to other papers can be found.

4 Conclusions

Within the non-linear Cosserat continuum, introduction of the finite rotation vector
gives the possibility to formulate the boundary-value problem in terms of displace-
ment and finite rotation vectors as the primary unknown variables. In this note
the natural Lagrangian stretch and wryness tensors derived by Pietraszkiewicz and
Eremeyev (2009) have been expressed in terms of the general finite rotation vector.
These expressions have then been specialized for seven different definitions of the
rotation vectors known in the literature. Each of the particular forms of the strain
measures has some advantages and drawbacks, and each of them may be more con-
venient than others in specific applications.
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