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Abstract

We discuss the non-linear theory of thin shells expressed in terms of displacements
of the shell reference surface as the only independent field variables. The formula-
tion is based on the principle of virtual work postulated for the reference surface.
In our approach: 1) the vector equilibrium equations are represented through com-
ponents in the deformed contravariant surface base, and using the compatibility
conditions the resulting tangential equilibrium equations are additionally simpli-
fied, 2) at the shell boundary the new scalar function of displacement derivatives is
defined and new sets of four work-conjugate static and geometric boundary con-
ditions are derived, as well as 3) for prescribed shell geometry all non-linear shell
relations are generated automatically by two packages set up in Mathematica. The
displacement boundary value problem (BVP) and associated homogeneous shell
buckling problem are generated exactly without using any additional approxima-
tions following from errors of the constitutive equations. Both problems are ex-
tremely complex and available only in the computer memory. Such an approach
allows us to account also for those a few supposedly small terms which may be
critical for finding the correct buckling load of shells sensitive to imperfections.
This approach is used in the accompanying paper by Opoka and Pietraszkiewicz
(2009, submitted to Int. J. Solids Str.) to perform the refined numerical analysis
of bifurcation buckling for the axially compressed circular cylinder.
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1. Introduction

The entirely Lagrangian non-linear theory of thin elastic shells, expressed in
terms of displacements u as the only independent field variables, was proposed
by Pietraszkiewicz and Szwabowicz (1981) and developed by Pietraszkiewicz
(1984), where references to earlier attempts in the field were given. The formula-
tion was based on the principle of virtual work postulated for the shell reference
surface. The resulting vector equilibrium equations as well as work-conjugate ge-
ometric and static boundary conditions were represented in components relative
to the covariant base vectors aα, n of the undeformed reference surface. Un-
fortunately, the resulting three scalar equilibrium equations and two sets of four
work-conjugate scalar static and geometric boundary conditions of such a shell
theory became very complex and hardly manageable.

Based on the displacement formulation of Pietraszkiewicz (1984) the exten-
sive numerical tests of axisymmetric deflections and stability of thin shells of revo-
lution undergoing large rotations were performed by Nolte (1983) and Nolte et al.
(1986) as well as of rubberlike shells undergoing large strains by Schieck et al.
(1992). In those papers the finite element method was applied with correspond-
ing C1 elements. The analysis revealed that the important part of complexities of
such scalar equilibrium equations was associated with representing the covariant
base vectors āα, n̄ of the deformed reference surface through those aα, n of the
undeformed reference surface and the displacement gradients u,α. Also the use
of scalar function nν of displacement derivatives at the shell boundary was found
to be inconvenient in those numerical applications because of square-root func-
tions of displacement derivatives appearing in denominators of static boundary
quantities. Those conclusions and our recent experience gained while writing two
reports by Opoka and Pietraszkiewicz (2004, 2009) allow us to propose in this pa-
per the following three modifications of the non-linear displacement formulation
of shell equations:

1. The vector equilibrium equations of Pietraszkiewicz (1984) are represented
through components in the contravariant base āα, n̄ of the deformed refer-
ence surface, and the tangential scalar equilibrium equations are additionally
exactly simplified using the compatibility conditions.

2. Along the boundary contour of the reference surface the new scalar function
α rational with regard to displacement derivatives is defined and new sets of
four work-conjugate static and geometric boundary conditions are derived.

3. For any definite geometry of the reference surface parametrized by orthogo-
nal coordinates and for any of its boundaries, the displacement scalar equi-
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librium equations and boundary conditions as well as the corresponding in-
cremental displacement buckling shell equations and boundary conditions
are generated automatically by the use of two packages ShellGeom.m and
ShellBVP.m set up in Mathematica.

The additional difference between our modified displacement shell BVP and
other ones known in the literature is that we do not simplify the shell relations
in the process of expressing the surface stress and strain measures in terms of
displacements. As a result, the displacement BVP and associated buckling shell
problem become extremely complex and not tractable by hand transformations.
But thanks to the symbolic language of Mathematica the complex shell equations
become manageable as relations generated directly in the computer memory. The
idea behind such a seemingly absurdal approach has been the necessity to account
for those a few supposedly small terms in the buckling shell equations which may
be critically important for finding the correct buckling load of shell structures
sensitive to imperfections. In such problems small terms in the buckling shell
equations play the role of some kind of imperfections.

The literature on the non-linear theory of shells provides many different sug-
gestions how to reasonably simplify the complex displacement BVP and the sta-
bility problem. For example, within the first-approximation geometrically non-
linear theory of thin, isotropic, elastic shells summarised by Pietraszkiewicz (1989)
the most popular approach is to use explicitly known errors of the constitutive
equations. When the surface stress measures are eliminated from the BVP and the
stability problem, many supposedly small terms of the order of errors in the consti-
tutive equations are omitted as well, see for example Koiter and Simmonds (1973)
or Opoka and Pietraszkiewicz (2004). One can additionally restrict the order of
allowable rotations expressed in powers of the error of the constitutive equations,
and within various restricted versions of shell theory omit many other supposedly
small terms, see for example Pietraszkiewicz (1984). Additionally simplified re-
lations within the moderate rotation variant of shell equations were reviewed by
Schmidt and Pietraszkiewicz (1981). One can also use the asymptotic methods
relative to fractional powers of the error in the constitutive equations. Predicting
the asymptotic behaviour of solution of a special shell problem one can omit many
supposedly small terms as well and get very simple non-linear shell equations
modelling this special problem, see for example Tovstik and Smirnov (2001).

In all such heuristic type of simplifications mentioned above it is implicitly
assumed that omission of supposedly small terms in the shell equations does not
have a significant influence on their solutions. However, this argument may not be

3



correct when the non-linear shell relations are used to formulate and analyse the
stability problem of thin shells sensitive to imperfections. In such a case omission
of some supposedly small terms from the equilibrium equations may sometimes
lead to a significantly different buckling load. For example Koiter (1960, Ap-
pendix) discovered that in analysis of the axially compressed circular cylinder
with relaxed boundary conditions in the circumferential direction the omission of
one supposedly small term in the linear equations of neutral equilibrium led to
the incorrect buckling load for short cylinders. Also Opoka and Pietraszkiewicz
(2009) explicitly show that omission in the non–linear BVP of all small terms
of the order of the error introduced by the constitutive equations leads to overesti-
mated buckling loads for long axially compressed cylinders. But we are not aware
of any general method how one might discover such a few supposedly small but
important terms and take them into account in a particular shell buckling problem,
omitting at the same time many other insignificant terms of comparable order.

The paper is organized as follows. In Section 2 we remind basic notation
and exact kinematic relations of the surface deformation. Modified equilibrium
equations are derived in Section 3 by postulating the principle of virtual work
(PVW) for the shell reference surface. Then in Section 4 we derive modified
work-conjugate set of boundary conditions expressed through the new boundary
function α describing the rotational deformation of the shell lateral boundary sur-
face. The use of packages ShellGeom.m and ShellBVP.m for formulation of the
modified BVP and the corresponding shell buckling problem in terms of displace-
ment variables is described in Section 5, where some remarks on stability analysis
are given.

2. Notation and kinematic relations

Let P be a region of the three-dimensional Euclidean point space E occupied
by the shell in its undeformed configuration. In P we introduce the normal sys-
tem of curvilinear coordinates (θ1, θ2, ζ) such that −h/2 � ζ � h/2 is the distance
from the middle surface M to points in P , and h is the undeformed shell thick-
ness assumed to be constant and small as compared with other shell dimensions
and with the smallest radius of curvature of M . The surface M is described by
the position vector r = r(θα) relative to a point O ∈ E .

With each point M ∈M we associate the natural covariant base vectors aα =
r,α, where comma denotes partial differentiation with respect to θα, the covariant
aαβ = aα · aβ and the contravariant aαβ = aα · aβ components of the surface metric
tensor a with a = det(aαβ) > 0, the contravariant components εαβ of the surface
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permutation tensor ε such that ε12 = − ε21 = 1/
√

a, ε11 = ε22 = 0, the unit
normal vector n = 1

2ε
αβaα × aβ orienting M , and the covariant components bαβ =

−a,α ·n,β = n·aα,β of the surface curvature tensor b. The contravariant components
aαβ of a satisfying the relations aαγaβγ = δαβ are used to raise indices of components
of the surface vectors and tensors. The natural connection on M is defined by the
surface Christoffel symbols Γμαβ = aμ · aα,β.

The boundary contour ∂M of M consists of a finite number of piecewise
smooth curves given by r(s) = r[θ(s)], where s is the arc-length along ∂M . With
each regular point M ∈ ∂M we associate the unit tangent vector
τ ≡ r,s = dr/ds = ταaα, and the outward unit normal vector
ν ≡ r,ν = dr/dsν = τ × n = ναaα, where sν is the arc-length of the surface curve
perpendicular to the boundary contour in the outward normal direction. The cur-
vature properties of ∂M are described by the normal curvature στ = bαβτατβ, the
geodesic torsion ττ = −bαβνατβ, and the geodesic curvature
ρτ = ν

α|α= τανα|β τβ = −νατα|β τβ, where ( )|α denotes the covariant surface deriva-
tive with respect to curvilinear coordinates θα. The symbols σν = bαβνανβ and
ρν = τ

α|α= νατα|β νβ = −τανα|β νβ are the normal curvature and the geodesic cur-
vature, respectively, of the surface curve orthogonal to ∂M in the outward nor-
mal direction. Physical components of surface tensors on ∂M are defined as,
for example, Nνν = Nαβνανβ, κντ = καβνατβ. For other geometric definitions and
relations we refer to Green and Zerna (1968), Chernykh (1964), Flügge (1972),
Pietraszkiewicz (1977) and Ciarlet (2005).

The deformed configuration M̄ of the surface M is described by the position
vector r̄(θα) = r(θα)+u(θα) relative to the same point O ∈ E , where θα are the same
surface curvilinear convected coordinates, and u = uαaα + u3n = uαaα + u3n is the
displacement field. In convected coordinates geometric quantities and relations
on the deformed surface M̄ are defined analogously as their counterparts in the
undeformed configuration; they will be marked here by an additional dash, for
example āα, āαβ, b̄αβ, n̄, ν̄, ( ) ||α, etc. All dashed fields on M̄ can be expressed
through analogous undashed fields defined on M and the displacement field u,
see for example Pietraszkiewicz (1984, 1989). In particular, we have

āα = lλαaλ + ϕαn , n̄ =
√

a
ā

(
mλaλ + mn

)
,

lλα = aλα + uλ|α −bλαu3 , ϕα = u3,α +bλαuλ ,

mλ = ϕαlα.λ − ϕλlα.α , m = 1
2

(
lα.αl
β
.β − lβ.αlα.β

)
.

(1)

Components of the symmetric surface strain and bending measures of the
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Green type are defined by the relations

γαβ =
1
2

(
āαβ − aαβ

)
, καβ = −

(
b̄αβ − bαβ

)
. (2)

Their expressions in terms of displacements following from (1) and (2) take the
form

γαβ =
1
2

(
āα · āβ − aαβ

)
=

1
2

(
lλ.αlλβ + ϕαϕβ − aαβ

)
,

καβ = bαβ − n̄ · āα|β = bαβ −
√

a
āχαβ ,

χαβ = m
(
ϕα|β + bλβl

λ
.α

)
+ mλ

(
lλ.α|β − bλβϕα

)
,

ā
a
= 1 + 2γαα + 2

(
γααγ

β
β − γβαγαβ

)
.

(3)

At the boundary contour ∂M the physical components of (1)2 are

lνν = 1 + uν,ν +ρνuτ − σνu3 , lντ = uν,s −ρτuτ + ττu3 , mν = ϕτlτν − ϕνlττ ,
lττ = 1 + uτ,s +ρτuν − στu3 , lτν = uτ,ν −ρνuν + ττu3 , mτ = ϕνlντ − ϕτlνν ,
ϕν = u3,ν +σνuν − ττuτ , ϕτ = u3,s −ττuν + στuτ , m = lννlττ − lντlτν .

(4)
The deformed surface base {āα, n̄} and the deformed boundary base {ν̄, τ̄, n̄} can
be represented in the undeformed boundary base {ν, τ, n} as follows:

āα = ν̄αν̄ + τ̄ατ̄ = lλαν
λν + lλατ

λτ + ϕαn ,

n̄ =

√
a
ā

(mνν + mττ + mn) =

√
a
ā

m̄ , m̄ = r̄,ν ×r̄,s ,

ν̄α =
1
aτ

√
a
ā
(
a2
τν
α − 2γτντ

α) , τ̄α = 1
aτ
τα , aτ =

√
1 + 2γττ ,

τ̄ = τ̄αāα =
1
aτ

(lντν + lτττ + ϕτn) ,

ν̄ = ν̄αāα =
1
aτ

√
a
ā

[ (lττm − ϕτmτ) ν + (ϕτmν − lντm) τ + (lντmτ − lττmν) n ] .

(5)

At the boundary contour ∂M the fields defined in (4) and (5) are again completely
described by the geometry of M and the displacement components.

6



The surface strain and bending measures cannot be arbitrary functions of the
surface coordinates. In order to represent deformation of the surface embedded
in the three-dimensional Euclidean space they have to satisfy three differential
conditions derived from the Codazzi-Mainardi-Gauss conditions for M and M̄ .
These exact compatibility conditions of the surface deformation are, see Koiter
(1966),

εαβελμ
[
κβλ|μ + āκρ (bκλ − κκλ) γρβμ

]
= 0 ,

εαβελμ
[
γαμ|βλ − bαμκβλ + 1

2

(
καμκβλ + āκργκαμγρβλ

)]
+ Kγκκ = 0 ,

(6)

where K is the Gaussian curvature of M , and γρβμ = γρβ|μ +γρμ|β −γβμ|ρ .

3. Modified equilibrium equations

Under some kinematic assumptions summarised by Pietraszkiewicz (1989) for
the geometrically non-linear theory of elastic shells and proposed by Schieck et al.
(1992) for the large-strain theory of rubber-like shells, or alternately under the
constitutive assumptions proposed by Libai and Simmonds (1998), the mechanical
behaviour of a thin shell is entirely described by stretching and bending of its
reference surface.

Let M̄ be the reference surface of the deformed shell in an equilibrium state
under the surface force p(θα) = pαāα + pn̄ and couple c(θα) = n̄ × cαāα vectors,
both measured per unit area of the reference surface M , and under the boundary
force N∗(s) = N∗νν+N∗ττ+N∗n and couple M∗(s) = n̄× (M∗ν ν̄+M∗τ τ̄) vectors, both
measured per unit length of the undeformed boundary contour ∂M . Then, for all
kinematically admissible virtual displacements δu the equilibrium conditions for
M̄ are given by the principle of virtual work (PVW)∫∫
M

(
Nαβδγαβ + Mαβδκαβ

)
dA =

∫∫
M

(p · δu + c · ω) dA+
∫
∂M f

(N∗ · δu +M∗ · ωτ) ds ,

(7)
where Nαβ and Mαβ are components of the symmetric surface stress resultants and
stress couples of the Kirchhoff type, δγαβ and δκαβ are virtual changes of the strain
measures γαβ and καβ, while ω and ωτ are the virtual rotation vectors at M̄ and
along ∂M̄ , respectively.

The strain measures γαβ and καβ can also be represented in the hybrid form as

γαβ =
1
2

(
r̄,α ·r̄,β −aαβ

)
, καβ = r̄,α ·n̄,β +bαβ . (8)
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Hence, the integrand on the left–hand side of (7) can be given in the form

Nαβδγαβ + Mαβδκαβ =
(
Nαβāα + Mαβn̄,α

)
· δu,β +Mαβδn̄,β ·āα . (9)

The virtual rotation vector ω is defined by

ω =
1
2

(āα × δāα + n̄ × δn̄) , (10)

and the virtual work performed by c on ω can equivalently be expressed as

c · ω = h · δn̄ , h = cαāα . (11)

The vector h is usually called the surface static moment.
Inside M̄ , āα · n̄ = 0 which variated leads to

δn̄ = −āβ
(
n̄ · δu,β

)
. (12)

Introducing (8) and (12) into (7) and using the Stokes theorem in M , after some
transformations we obtain

−
∫∫
M

[
Tβ|β +p +

(
cβn̄

)
|β
]
· δudA

+

∫
∂M

[(
Tβ + cβn̄

)
νβ · δu + Mαβνβāα · δn̄

]
ds −

∫
∂M f

(N∗ · δu +M∗ · ωτ) ds = 0 ,
(13)

where
Tβ =

(
Nαβ − b̄αλM

λβ
)
āα +

(
Mαβ|α +āβκγκλμM

λμ
)
n̄ . (14)

From vanishing of the surface integral in (13) follows the known vector equilib-
rium equation

Tβ|β +p +
(
cβn̄

)
|β= 0 in M . (15)

The vector equation (15) can be represented in different surface bases to obtain
formally different but in fact equivalent sets of three scalar equilibrium equations
reviewed by Pietraszkiewicz (1989). In particular, the component forms of (15)
(without surface couple term (cβn̄) |β) in the deformed covariant base āα, n̄ were
given already by Chien (1944), Galimov (1951) and Danielson (1970). Different
but equivalent component forms of (15) (again without (cβn̄) |β) in the base aα,
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n given by Sanders (1963), Budiansky (1968) and Pietraszkiewicz (1974) were
associated with different definitions of the bending tensors. However, our recent
experience indicates that the simplest scalar equilibrium equations following from
(15) are obtained in the deformed contravariant base āα, n̄.

Taking into account differential rules of the deformed base vectors

āα|β= b̄αβn̄ + γλαβāλ , āα|β= b̄αβ n̄ − āακγκλβāλ , n̄,α = n̄|α= −b̄αλāλ , (16)

from (15) in the base āα, n̄ we obtain three scalar equilibrium equations

āαλN
λβ|β +

(
2γαλ|β −γλβ|α

)
Nλβ − b̄αλ|β Mλβ − 2b̄αλM

λβ|β
− āκμ

(
b̄ακγμλβ − b̄λκγμαβ

)
Mλβ − b̄αλc

λ + pα = 0 ,

Mαβ|αβ +b̄αβN
αβ − āαμb̄αλb̄μβM

λβ +
[
āαμ

(
2γμλ|β −γλβ|μ

)
Mλβ

]
|α +cα|α +p = 0 .

(17)

But with the Codazzi-Mainardi relations bβλ |μ= bβμ |λ for M the tangential com-
patibility conditions (6)1 can be written as

ε̄λμ
(
−b̄λβ|μ +āκρb̄λκγρμβ

)
= 0 , (18)

or
b̄αβ|λ −b̄λβ|α −āκμ

(
b̄ακγμλβ − b̄λκγμαβ

)
= 0 , (19)

so that the complex terms in (17)1 can be exactly replaced by much simpler ones:

āκμ
(
b̄ακγμλβ − b̄λκγμαβ

)
Mλβ =

(
b̄αβ|λ −b̄λβ|α

)
Mλβ . (20)

Unfortunately, a similar procedure applied to some terms in the third equilibrium
equation (17)2 using the compatibility condition (6)2 leads to a more complicated
form of (17)2.

Expressing āαλ and b̄αλ through γαλ and καλ according to (3) and applying the
kinematic relation āαμ = a

ā

[(
1 + 2γλλ

)
aαμ − 2γαμ

]
and (20) we obtain three scalar

equilibrium equations expressed through the mixed components of the surface
stress and strain measures

Nβα|β + 2γλαN
β
λ|β +

(
2γλα|β −γλβ|α

)
Nβλ − 2

(
bλα − κλα

)
Mβλ|β

+
[(

bλβ − κλβ
)
|α −2

(
bλα − κλα

)
|β
]
Mβλ −

(
bλα − κλα

)
cλ + pα = 0 ,

Mαβ |βα +
(
bβα − κβα

)
Nαβ −

a
ā

[(
1 + 2γμμ

) (
bαβ − καβ

)
− 2γαμ

(
bμβ − κμβ

)] (
bλα − κλα

)
Mβλ

+

{a
ā

[(
1 + 2γμμ

) (
2γαβ|λ −γλβ|α

)
− 2γαμ

(
2γμβ|λ −γλβ|μ

)]
Mβλ

}
|α +cα|α +p = 0 .

(21)
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The equilibrium equations (21) are two-dimensionally exact for the shell ref-
erence surface in the sense that no approximations are introduced into them be-
yond those included in the initially postulated form (7) of the PVW. Notice that
the tangential equilibrium equations (21)1 are here even simpler than the analo-
gous approximate expressions in the refined intrinsic shell equations derived by
Pietraszkiewicz (1980), eq. (4.4.7). In fact, the modified equilibrium equations
(21) following exactly from the PVW (7) are possibly the simplest ones available
in the literature. We shall use them in Section 5 to generate the displacement form
of equilibrium equations.

4. Modified work-conjugate boundary conditions

The appropriate boundary and corner conditions to be used with the equilib-
rium equations (15) should follow from vanishing of the line integrals in (13).

Along ∂M the virtual rotation vector ωτ is now defined by

ωτ =
1
2

(ν̄ × δν̄ + τ̄ × δτ̄ + n̄ × δn̄) , (22)

and the virtual work performed by M∗ on ωτ can equivalently be expressed as

M∗ · ωτ = H∗ · δn̄ , H∗ = M∗ν ν̄ + M∗τ τ̄ . (23)

The vector H can be called the boundary static moment.
The relation (12) for δn̄, when written at ∂M reads

δn̄ = −νβāβ (n̄ · δu,ν ) − τβāβ (n̄ · δu,s ) . (24)

The expression (24) might be substituted into the second term of the first line
integral of (13) and all terms containing n̄ ·δu,s might be eliminated by integration
by parts. Unfortunately, the remaining term containing the differential one-form
of displacement derivatives n̄ · δu,ν was proved by Makowski and Pietraszkiewicz
(1989) to be neither exact nor integrable in terms of displacement (or position)
derivatives along ∂M . This means that there is no function φ(u,ν , u,s ) such that
μn̄ · δu,ν = δφ, where μ(u,ν , u,s ) is an integrating factor.

In order to derive appropriate work-conjugate sets of boundary conditions
one has to modify the relation (24) to make it expressible through variation of
a scalar function of displacement derivatives and n̄ · δu,s at ∂M . As it was found
by Makowski and Pietraszkiewicz (1989), there were three such scalar functions
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available in the literature: nν = n̄ ·ν proposed by Pietraszkiewicz and Szwabowicz
(1981), ϑν = (n̄−n) · āν/a2

τ proposed by Novozhilov and Shamina (1975), and the
angle ωt of total rotation of the shell lateral boundary surface, see Pietraszkiewicz
(1993). The fourth function θwas proposed by Libai and Simmonds (1998). How-
ever, the functions nν, ϑν , θ (or ωt) generate at ∂M the static fields containing
the square-root (or trigonometric) functions of displacement derivatives in the de-
nominator. Such expressions of the static boundary conditions are inconvenient in
derivation of the stability problem and subsequent numerical analysis.

From our numerical experience gained in the recent report by Opoka and
Pietraszkiewicz (2009), in this paper we introduce along ∂M the new scalar func-
tion of displacement (or position) derivatives defined by

α =
nν
n
=

mν
m
=
ϕτlτν − ϕνlττ
lννlττ − lντlτν

= α(u,ν , u,s ) . (25)

The function α is rational one in terms of displacement derivatives, it vanishes in
the undeformed state and upon linearization coincides with −ϕν = −n · u,ν, which
is the infinitesimal rotation about tangent to ∂M used in the classical linear theory
of shells.

Along ∂M the vector n̄ satisfies two constraints

r̄,s ·n̄ = 0 , n̄ · n̄ = 1 . (26)

From (5)1 and (25) it follows that the constraint (26)1 leads to the relation

mτ
m
= − 1

lττ
(lντα + ϕτ) , (27)

and then the constraint (26)2 allows one to represent m entirely in terms of α and
u,s:

m = ±
√

ā
a

lττ√
l2ττ(1 + α2) + (lντα + ϕτ)2

= m(α, u,s ) . (28)

For rotations of the shell lateral boundary surface not exceeding ±π/2 the + sign
should be taken in (28). Hence, the formula for n̄ in terms of α and u,s becomes

n̄ =

√
a
ā

m

[
αν − 1

lττ
(lντα + ϕτ)τ + n

]
. (29)
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Let us variate the expression (25) to have

δα =
1

m2
(mδmν − mνδm) =

1
m2

[mδ(r̄,ν ×r̄,s ) · ν − mνδ(r̄,ν ×r̄,s ) · n]

=
1
m

{
[r̄,s ×(ν − αn)] · δu,ν −[r̄,ν ×(ν − αn)] · δu,s }

=
1

m2
(lτνm̄ · δu,s −lττm̄ · δu,ν ) ,

(30)

where we have used the identity

1
lττ

(αlντ + ϕτ) =
1
lτν

(αlνν + ϕν) (31)

following from definitions (4). Calculating m̄ · δu,ν from (30) and substituting it
into (24) we obtain the new relation for δn̄ at ∂M

δn̄ = āβ
[√

a
ā

m2

lττ
νβδα −

(
lτν
lττ
νβ + τβ

)
n̄ · δu,s

]
. (32)

The expressions (32) and (23) can now be used in the second terms of the
line integrals in (13). After integration by parts and some transformations the line
integral becomes∫

∂M f

{[Cαāα +Dn̄ − (N∗ − āαμb̄μλτ
λF ∗āα + F ∗,s n̄)

] · δu

+
√

a
ā

m2

lττ

(
Mνν − aτ

√
a
ā M∗ν

)
δα

}
ds +

∑
Ci∈∂M f

(F − F ∗)n̄ · δu
∣∣∣∣C
+
i

C−i

+

∫
∂Md

[(Cαāα +Dn̄
) · δu + √

a
ā

m2

lττ
Mννδα

]
ds +

∑
Ci∈∂Md

F n̄ · δu
∣∣∣∣C
+
i

C−i
= 0 ,

(33)

where ∂Md = ∂M \∂M f , Ci are the corner points of ∂M , and

Cα =Nαβνβ − āαμb̄μλ
(
Mλβνβ + τ

λF
)
,

D =Mαβ|β να + F ,s + āαμγμλβM
λβνα + cανα ,

F = lτν
lττ

Mνν + Mντ ,

F ∗ = 1
aτ

(
M∗τ −

√
a
ā

lντm−ϕτmν
lττ

M∗ν
)
.

(34)
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All fields present in the boundary conditions (33) and (34) are functions of the
arc-length coordinate s of ∂M .

From (33) follow the natural static boundary and corner conditions

Cαāα +Dn̄ = N∗ − āαμb̄μλτ
λF ∗āα + F ∗,s n̄ , Mνν = aτ

√
a
ā M∗ν on ∂M f , (35)

F n̄ = F ∗n̄ at each corner Ci ∈ ∂M f . (36)

The vector N∗ − āαμb̄μλτλF ∗āα+F ∗,s n̄ can be called the effective Kirchhoff stress
resultant associated with the function α.

From (33) it also follows that the geometric boundary conditions which are
work-conjugate to the static ones (35) are

u = u∗, α(u,ν , u,s ) = α∗ on ∂Md . (37)

The last term of (33) vanishes identically at any corner Ci ∈ ∂Md, because de-
formation of the shell reference surface is assumed to be continuous everywhere
including corners of the boundary contour ∂M .

It is apparent from (33) and (29) that the displacement vector u on M is kine-
matically admissible if δu ≡ δr̄ = 0 and δα = 0 on ∂Md. Hence, δn̄ = 0 on ∂Md

as well.
The vector static boundary and corner conditions (35) and (36) are direct and

exact implication of the PVW (7) as well as the choice of α for description of
rotation of the shell lateral boundary surface. Alternative vector static boundary
conditions associated with nν were given by Pietraszkiewicz (1984), those com-
patible with ϑν by Makowski and Pietraszkiewicz (1989), the ones compatible
with ωt by Pietraszkiewicz (1993), and those associated with θ by Libai and Sim-
monds (1998). Each of them may be more convenient than others in specific ap-
plications. In the refined numerical analysis of bifurcation buckling for the axially
compressed circular cylinder performed by Opoka and Pietraszkiewicz (2009) we
have found the choice of α with the corresponding boundary conditions (35)-(37)
to be more convenient than other possible choices.

When the shell equations are used in the numerical analysis, we have to rep-
resent the boundary conditions (35), (36) and (37) through components in the
undeformed boundary base {ν, τ, n}. The reason for this choice is that the geome-
try of ∂M is the only one known in advance. With this choice it is also necessary
to express the corresponding compound fields Cν = Cανα, Cτ = Cατα, D in terms
of physical components of the strain and stress measures at ∂M . Thus, after some

13



transformations we obtain

Cν =Nνν − a
ā

[
(1 + 2γττ)(σν − κνν) + 2γντ(ττ + κντ)

]
Mνν

+
a
ā

[
(1 + 2γττ)(ττ + κντ) + 2γντ(στ − κττ)

]( lτν
lττ

Mνν + 2Mντ

)
,

Cτ =Nντ +
a
ā

[
(1 + 2γνν)(ττ + κντ) + 2γντ(σν − κνν)

]
Mνν

− a
ā

[
(1 + 2γνν)(στ − κττ) + 2γντ(ττ + κντ)

]( lτν
lττ

Mνν + 2Mντ

)
,

D =Mνν,ν +2Mντ,s +ρτ(Mνν − Mττ) + 2ρνMντ +
1
lττ

(lτνMνν),s − lτν
l2ττ

lττ,s Mνν + cν

+
a
ā

{
(1 + 2γττ)(γνννMνν + 2γνντMντ + γνττMττ) − 2γντ(γτννMνν + 2γτντMντ + γτττMττ)

}
,

(38)

where the physical components of γλαβ at ∂M in (38)3 are given by

γννν = γνν,ν +2ρνγντ , γνντ = γντν = γνν,s −2ρτγντ ,

γνττ = 2γντ,s −γττ,ν +2ρνγντ + 2ρτ(γνν − γττ) ,
γτνν = 2γντ,ν −γνν,s +2ρτγντ − 2ρν(γνν − γττ) ,
γτντ = γττν = γττ,ν −2ρνγντ , γτττ = γττ,s +2ρτγντ .

(39)

Substituting (39) into (38)3 the expression forD reads

D =Mνν,ν +2Mντ,s +ρτ(Mνν − Mττ) + 2ρνMντ +
1
lττ

(lτνMνν),s − lτν
l2ττ

lττ,s Mνν + cν

+
a
ā

{[
(1 + 2γττ)γνν,ν −2γντ(2γντ,ν −γνν,s −ρν(1 + 2γνν) + 2ρτγντ)

]
Mνν

+ 2
[
(1 + 2γττ)(γνν,s −2ρτγντ) − 2γντ(γττ,ν −2ρνγντ)

]
Mντ

+
[
(1 + 2γττ)(2γντ,s −γττ,ν +2ρνγντ + 2ρτ(γνν − γττ)) − 2γντ(γττ,s +2ρτγντ)

]
Mττ

}
.

(40)

Hence, the final scalar forms of four work-conjugate static and geometric bound-
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ary conditions along ∂M are

lννCν + lντCτ + mν
√

a
āD = N∗ν + lννG∗ν + lντG∗τ + mν

√
a
āF ∗,s or uν = u∗ν ,

lτνCν + lττCτ + mτ
√

a
āD = N∗τ + lτνG∗ν + lττG∗τ + mτ

√
a
āF ∗,s or uτ = u∗τ ,

ϕνCν + ϕτCτ + m
√

a
āD = N∗ + ϕνG∗ν + ϕτG∗τ + m

√
a
āF ∗,s or u3 = u∗3 ,

Mνν = aτ
√

a
ā M∗ν or α = α∗ ,

(41)
where the expressionsG∗ν, G∗τ, F ∗,s containing the external boundary moments are
defined as follows:

G∗ν =
1
aτ

a
ā

[
(1 + 2γττ)(ττ + κντ) + 2γντ(στ − κττ)

](
M∗τ −

√
a
ā

lντm − ϕτmν
lττ

M∗ν

)
,

G∗τ =
1
aτ

a
ā

[
(1 + 2γνν)(κττ − στ) − 2γντ(ττ + κντ)

](
M∗τ −

√
a
ā

lντm − ϕτmν
lττ

M∗ν

)
,

F ∗,s = 1
aτ

M∗τ,s −
γττ,s
a3
τ

M∗τ −
1
aτ

√
a
ā

1
lττ

{
(lντm − ϕτmν)M∗ν ,s +

[
(lντm − ϕτmν),s

− (lντm − ϕτmν)
(γττ,s

a2
τ

+
lττ,s
lττ
+

a
ā

[(1 + 2γνν)γττ,s +(1 + 2γττ)γνν,s −4γντγντ,s ]
)]

M∗ν

}
.

(42)

The boundary conditions (41) are again two-dimensionally exact for the shell
reference surface, because no approximations are introduced into (41) besides
those included in the postulated form (7) of the PVW. First such sets of four
work-conjugate boundary conditions, associated with the function nν and the al-
ternative polynomial definition of the surface bending tensor, was proposed by
Pietraszkiewicz and Szwabowicz (1981).

Three static boundary conditions (41)1−3 are also extremely complex partly
as a result of decomposing Cαāα, Dn̄, b̄αβτ

βF ∗āα, and F ∗,s n̄ in the undeformed
boundary base {ν, τ, n}. This is an unavoidable consequence of the fact that only
the position vector r(s) of ∂M is assumed to be known in advance, and the posi-
tion vector r̄(s) of ∂M̄ is the one which should be found from the analysis. But the
physical interpretation of the geometric boundary conditions in (41) is straightfor-
ward and all the fields in (41) are well defined in the known base {ν, τ, n}.
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5. Modified BVP and buckling shell problem in terms of displacements

To formulate the boundary value problem (BVP) in terms of displacements,
the stress measures Nβα and Mβα should be eliminated from (21) and (41) by the
constitutive equations, and then the strain measures γβα and κβα should be expressed
through displacements using the strain-displacement relations (3). We briefly dis-
cuss below such BVPs for three simple cases of constitutive equations.

Within the first-approximation theory of thin shells made of homogeneous,
isotropic, elastic material undergoing small strains, the strain energy density of
the shell is given by

Σ =
h
2

Hαβλμ
(
γαβγλμ +

h2

12
καβκλμ

)
+ O(Ehη2ε) ,

Hαβλμ =
E

2(1 + ν)

(
aαλaβμ + aαμaβλ +

2ν
1 − νa

αβaλμ
)
,

(43)

and the corresponding constitutive equations are

Nαβ =
∂Σ

∂γαβ
=

Eh
1 − ν2

[
(1 − ν)γαβ + νaαβγλλ

]
+ O (Ehηε) ,

Mαβ =
∂Σ

∂καβ
=

Eh3

12(1 − ν2)
[
(1 − ν)καβ + νaαβκλλ

]
+ O

(
Eh2ηε

)
,

(44)

where E and ν denote respectively Young’s modulus and Poisson’s ratio of the
elastic material. Here η denotes the maximal strain in the shell space and ε de-
scribes formally the energetic error of this shell theory (Koiter, 1960; John, 1965).
At any point M ∈ M the small parameter was described by Koiter (1960) to be√
ε = max

(
h
b ,

h
l ,

h
L ,

√
h
R ,
√
η
)
, where b is the distance of M from the lateral shell

boundary, l - the smallest wavelength of geometric patterns of M , L - the smallest
wavelength of deformation patterns on M , and R - the smallest radius of curva-
ture of M . If we substitute (44) into the BVP and reject the terms of the order of
error introduced by the constitutive equations (44), then only the underlined terms
in (21) and (34)1,2 or (38) remain as the primary important terms.

Another example of the theory of shells based on the PVW (7) is the large-
strain bending theory of elastic rubber-like shells. Various versions of such a the-
ory were proposed for example by Chernykh (1980), Simmonds (1985), Schieck
et al. (1992), and Libai and Simmonds (1998). In particular, when the greater
eigenvalue γ of γαβ was additionally assumed to be at most moderate, so that
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the approximation 1 + γ2 ≈ 1 holds, the strain energy density was proposed by
Pietraszkiewicz (2000) in possibly the simplest form

Σ = hW(0)(γκρ) +
h3

24
Wαβλμ

(2) (γκρ)[καβκλμ(1 − γσσ)] , (45)

where W(0) and Wαβλμ
(2) are the 3D strain energy density and its second derivative

relative to γκρ, both taken at M . Then the corresponding constitutive equations
follow from

Nαβ =
∂Σ

∂γαβ
, Mαβ =

∂Σ

∂καβ
. (46)

Using the estimate for moderate surface strains and other assumptions made while
deriving (45), it is also possible to considerably simplify the equilibrium equations
(21) and boundary conditions (41) by omitting many supposedly small terms of
the same order, if necessary.

Still other examples of the theory of shells following from the PVW (7) are
simple versions of the Lagrangian theory of elasto-plastic shells formulated en-
tirely in terms of deformation of the reference surface, as discussed for example
by Sawczuk (1980), Duszek (1982), and Schieck and Stumpf (1993). In those
shell theories the equilibrium equations and boundary conditions corresponding
to (21) and (41) can also be considerably simplified as well by omitting many
supposedly small terms.

However, in the present paper we take a radically different approach. Ac-
cepting our inability to reasonably select a few critically important small terms
in the shell equilibrium conditions among many other small terms which can be
ignored, we do not simplify the shell relations at all in the process of elimination
of the surface stress and strain measures. Due to enormous complexity of the re-
sulting displacement shell relations such a BVP and the associated shell buckling
problem cannot be derived just by hand transformations. In our approach this
goal has been achieved with the help of some features provided by the symbolic
language of Mathematica. Within this programming language two packages have
been written: ShellGeom.m and ShellBVP.m.

The first package ShellGeom.m is responsible for generating all important
characteristics of the assumed geometry of the shell reference surface M needed
in transforming tensorial BVP to that expressed in partial derivatives. For the
specified position vector r = r(θα) of the surface M this package is capable to
generate analytic formulas for the local surface base on M , its dual base, compo-
nents of the first and second fundamental forms, Lame parameters, components
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of permutation tensor, Christoffel symbols as well as the mean and Gaussian cur-
vatures. If the surface has a boundary contour ∂M parameterized by the arc-
length parameter the package ShellGeom.m additionally generates several bound-
ary characteristics such as the normal and geodesic curvatures and torsions of the
boundary curve and of orthogonal to it surface curve as well as the components of
boundary base vectors ν and τ.

The second package ShellBVP.m for the specified system of orthogonal coor-
dinates {θ1, θ2} derives the displacement equilibrium equations as well as the dis-
placement natural static and geometric boundary conditions for the first–approximation
geometrically non–linear theory of isotropic, elastic shells of the Kirchhof-Love
type based on the formulation given in this paper. It also derives the corresponding
shell buckling problem. In particular, this package performs the following steps:

• reads in the characteristics of the assumed shell geometry derived by the use
of the package ShellGeom.m;

• introduces the constitutive equations (44) into (21) and (41) together with
(38) and (42);

• expresses καβ in terms of χαβ defined in (3)2;

• calculates covariant derivatives, performs summation over dummy indices
and substitutes the geometrical characteristics of the reference surface;

• transforms the BVP to the equivalent non-dimensional form;

• multiplies the BVP by positive powers of
√

ā
a in order to eliminate the

square roots
√

a
ā and then uses (3)4;

• introduces into the non-dimensional BVP the strain-displacement relations
transformed to the non-dimensional form;

• perturbates the BVP in displacements and derives the linearized homoge-
neous shell buckling equations together with corresponding work–conjugate
sets of boundary conditions.

The package ShellBVP.m has some routines which check the correctness of the
input arguments. Also the specified check points have been implemented into it to
assure validity and correctness of derivation of the BVP. For example, one of the
check points is the procedure which checks whether the compatibility conditions
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vanish identically after substitution into them the strain-displacement relations. If
this is not true the main procedure interrupts derivation of the BVP. This signif-
icantly raises the confidence to the obtained BVP for each specified geometry of
the shell. The output of this package is extremely large even for the relatively sim-
ple geometry of the cylinder, because no approximation is used during derivation
of the BVP. Therefore, the resulting explicit displacement BVP and the corre-
sponding shell buckling problem are available only in the computer memory and
are not explicitly presented in this paper.

Let us briefly remind after Opoka and Pietraszkiewicz (2004) that the compo-
nents of external loads p, c and N∗, M∗ may be specified entirely independently,
in general, by ten dimensionless parameters ρp forming the vector ρ ∈ R ⊂ R

10.
Then the non-linear BVP for a thin shell generated by the package ShellBVP.m
from (21) and (41) with (44) and (3) can be presented symbolically as

f (u; ρ) = 0 , (47)

where the non-linear continuosly differentiable operator f is defined on the prod-
uct space C (M ,R3) with values in the Banach space, where C (M ,R3) is a set
of all components of u and its gradients up to the 4th order. In engineering appli-
cations, however, all the external loads are usually specified by a single common
parameter ρ ∈ R ⊂ R, ρ ≥ 0.

The solutions u0(ρ) of (47), which can be reached starting form ρ = 0 in the
undeformed state, form the primary equilibrium path. This path becomes unstable
if an infinitesimally close adjacent equilibrium state u1(ρ) exists for the same value
of ρ.

In the neighbourhood of critical values of ρ we can replace u1(ρ) by u0(ρ)+u,
where now u denotes the small increment of the displacements satisfying homo-
geneous boundary conditions. Substituting u0(ρ) + u into (47) we can linearize
it with regard to u and take into account that u0(ρ) should satisfy (47). As a re-
sult, we obtain the homogeneous linear shell buckling problem in terms of the
incremental displacements u written again symbolically as

g(u; ρ) = 0 . (48)

Non-trivial solutions of (48) can exist only at a discrete set of values of ρ, which
are eigenvalues of the linear problem (48). The lowest positive eigenvalue ρ1 ≡
ρcrit indicates the first bifurcation point at with the primary equilibrium path u0(ρ)
is intersected by a secondary equilibrium path u1(ρ).
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In the accompanying paper by Opoka and Pietraszkiewicz (2009, Appendix)
we present in more detail the derivation of the BVP (47) and the correspond-
ing buckling problem (48) for membrane prebuckling state in the special case of
axially compressed circular cylinder. We also perform the extensive numerical
analysis of bifurcation buckling for a wide range of length-to-diameter ratios of
the cylinder under fourteen sets of work–conjugate boundary conditions.

6. Conclusions

We have formulated a new version of the Lagrangean non–linear theory of
thin shells expressed in terms of displacements of the shell reference surface as
the only independent field variables. The formulation has been based on the prin-
ciple of virtual work postulated for the reference surface. Both the equilibrium
equations and the set of four work–conjugate static and geometric boundary con-
ditions are derived exactly from the PVW without using any kind of approxima-
tions. Elimination of the surface stress and strain measures in terms of displace-
ments is performed exactly as well without using the approximate nature of the
constitutive equations to simplify the BVP. The latter steps have been performed
automatically with the help of two packages set up in Mathematica. The final
BVP and the corresponding shell buckling problem are obviously extremely com-
plex. They are manageable only as the relations given in the computer memory,
not as those explicitly written on the paper. By taking into account all supposedly
small terms in the buckling shell equations we are sure that among them are also
those a few supposedly small terms which may appear to be critically important
ones in finding the correct buckling load of thin shells sensitive to imperfections.

The idea of the present report has grown from our experience gained in the
paper Opoka and Pietraszkiewicz (2009) while performing the refined analysis
of bifurcation buckling for the axially compressed circular cylinder, which is one
of the most imperfection–sensitive structural problems known in the literature.
We advise the reader to consult this accompanying paper to better understand the
reasons why the present paper has been written.

Currently the package ShellBVP.m generates the two-dimensionally exact dis-
placement BVP and the shell buckling problem only with the constitutive equa-
tions (44) valid for the first-approximation geometrically non–linear theory of
thin, isotropic elastic shells. Exactly the same approach can also be used with
any of the constitutive equations of large-strain theory of rubber-like shells. But
this type of approach may also be useful in formulating any two-dimensionally
exact version of the Lagrangian non–linear theory of elasto-plastic shells as well,

20



if peculiar character of performing the analysis in the plastic range is taken into
account.
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