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Abstract

We present extensive numerical results of bifurcation buckling analysis of the
axially compressed circular cylinder. The analysis is based on the modified dis-
placement version of the non–linear theory of thin elastic shells developed by
Opoka and Pietraszkiewicz (2009, submitted to Int. J. Sol. Str.). To solve the
buckling problem we apply the separation of variables and expansion of all fields
into Fourier series in circumferential direction, with subsequent accurate calcula-
tions of eigenvalues of determinants of corresponding 8 × 8 complicated matri-
ces. The numerical analysis of the buckling load is performed for the cylinders
with length-to-diameter ratio in the range (0.05, 60), with eight sets of incremental
work–conjugate boundary conditions analogous to those used in the literature and
partly summarized in the book by Yamaki (1984), and additionally with six sets of
boundary conditions not discussed in the literature yet. The results allow us to for-
mulate several important conclusions, such as: a) omission in the non-linear BVP
small terms of the order of error introduced by the error of constitutive equations
leads to overestimated buckling loads for long cylinders with clamped bound-
aries; b) for some relaxed boundary conditions the buckling load decreases for
short cylinders with decrease of the cylinder length; c) the results for additional
six sets of boundary conditions reveal existence of several new cases, in which
by relaxing geometric boundary conditions the buckling load falls down to about
one half of the classical value in a wide range of the cylinder length–to–diameter
ratios.
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1. Introduction

Stability of the axially compressed thin, isotropic, elastic, circular cylinder
belongs to the most discussed problems of structural mechanics. It was analysed
in thousands of papers applying various shell models as well as various analytical
and/or numerical techniques. Known results were partly summarised in several
books, for example by Brush and Almroth (1975), Grigolyuk and Kabanov (1978),
Yamaki (1984), and Tovstik and Smirnov (2001), where additional references to
original papers and other books are given. The surveys by Simitses (1986), Knight
and Starnes (1997), Mandal and Calladine (2000), Singer et al. (2002), and Arbocz
and Starnes (2002) summarise more recent achievements in the field.

Experimental results reviewed by Weingarten et al. (1965), Babcock (1983),
Yamaki (1984), Simitses (1986), and Singer et al. (2002) show wide scatter of
experimental results and significant drop of the real buckling load of the axially
compressed cylinder as compared to theoretical results. The main cause responsi-
ble for this discrepancy is usually associated with imperfections of shell geometry,
boundary conditions, prebuckling states, material parameters, external loads etc.
unavoidable in real cylindrical shell structures and real experimental conditions.
As a result, the research in this area concentrates in the last decades primarily
on measuring and modelling real imperfections of the cylinder and taking them
into account in a more realistic engineering design, see for example Arbocz and
Babcock (1969), Pircher et al. (2001), and Arbocz and Starnes (2002).

Yet, another important reason for differences mentioned above may be as-
sociated with the theoretical shell model used in the stability analysis. Already
Donnell (1933) proposed simple non-linear shell equations for the cylinder us-
ing the simplest shallow shell approximation. This formulation in different but
equivalent settings was used in many subsequent papers to calculate the buckling
load of the axially compressed circular cylinder under various boundary condi-
tions, see for example Kármán and Tsien (1941), Mushtari and Galimov (1957) ,
Vol’mir (1967), and Almroth (1966). More accurate but also more complex buck-
ling equations for the cylinder follow from the equilibrium equations of shells
of revolution proposed by Flügge (1932), see Yamaki (1984). Comparing square
roots of characteristic polynomials resulting from the shell theories above, already
Hoff and Brooklyn (1955) concluded that the Donnell stability equations are too
inaccurate for the longer cylinders and when the circumferential wave number of
buckling mode is less than four.
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Yamaki (1984) compared the buckling load curves based on Donnell‘s and
Flügge‘s stability equations for a wide range of length-to-radius ratio of the cylin-
der and for eight sets of incremental boundary conditions, using the membrane
prebuckling state. He found that for the most sets of his boundary conditions
the results following from the Donnell stability equations are approximately valid
only for cylinders with intermediate lengths indeed. With the increase in the
cylinder length the buckling loads following from the Flügge stability equations
took considerably smaller values than those following from the Donnell ones.
Several non-linear models of thin shells undergoing moderate deflections were
proposed by Mushtari and Galimov (1957), Sanders (1963), Koiter (1960), and
Pietraszkiewicz (1977). The stability equations for the cylinder based on these
models are more complex than the Donnell ones, but simpler than the ones of
Flügge.

Even more complex stability equations were developed by Koiter (1967), Bu-
diansky (1968), Stumpf (1984), and Pietraszkiewicz (1984, 1993). For the axially
compressed cylinder, Dym (1973) concluded that the Koiter-Budiansky stability
equations give results in good agreement with those of Flügge. Thus, it seems
justifiable to consider the stability equations based on the Flügge shell equations
as a reference formulation for the buckling problems of the axially compressed
cylinder.

In all the analyses on buckling of axially compressed circular cylinder we are
aware of, the incremental boundary conditions of the buckling problem were not
carefully derived but were rather assumed in the form analogous to the one used
in the simple versions of non–linear theory of shells. But already Pietraszkiewicz
and Szwabowicz (1981) noted that in the non-linear displacement BVP for thin
shells the boundary rotation should be expressed by a scalar function of dis-
placement derivatives, and only this allows one to formulate correctly the work-
conjugate sets of geometric and static boundary conditions. The sets of work-
conjugate incremental boundary conditions should then be derived by consistent
linearization of the incremental displacements about the equilibrium prebuckling
state.

In this paper we perform the refined numerical analysis of bifurcation buckling
for the axially compressed circular cylinder. The analysis is based on the modified
version of the geometrically non-linear theory of thin, isotropic, elastic shells ex-
pressed in terms of displacements as the only independent field variables, which
has been developed in the accompanying paper by Opoka and Pietraszkiewicz
(2009). In that paper we have formulated alternative work-conjugate sets of ge-
ometric and static boundary conditions introducing a new boundary function α
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rational in terms of displacement derivatives. Using this version of shell theory
we are able here to refine for this buckling problem the results summarized, for
example, by Yamaki (1984) in three main aspects:

1. In our formulation the non–linear BVP for a thin shell and the correspond-
ing shell buckling problem (SBP) are generated automatically by the com-
puter program written within the symbolic language of M. These
problems for shells are formulated without using any kind of approxima-
tions, apart of those following from the underlying principle of virtual work
postulated for the shell reference surface. Such an approach leads to ex-
tremely complex shell relations available only in the computer memory with
many supposedly small and mostly unimportant terms. But this allows one
to always account for those a few small terms in the buckling shell problem
which may be critical for finding the correct buckling load of the axially
compressed circular cylinder.

2. In our formulation the incremental boundary conditions of the SBP are de-
rived by direct linearization of the correct work-conjugate sets of the non–
linear geometric and static boundary conditions about the prebuckling equi-
librium state. Our buckling loads for the axially compressed circular cylin-
der, calculated using those correctly linearized incremental boundary con-
ditions, allow one either to confirm the results published elsewhere, or to
refine those which seem to be questionable. In particular, this allows us to
clarify the behaviour of the buckling loads for short cylinders when their
lengths are decreasing.

3. Additionally to eight sets of incremental work–conjugate boundary con-
ditions analogous to those discussed in the literature and summarized by
Yamaki (1984), we analyse also six other sets of boundary conditions not
discussed elsewhere. Among them are cylinders with boundary conditions
S5, S6, and S7. It is shown in particular that the buckling load of the axi-
ally compressed cylinder with these boundary conditions also falls down to
about one half of the classical value in the range of experimental cylinder
lengths, similarly as in the cases S3 and S4 (in our nomenclature) discussed
by Yamaki (1984) and S4 also by Simmonds and Danielson (1970).

The present paper is organized as follows. In Section 2 we remind some no-
tation for the axially compressed circular cylinder, the prebuckling equilibrium
state used here, as well as the homogeneous shell buckling equations with corre-
sponding work-conjugate sets of boundary conditions of the displacement buck-
ling problem. More detailed derivation of the relations of Section 2 is given in
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Appendix, where the results of the paper by Opoka and Pietraszkiewicz (2009)
have been used. The solution method applied in our buckling problem, based on
the separation of variables with subsequent expansion of all fields into Fourier
series in the circumferential coordinate, is presented in Section 3. We also dis-
cuss there some details on automatic generation of determinants of 8× 8 matrices
for each circumferential wave number of buckling mode n by symbolic language
of M, on numerical analysis of eigenvalues of the determinants, and
on step sizes used in different ranges of the length–to–diameter ratio to assure
appropriate accuracy of the results.

In Section 4 we present extensive numerical results of the refined analysis of
bifurcation buckling for the axially compressed circular cylinder under fourteen
different, carefully derived work–conjugate sets of boundary conditions. For each
set of the boundary conditions our results are given by one graph for the length–
to–diameter ratios in the range (0.05, 60). This proves versatility of the analytic–
numerical method used here; to calculate such a detailed one graph using existing
finite element codes would require enormous computational efforts without pos-
sibility to correctly model various cases of non–linear work–conjugate boundary
conditions. The numerical results presented here are used to discuss some aspects
of stability behaviour of the axially compressed cylinder. In particular, in Sub-
section 4.1 we show that omission in the non–linear BVP of all small terms of
the order of error introduced by the constitutive equations leads to overestimated
buckling loads for long cylinders. In Subsection 4.2 we show that for the cylin-
ders with eight sets of work–conjugate boundary conditions our results practically
coincide with or are slightly lower than those given by Yamaki (1984). However,
for cylinders with boundary conditions C4 and S4 we obtain different asymptotic
behaviour of the critical curves for short cylinders: with decrease of the cylin-
der length the critical curves by Yamaki (1984) increase, while our results show
decrease of those curves. This behaviour of the critical curves, noted already by
Koiter (1967) and Simmonds and Danielson (1970), can be explained by using in
our analysis the correct incremental work-conjugate boundary conditions.

In Subsection 4.3 we use our results for six additional sets of work–conjugate
boundary conditions to analyze in more detail the effect on the buckling loads
of exchange of one geometric boundary condition for the corresponding work–
conjugate static one. From the literature we know that by relaxing the incremental
boundary constraint v = 0 for circumferential displacements the buckling load
falls down to about one half of the classical value in the wide range of cylinder
lengths. But we have discovered several cases not mentioned in the literature in
which by relaxing incremental boundary constraint w = 0 for radial displace-
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ments, or w′ = 0 for rotations the buckling load falls down to about one half of
the classical value as well. This confirms once more the importance of boundary
conditions for scatter of the experimental buckling loads observed in this prob-
lem, because the fixation of cylinder boundaries is newer complete in the testing
setups.

In Subsection 4.4 we compare the behaviour of axially compressed long cylin-
der and Euler column of the same length.

When the buckling load is exceeded, a dynamic process takes place in the
cylinder leading either to its damage or to the transient motion with subsequent de-
caying vibrations about a new equilibrium state far from the primary equilibrium
path. The post-buckling behaviour of shells was discussed theoretically and nu-
merically in many papers and books, see for example Riks (1998), Chróścielewski
et al. (2004), Wriggers (2008) or Amabili (2008) and references given there. But
the post-buckling behaviour of the cylinder cannot influence the value of the buck-
ling load itself, which is the only goal of the present paper.

2. Modified displacement stability equations and boundary conditions for
the axially compressed circular cylinder

The reference surface M of the circular cylinder with radius R, length L, and
thickness h is loaded by the compressive axial force component uniformly dis-
tributed on both boundaries perpendicular to cylinder’s generators. The cylindri-
cal surface is parameterized by non-dimensional coordinates (φ, x = z/R). The
independent field variables of the BVP are displacements of the reference sur-
face. The non-dimensional incremental displacements u(φ, x), v(φ, x) and w(φ, x)
denote, respectively, the axial, circumferential and radial components of the in-
cremental displacement vector, see Fig. 1.

The modified displacement version of the non-linear theory of thin elastic
shells used here has been presented in detail in the accompanying paper by Opoka
and Pietraszkiewicz (2009). The reader is asked to consult that paper in order to
fully understand notation as well as formulation of the BVP and derivation of cor-
responding SBP which are used here for the axially compressed circular cylinder.
In Appendix we present more detailed description of cylindrical shell geometry
and definitions of various non-dimensional fields of the BVP. We also describe
there the main steps of generating the BVP and the SBP using the package Shell-
BVP.m written in M.

Under compression by the axial force components N∗ν = −
2ρ
ε

uniformly dis-
tributed along both boundaries the cylinder becomes shorter and is assumed to
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Figure 1: The parameterized upper-half of the cylindrical surface.

homogeneously expand in the radial direction. The prebuckling equilibrium solu-
tion for the cylinder has been found in the Appendix to be

u0(φ, x) = Ux = −2ερ(1 + 3ερ)x ,
v0(φ, x) = 0 ,
w0(φ, x) = W = 2ενρ[1 + (2 − ν)ερ] ,

(1)

where ν denotes Poisson’s ratio, the small parameter of the theory ε is defined
as ε2 = h2/[12(1 − ν2)R2], and ρ denotes the load parameter. The value ρ = 1
is usually called the classical value of the buckling load and corresponds to the
buckling stress σcl = 2εEh.

The assumed prebuckling displacements in (1) are relatively small, because
they are proportional to the small parameter ε. This allows us to identify geometry
of the deformed prebuckling state with that of the initial state of the cylinder.
Using the linear constitutive equations and the non-linear kinematic relations, we
can show that the prebuckling solution (1) defines approximately the membrane
prebuckling state with only one internal stress resultant Nx = −

2ρ
ε

.
The displacement buckling problem of the axially compressed elastic cylinder,

which is derived in Appendix from the exact BVP of Opoka and Pietraszkiewicz
(2009) under assumption of the membrane prebuckling state (1), consists of three
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homogeneous linear PDEs with constant coefficients with regard to incremental
displacements u, v, w (see A-23)

A1w��� + A2w′′� + A3u′� + A4v′′ + A5v�� + A6w� = 0 ,

B1(w′�� + νw′′′) + B2u′′ + B3u�� + B4[(1 + ν)v′� + 2νw′] = 0 ,

C1(w′′′′ + 2w′′�� + w����) + C2(u′�� + νu′′′) + C3v′′� + C4v��� + C5w′′

+ C6w�� + C7u′ + C8v� + C9w = 0 ,

(2)

and four homogeneous work–conjugate boundary conditions defined at x = ±l =

± L
2R to be (see A-24)

d1 ≡ D1w′′+D2u′+D3(v�+w) = 0 or u = 0 ,

d2 ≡ E1w′�+E2u�+E3v′ = 0 or v = 0 ,

d3 ≡ F1[w′′′+(2−ν)w′��]+F2(u��+νu′′)+F3v′�+F4w′ = 0 or w = 0 ,

d4 ≡ G1(w′′+νw��)+G2v�+G3u′+G4w = 0 or w′ = 0 ,

(3)

where ∂()
∂x = ()′, ∂()

∂φ
= ()�. The coefficients appearing in (2) and (3) are defined

in (A-25) and (A-26). More information about the equilibrium BVP, the assumed
prebuckling state and the derivation of the shell buckling problem (2) and (3) can
be found in Appendix.

The numerical results presented in this paper have been calculated using the
stability equations (2) with different sets of boundary conditions (3) defined in
Table 1. Considering only the constraints imposed on incremental displacements

Table 1: Nomenclature for different sets of boundary conditions
C–family S–family

C1: u=0 v=0 w=0 w′=0 S1: u=0 v=0 w=0 d4 =0
C2: d1=0 v=0 w=0 w′=0 S2: d1=0 v=0 w=0 d4 =0
C3: u=0 d2=0 w=0 w′=0 S3: u=0 d2=0 w=0 d4 =0
C4: d1=0 d2=0 w=0 w′=0 S4: d1=0 d2=0 w=0 d4 =0
C5: u=0 v=0 d3=0 w′=0 S5: u=0 v=0 d3=0 d4 =0
C6: d1=0 v=0 d3=0 w′=0 S6: d1=0 v=0 d3 =0 d4 =0
C7: u=0 d2=0 d3=0 w′=0 S7: u=0 d2=0 d3 =0 d4 =0
C8: d1=0 d2=0 d3 =0 w′=0 S8: d1=0 d2=0 d3 =0 d4 =0

u, v, and w (corresponding static boundary conditions differ in the literature due to
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different model assumptions used in deriving appropriate shell BVPs), the nomen-
clature in Table 1 is the same as in Sobel (1964), Bushnell (1981), and Tovstik and
Smirnov (2001). In particular, this nomenclature is applied here also to the results
given by Yamaki (1984), where somewhat different classification of the bound-
ary conditions was used. In our nomenclature the classical simply supported and
clamped boundary conditions are denoted, respectively, as S2 and C1.

In our numerical analysis the discussion of buckling of the compressed cylin-
der with boundary conditions C8 and S8 have been omitted. In these two cases
the cylinder is globally kinematically unstable and under compression a rigid body
motion may appear much earlier than the shell buckling phenomenon.

3. Solution method

Assuming the separation of variables and expanding all fields into Fourier
series in the circumferential coordinate φ, we obtain the infinite series of sets
of equations which define the general solution of the buckling problem (2) and
(3). Because the stability equations are linear PDEs, different harmonics can be
uncoupled and we can divide the whole problem into simple cases: each for the
integer–valued wave number n. Thus, the solution of (2) and (3) for each n can be
postulated in the following form:

u(φ, x) = Uepx cos(nφ) , v(φ, x) = Vepx sin(nφ) , w(φ, x) = Wepx cos(nφ) .
(4)

Substituting (4) into (2) we obtain the set of three algebraic equations with regard
to the constants U, V , W. If we solve these equations with respect to, for example,
the constant U we obtain two relations

V = V(ν, ε, n, ρ; p j,U) , W = W(ν, ε, n, ρ; p j,U) , (5)

and the polynomial characteristic equation having the roots p j. For each root
p j the postulated forms (4) together with (5) are special solutions of the stabil-
ity equations (2). Due to the superposition principle, the general solution in the
coordinate x is the sum of all these special solutions.

The structure of the stability equations (2) causes that for n ≥ 1 the polyno-
mial characteristic equation has eight non-zero roots p j which equal the number
of the available boundary conditions. But for n = 0 the polynomial characteristic
equation has only four non-zero roots, contrary to six boundary conditions avail-
able (the second static and geometric boundary conditions are identically satisfied
for n = 0). To avoid this incompatibility we need to specify at least two additional
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constants in the solution when n = 0. To generate these constants we assume
that for n = 0 the displacements are polynomials in the x variable, i.e.

∑3
k=1 Akxk.

Substituting this assumed solution into stability equations (2) and solving the re-
sulting algebraic problem one obtains that u is a linear function of x, v is zero,
and w is constant. This additional solution when n = 0 is added to the general
solution. As a result, the solution of the buckling problem (2) and (3) for any n
takes the modified form

u(φ, x) =
∑

j

U jep j x cos(nφ)−
1−ε(6−8ν)ρ+ε2[1−ν2−2(3+16ν−8ν2)ρ2]

ν[1−2ερ(4−3ν+3ε(6−ν)νρ)]
S x+Z ,

v(φ, x) =
∑

j

V(ν, ε, n, ρ; p j,U j)ep j x sin(nφ) ,

w(φ, x) =
∑

j

W(ν, ε, n, ρ; p j,U j)ep j x cos(nφ)+S ,

(6)

where non-zero Ak’s are named S and Z, respectively.
The solution (6) is then substituted into different sets of incremental homoge-

neous boundary conditions (3) defined at x = ±l, see Table 1. In each case the
resulting algebraic equations describe linear relations between still undetermined
constants U j (and S , Z for n = 0). Coefficients of these constants in those relations
form a 8× 8 matrix (6× 6 matrix) for n ≥ 1 (n = 0). The non-trivial buckling load
ρcrit exists if the determinant of the matrix vanishes.

In the numerical analysis we have substituted 3
10 for Poisson’s ratio and 1

100
for h

R into the resulting matrices. Then, we have generated using M the
symbolic expression for the determinant of the matrix for each positive integer
value of n. These expressions are extremely complex and are explicitly available
only in the computer memory. Assuming that the determinant is the continuous
function of ρ, for any fixed value of l = L/2R the eigenvalues ρcrit of this function
have been detected as follows. For the fixed value of l, the value of determinant
has been probed from ρ = 0 to ρ = 1 with the step ∆ρ. If the determinant has
changed its sign between ρi and ρi+1 then ρi (the smaller value) has been taken
as the value of the buckling load. If the determinant has numerically vanished at
ρi then ρi has been taken as the value of the buckling load. If for a particular l
there have been several values of ρ changing the sign of the determinant on the
line ρ ∈ (0, 1], then the smallest value of such ρ has been interpreted as the value
of the buckling load.

For each probed value of ρi, the determinant has been calculated using a

10



numerical-precision control feature of M. It means that the program
itself has performed internal intermediate calculations with a much higher preci-
sion in order to obtain the numerical value of the determinant with the prescribed
accuracy. In our calculations the accuracy was set to 15 digits. The program en-
sured that 15 digits after decimal point were correct, and the absolute value of the
determinant less than 10−15 was interpretted as numerical zero.

Some difficulty in this procedure has been to properly determine the step size
∆ρ. Too large step size could cause omission of some zeros due to possible faster
sign changes of the probed determinant. The prescribed value of ∆ρ = 0.001
has been assumed to be sufficiently small for detecting all sign changes of the
determinant.

The numerical procedure has been repeated with the following steps: ∆l =

0.005, ∆l = 0.05, ∆l = 0.1 and ∆l = 0.5 in the ranges l ∈ (0.05, 0.2], l ∈ (0.2, 1],
l ∈ (1, 10] and l ∈ (10, 60], respectively. The computations have been performed
for all integer values of n varying from 0 to 14. Each buckling load curve given in
Section 4 represents over 230 buckling loads of the compressed cylinder with dif-
ferent length-to-diameter ratio. To obtain comparable results by any of FEM com-
puter codes one would need to analyse over 14x230 = 3220(!) examples of the
cylinder, each with different boundary conditions and different length-to-diameter
ratio, which would require an enormous unrealistic computational work. Addi-
tionally, the 3-f shell model itself requires to use finite elements with translations
and their first and second surface gradients as dof‘s at the element nodes as well
as C1 interelement continuity. Such elements are very complex and numerically
inefficient. These remarks were the main reasons why in this paper we have not
used the numerical analyses based on the finite element method.

4. Numerical results

The numerical results indicating buckling load curves for the axially com-
pressed perfect cylinder with different sets of boundary conditions (see Table 1)
are given in Figures 2–5. In the Figures the value ρ = 1 corresponds to the clas-
sical value of the buckling load and the results are positioned with respect to the
horizontal, logarithmic axis of the non–dimensional cylinder length l = L

2R . In
the analysis we have divided the range of cylinder’s length into three following
intervals: if l ≤ 0.1 then the cylinder is regarded as short; the practical cylinder
lengths (PCL) cover the interval l ∈ (0.1, 20); long cylinders are those for which
l ≥ 20. Within the interval of PCL we introduce experimental cylinder lengths
(ECL) when l ∈ (0.2, 5). The interval of ECL covers the range of lengths of the
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axially loaded real cylinders used in experiments. Among all fourteen configura-
tions of boundary conditions discussed here we identify C1, C2 and S1, S2 as the
practical sets of boundary conditions, because they seem to be the best approxi-
mations of the real boundary conditions.

Generally, the fourteen types of boundary conditions (Fig. 2-5) can be divided
into three groups. In cases S1, C1, C3 and C5 the buckling load takes generally
high values which practically coincide when l ∈ (0.7, 60). In the second group S2,
C2, C4, C6 and C7 of boundary conditions the buckling load takes intermediate
values and the curves are choppy. The results for this group again practically
coincide when l ∈ (2.5, 60). For the last group of boundary conditions S3, S4, S5,
S6 and S7 the buckling load ρ assumes about one half of the classical value for
PCL and the results practically coincide only when l ∈ (0.1, 20).

Interpretation of the numerical results is splitted into four parts.

4.1. Influence of different approximations in the derivation of the stability prob-
lem

The procedure used in the derivation of the complete stability equations (2)
and the simplified ones (A-27) has been the same. In particular, the same ap-
proximate prebuckling state was assumed and full non-linear kinematic relations
were used. Therefore, the only difference in derivation of stability equations (2)
and (A-27) was the starting point: the equilibrium equations. The complete sta-
bility equations (2) were derived from the two-dimensionally exact equilibrium
equations, whereas the simplified ones (A-27) were derived using the equilib-
rium equations with only underlined terms (Opoka and Pietraszkiewicz, 2009, eq.
(21)), where terms of the order of error introduced by the constitutive equations
were omitted. Thus, differences between the results can be directly attributed to
elimination of supposedly small terms from the equilibrium equations, because
we have used the same exact clamped boundary condition C1.

The numerical results obtained from the complete stability problem (C1 curve)
and from the simplified one (C1S curve) are shown in Figure 2. For ECL, differ-
ences between the results are small, but with increase of the cylinder length the
simplified stability equations lead to more and more overestimated results. This
reflects a similar conclusion suggested by Buchwald (1967, 1968) within the lin-
ear first-approximation theory of thin elastic shells. He found that some simplified
versions of the linear shell equations for the cylinder, obtained by omitting some
supposedly small terms, led to incorrect solution for long cylinders. Hence, some
supposedly small terms are, in fact, important and cannot be omitted for long
cylinders.
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If in the simplified equilibrium equations (Opoka and Pietraszkiewicz, 2009,
eq. (21)), where only the underlined terms are considered, we eliminate Mα

β by
the linear constitutive equation and introduce the simplified kinematic relations
(Brush and Almroth, 1975, eq. (5.7)), then using the perturbation technique we
arrive at the simplified stability equations equivalent to the Donnell ones. Com-
paring ρ = 1 (obtained using the Donnell stability equations for the C1 case) with
C1S curve we note that the difference is small for PCL and the simplification of
kinematic relations becomes important again only for long cylinders. Because of
these differences, we have decided to perform the remaining calculations leading
to corresponding critical curves presented in the Figures 2–5 using the complete
stability problem (2) and (3).

ρ

l

ν = 0.3, h
R = 0.01

N clamped column
� simply-supported column

C2

C1SC1

Figure 2: The buckling load of axially compressed perfect cylinder for boundary conditions C1
and C2.

4.2. Comparison of our results with ones given in the literature
The bifurcation buckling of the axially compressed circular cylindrical shell

with eight sets of boundary conditions was investigated by Yamaki (1984) using
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the stability equations based on the Donnell and Flügge non-linear shell equa-
tions together with corresponding incremental boundary conditions. These sta-
bility problems were derived assuming the membrane prebuckling state. It was
noted that the results based on the Donnell equations, as compared to the Flügge
ones, give more and more overestimated results with the increase of the cylinder
length. We have compared our results with eight ones available in Yamaki (1984)
based on the Flügge stability theory. The results calculated by Yamaki (1984)
represented by dotted curves are shown in Figures 3 and 4.

ρ

l

ν = 0.3, h
R = 0.01

N clamped column
� simply-supported column

S5

S6

S2

S1,S1F

S1,S5

S2,S6

Figure 3: The buckling load of axially compressed perfect cylinder for boundary conditions S1,
S2, S5 and S6.

For the boundary conditions C1, C2, C3, S1, S2 and S3 in the range of PCL
and long cylinders our results practically coincide or are slightly lower than those
of Yamaki. Therefore the Yamaki results for these cases are not shown in the
Figures 3 and 4, except for S1 case in Figure 3 given as an example. Because
of good overall agreement between the corresponding curves, the Flügge stability
equations with his boundary conditions could be preferred as the simpler ones.

However, for short cylinders with boundary conditions S4 and C4 the com-
pletely different type of behaviour of the critical curves is noted between the both
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ρ

l

ν = 0.3, h
R = 0.01

N clamped column
� simply-supported column

C4,C4F

C3

C3,S3

S4,S4F ,C4,C4F

C4

C4,S4

S3,S4F

S3

S4

S4F ,S3

Figure 4: The buckling load of axially compressed perfect cylinder for boundary conditions S3,
S4, C3 and C4.

formulations (Fig. 4). With decrease in the cylinder length the corresponding
curves by Yamaki (1984) increase and exceed ρ = 1, whereas our results show that
the resistance to buckling decreases in that range. This discrepancy in asymptotic
behaviour of the critical curve for the boundary conditions S4 was revealed al-
ready by Simmonds and Danielson (1970), who compared their results with those
obtained from the Donnell shell equations, and their result agrees completely with
our curve in the S4 case. Simmonds and Danielson (1970) proved this behaviour
for short cylinders using the ring–beam theory and cited the similar result noted
by Koiter (1967). Similar asymptotic behaviour of the critical load parameter for
short cylinders obtained from our stability analysis suggests that it is rather the
result of using in our analysis the correct, integrable form of the geometric and
associated work–conjugate static boundary conditions.

4.3. Relaxation of geometric boundary conditions as a factor for decreasing the
buckling load

The exchange of the geometric boundary constraint u = 0 for the static work–
conjugate boundary condition d1 = 0 causes the following transition between
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ρ

l

ν = 0.3, h
R = 0.01

N clamped column
� simply-supported column

S7

C5

C6

C6,C7

C7

Figure 5: The buckling load of axially compressed perfect cylinder for boundary conditions C5,
C6, C7 and S7.

types of boundary conditions: C1→C2, C3→C4, C5→C6, S1→S2, S3→S4 and
S5→S6, see Table 1. Generally, this exchange causes that ρcrit takes smaller values
and within the range of PCL the difference between the corresponding results
increases as the length increases. In the range of ECL the maximal difference is
about 20%.

The exchange of boundary constraint v = 0 (w = 0) for the static work–
conjugate boundary condition d2 = 0 (d3 = 0) leading to transitions C1→C3,
C2→C4, S5→S7 (C1→C5, C2→C6, S3→S7) causes no effect within PCL. In
the transition C5→C7 (C3→C7 for w = 0) we have the same behaviour as in the
transition C1→C2 described above. Much more interesting are transitions S1→S3
and S2→S4 ( S1→S5 and S2→S6 for w = 0). In these cases ρcrit falls down to
about one half of the classical value in the range of PCL. In cases S1→S3 and
S2→S4 this phenomenon was noticed already by Ohira (1961), Hoff and Rehfield
(1965), and Almroth (1966). The difference is particularly large for ECL and
decreases as the length l increases.

The exchange of the constraint w′ = 0 for d4 = 0 causes the transition from the
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clamped to the corresponding simply supported boundary conditions. Essentially
the same results are obtained for transitions between practical boundary condi-
tions C1→S1 and C2→S2. But for the remaining ones Ci→Si, i = 3, .., 7, ρcrit

falls down to about one half of the classical value for PCL. The difference is par-
ticularly large for ECL and decreases as the length l increases.

Comparing the results between transitions within the clamped group and within
the simply supported group of boundary conditions it is evident, especially for
ECL, that the range of changes of ρcrit is much smaller for the clamped group.
Therefore, assuring the absence of rotation of the cylinder lateral boundary w′ = 0
should cause the smaller scatter (due to uncertainty of real boundary conditions)
in experimental buckling loads of the axially compressed cylinder. Assuring the
condition w′ = 0 is also important for longer cylinders, within the range of PCL,
but differences between the results become smaller.

4.4. Behaviour of long cylinder as Euler column
The buckling load for the axially compressed Euler column with simply-supported

(clamped) boundaries is defined in our terms as ρ = π2

16l2ε (ρ = π2

4l2ε ), and its probed
values are denoted in Figures 2–5 by black squares (black triangles). It is evi-
dent from the results that the axially compressed circular cylinder with the length
parameter l > 20 and boundary conditions C2, S2, C4, S4, C6, S6, C7 and S7
looses its global stability as the simply-supported Euler column, while the axially
compressed very long cylinder l > 40 with C1, S1, C3, S3, C5 and S5 boundary
conditions behaves itself as the clamped Euler column. Comparing definitions of
the boundary conditions given in Table 1, the axially loaded long cylinder behaves
as an axially loaded clamped column if its boundaries are constrained as u = v = 0
or u = w = 0. In the remaining cases the axially loaded long cylinder behaves
as an axially loaded simply supported column. Therefore, the condition u = 0
indicating that the global rotation of the shell edge as a whole is not allowed, is
necessary but not sufficient for the axially loaded long cylinder to behave as an
axially loaded clamped column.

For short cylinders, identification of the geometric factors in the boundary
conditions C4, S4, S5, S6 and S7 responsible for decrease of ρcrit as l tends to
zero takes no effect.

5. Conclusions

This paper has concentrated on two aspects of stability behaviour of the axially
compressed circular cylinder: the influence of different boundary conditions and
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different approximations in the non-linear BVP on the resulting buckling loads.
We have noted that:

• The estimation procedure, in which terms of the order of error introduced by
the constitutive equations into the BVP have been omitted, leads to elimina-
tion of some supposedly small terms from the corresponding shell buckling
problem. For long cylinders this elimination results in overestimated buck-
ling loads.

• Using the simplified kinematic relations causes that the buckling load be-
comes overestimated as well, especially for long cylinders.

• The results obtained from our complete formulation of the shell buckling
problem coincide in most cases with the available results following from
the Flügge stability equations. However, the entirely different asymptotic
behaviour has appeared for S4 and C4 boundary conditions when the length
of the short cylinder is decreasing. We explain this behaviour by complete-
ness of work–conjugate boundary conditions used in our analysis.

• Besides the well-known case of relaxing the boundary condition v = 0 (tran-
sitions S1→S3 and S2→S4 ), which causes that the buckling load falls down
to about one half of the classical value for PCL, we have also discovered that
relaxing boundary conditions w = 0 (transitions S1→S5 and S2→S6) and
w′ = 0 (transitions Ci→Si, i = 3, .., 7) also causes similar effects. Particu-
larly important seem to be the noted dramatic drop of the buckling loads for
transitions S1→S3, S2→S4, S1→S5 and S2→S6.

• The wide scatter of numerical results in the range of ECL for simply sup-
ported cylinders, contrary the to corresponding small scatter for clamped
cylinders, suggests that the buckling load of the axially compressed cylin-
der is very sensitive to accurate modelling of the rotations allowed at the
boundary. Ideally clamped boundary usually assumed in the theoretical and
numerical analyses cannot be assured in experiments, because the fixation
of the boundary rotation is usually not complete in the test setups. Impos-
sibility to accurately model the real boundary conditions seems to be one
of the major reasons of discrepancy between theoretical and experimental
buckling loads because according to the most up–to–date experiments pre-
sented by Singer et al. (2002) buckling load is in the range ρcrit ∈ (0.4, 0.96).

18



References

Almroth, B. O., 1966. Influence of edge conditions on the stability of axially
compressed cylindrical shells. AIAA Journal 4 (1), 134–140.

Amabili, M., 2008. Nonlinear Vibrations and Stability of Shells and Plates. Cam-
bridge Univ. Press.

Arbocz, J., Babcock, C. D., 1969. The effect of general imperfections on the buck-
ling of cylindrical shells. Journal of Applied Mechanics 36 (1), 28–38.

Arbocz, J., Starnes, J. H., 2002. Future directions and challenges in shell stability
analysis. Thin–Walled Structures 40 (9), 729–754.

Babcock, C. D., 1983. Shell stability. Journal of Applied Mechanics, Trans.
ASME 50, 935–940.

Brush, D. O., Almroth, B. O., 1975. Buckling of Bars, Plates, and Shells. New
York: McGraw-Hill.

Buchwald, V. T., 1967. Some problems of thin circular cylindrical shells i. the
equations. Journal of Mathematics and Physics 46, 237–252.

Buchwald, V. T., 1968. Some problems of thin circular cylindrical shells ii. the
infinite crack. Journal of Mathematics and Physics 47, 57–66.

Budiansky, B., 1968. Notes on non-linear shell theory. Journal of Applied Me-
chanics 35 (2), 393–401.

Bushnell, D., 1981. Buckling of shells–pitfall for designers. AIAA Journal 19 (9),
1183–1226.
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A. Appendix: Boundary value and buckling problems for thin circular cylin-
der

A.1. Geometry of the finite perfect cylinder
The position vector of the circular cylindrical surface M is postulated in the

form, see Fig. 6,
r = R cos φ i + R sin φ j + z k , (A-1)

where R is the radius of the cylinder. The surface curvilinear coordinates vary in
the ranges φ ∈ (0, 2π] and z ∈ [−L/2, L/2], where L is the length of the cylinder.
The frame {i, j,k} denotes the orthonormal base in the Euclidean space. Taking
into account (A-1) and assuming that (θ1, θ2) = (φ, z), the surface base vectors in
M are

a1 =
∂r
∂φ

= −R sin φ i + R cos φ j , a2 =
∂r
∂z

= k ,

a1 =
a2×n

a1 ·(a2×n)
= −

1
R

(sin φ i − cos φ j) , a2 =
n×a1

a1 ·(a2×n)
= k , (A-2)

n =
a1 × a2

|a1 × a2 |
= cos φ i + sin φ j .
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Using (A-2) we can calculate the contravariant components aαβ of the metric ten-
sor, mixed components bαβ of the curvature tensor, and Christoffel symbols Γλαβ of
the cylinder:

aαβ =

[
R−2 0
0 1

]
, bαβ =

[
−R−1 0

0 0

]
, Γ1

αβ = Γ2
αβ =

[
0 0
0 0

]
.

(A-3)
Since all Christoffel symbols vanish, the covariant differentiation on the cylinder
reduces to the partial differentiation.

We assume that both boundaries ∂M1 and ∂M2 of the cylinder are perpen-
dicular to its generators. With every point of ∂M we associate the orthonormal
triad {τ, ν,n}. Since the vector n is already defined in (A-2) and the unit nor-
mal ν is always assumed to be directed outward of ∂M , the direction of τ is
uniquely established by the right-handed cross product, see Fig. 6. Comparing

∂M1

∂M2

L
2

L
2

s

s

r

Ri

j
k

φ

z

τ

ν n

x3

x2

x1

τ

ν

n

n

a2

a1

Figure 6: Surface and boundary base vectors on the cylinder.

directions between the boundary and surface base vectors and using the relations
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τατα = νανα = 1, the components of boundary vectors τ and ν read (upper signs
correspond to ∂M1, lower ones to ∂M2 )

τ1 = ∓R , τ1 = ∓R−1 , ν2 = ν2 = ±1 , τ2 = τ2 = ν1 = ν1 = 0 . (A-4)

Using (A-3) and (A-4), the curvatures and torsions of ∂M1 and ∂M2 are

στ = −R−1 , σν = ττ = τν = ρτ = ρν = 0 . (A-5)

The quantities presented here were obtained using the package ShellGeom.m.

A.2. Non-dimensional variables
All quantities appearing in the non-linear BVP of thin elastic shells formulated

by Opoka and Pietraszkiewicz (2009) are supposed to be defined in appropriate SI
units. Denoting by [·] SI units of the quantity, various fields of our problem have
units indicated below

[φ, ν, ε, A〈2〉, ν, τ,n, a2, a2, e〈1〉, e〈2〉, a = δαβaα ⊗ aβ,γ = γαβaα ⊗ aβ] = 1 ,

[A] =
m
N
, [D] = N ·m , [N = Nαβāα ⊗ āβ,N∗ = N∗νν+N∗ττ+N∗n,h = mαāα] =

N
m
,

[b = bαβaα ⊗ aβ,χ = χαβaα ⊗ aβ, a1] =
1
m
, [E,p = pαāα + pn̄] =

N
m2 ,

[M = Mαβāα ⊗ āβ,H∗ = M∗
ν ν̄+M∗

τ τ̄] = N , [z, h,R, A〈1〉, a1,u] = m .

(A-6)

The independent variable φ is already non-dimensional. For the coordinate z
we postulate change of variables z = R x, where the new non-dimensional variable
x is introduced. This change affects partial differentiation on the cylinder ∂

∂zn =
1

Rn
∂
∂xn . Since ds = a1dφ, ds2 = R2 (dφ)2 and dsν = a2dz, ds2

ν = (dz)2 = R2 (dx)2, it
also affects partial differentiation at the cylinder boundaries:

(·),s = (·),α τα = ∓ 1
R
∂
∂φ

(·) , (·),ν = (·),α να = ± 1
R
∂
∂x (·) . (A-7)

In order to express any second order tensor in terms of components having the
same physical meaning, we must rewrite the tensor in a non-dimensional unit base
vectors. In orthogonal coordinates we have a12 = 0 and any second order tensor
T can be expressed as

T = Tα
β aα ⊗ aβ =

(
Tα
β

A〈α〉
A〈β〉

)
e〈α〉 ⊗ e〈β〉 , (A-8)
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where the non-dimensional unit base vectors are denoted by e〈α〉, and A〈α〉 =
√

aα · aα. The terms in parentheses in (A-8), called the physical components of
the tensor T, are expressed in the same physical units as the corresponding surface
tensor T itself. From (A-6) we note that the surface strain tensor γ, the modified

surface curvature tensor χ (where χαβ =

√
ā
a b̄αβ ) and the surface displacement

vector u have the same physical dimensions as 1, 1/R2 and R, respectively.
Using (A-4) and (A-8), and taking into account that now A〈1〉 = R, A〈2〉 = 1,

mixed components γαβ and χαβ , contravariant components of u as well as their phys-
ical components at the boundary, components of the surface load p and the surface
moment h, as well as components of the boundary force N∗ and the boundary mo-
ment H∗ can be expressed in terms of the following non-dimensional functions:

γ1
1 = γττ = γφ(φ, x) , γ2

2 = γνν = γx(φ, x) , γ2
1 = R2γ1

2 = −Rγντ = Rγxφ(φ, x) ,

χ1
1 = χττ = 1

Rχφ(φ, x) , χ2
2 = χνν = 1

Rχx(φ, x) , χ2
1 = R2χ1

2 = −Rχντ = χxφ(φ, x) ,

u1 = ∓ 1
Ruτ = v(φ, x) , u2 = ±uν = R u(φ, x) , u3 = u3 = R w(φ, x) ,

p1 = D
R2 pφ(φ, x) , p2 = D

R3 px(φ, x) , p = D
R3 p(φ, x) ,

c1 = 1
R2 c1 = D

R3 cφ(φ, x) , c2 = c2 = D
R2 cx(φ, x) ,

N∗ν = D
R2 N∗ν (φ, x) , N∗τ = D

R2 N∗τ(φ, x) , N∗ = D
R2 N∗(φ, x) ,

M∗
ν = D

R M∗
ν(φ, x) , M∗

τ = D
R M∗

τ(φ, x) .
(A-9)

Please note that some of the relations in (A-4), (A-7), and (A-9) have different
signs at two different boundaries of the cylinder. Therefore, when only half of the
cylinder is analysed the forms of boundary condition at different boundaries must
be checked whether they are the same indeed.

A.3. The equilibrium BVP for the finite cylinder
Let us transform the BVP (Opoka and Pietraszkiewicz, 2009, eqs. (21), (41))

in the following way:

• substitute the constitutive equations of the first–approximation geometri-
cally non–linear theory of thin elastic shells for Nαβ, Mαβ and introduce χαβ
(Opoka and Pietraszkiewicz, 2009, eqs. (44), (3)2), then apply the relations( √a

ā

)
|β= −

(
a
ā

) 3
2 gβ,

( √ a
ā

)
|βα= 3

(
a
ā

) 5
2 gβgα −

(
a
ā

) 3
2 gβ|α,

(
a
ā

)
|β= −2

(
a
ā

)2
gβ, where

gβ = (1 + 2γλλ)γ
α
α|β −2γλαγ

α
λ|β;
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• multiply two tangential equilibrium equations by ( ā
a )2, the third one by ( ā

a )
5
2 ,

while the first three static boundary conditions by ā
a l2
ττ and the fourth one

by ( ā
a )

1
2 , and then expand covariant derivatives and expressions containing

dummy indices;

• substitute geometric quantities (A-3), (A-4) and (A-5), change the indepen-
dent variable z = Rx, use (A-7) and introduce non-dimensional functions
(A-9).

Then the equilibrium equations (Opoka and Pietraszkiewicz, 2009, eq. (21)) are
transformed to the following system of three PDEs in strains γxφ, γx, γφ and mod-
ified curvatures χxφ, χx, χφ as intermediate dependent variables that describe the
deformed state of the cylinder:

( ā
a )2

{
(1−ν+2γφ+2γx)γ′xφ+(1+3γφ+νγx)γ�

φ+(ν+νγφ−γx)γ�
x+2γxφ[γ′φ+γ′x+(1−ν)γ�

xφ]
}

+ε2(1−ν2)
{

ā
a

[
χφ(2χ′xφ+3χ�

φ+νχ�
x)+2χxφ(χ′φ+χ′x+(1−ν)χ�

xφ)+χx(2χ′xφ+νχ�
φ−χ

�
x)
]

−
[
3χ2

φ+2νχφχx−χ
2
x+2(1−ν)χ2

xφ+

√
ā
a (χφ−νχx)

][
(1+2γx)γ�

φ+(1+2γφ)γ�
x−4γxφγ

�
xφ
]

−2χxφ

[
2(χφ+χx)+

√
ā
aν

][
(1+2γx)γ′φ+(1+2γφ)γ′x−4γxφγ

′
xφ
]
+( ā

a )
3
2
(
χ�
φ+2νχ′xφ−νχ

�
x

−χφcφ−χxφcx
)
+( ā

a )2 pφ
}

= 0 ,

( ā
a )2

{
(1−ν+2γφ+2γx)γ�

xφ+(ν+νγx−γφ)γ′φ+(1+νγφ+3γx)γ′x+2γxφ[γ�
φ+γ�

x+(1−ν)γ′xφ]
}

+ε2(1−ν2)
{

ā
a

[
χφ(2χ�

xφ−χ
′
φ+νχ′x)+2χxφ(χ�

x+(1−ν)χ′xφ+χ�
φ)+χx(2χ�

xφ+νχ′φ+3χ′x)
]

−
[
3χ2

x+2νχφχx−χ
2
φ+2(1−ν)χ2

xφ−

√
ā
a (χφ−νχx)

][
(1+2γx)γ′φ+(1+2γφ)γ′x−4γxφγ

′
xφ
]

−2χxφ

[
2(χφ+χx)+

√
ā
a

][
(1+2γx)γ�

φ+(1+2γφ)γ�
x−4γxφγ

�
xφ
]
−( ā

a )
3
2
(
χ′φ−νχ

′
x−2χ�

xφ

+χxφcφ+χxcx
)
+( ā

a )2 px

}
= 0 ,

( ā
a )2

{
(χφ+νχx)γφ+(χx+νχφ)γx+2(1−ν)χxφγxφ−ε

2(1−ν2)
[
χ′′x +χ��

φ+2(1−ν)χ′�xφ

+ν(χ′′φ +χ��
x )−

√
ā
a (p+c′x+c�

φ)
]}
−ε2(1−ν2)

(
d0−

√
ā
ad1−

ā
ad2−( ā

a )
3
2 d3

)
= 0 ,

(A-10)
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where the expressions di in (A-10)3 are

d0 =6(1−ν)χxφ

{
(1+2γx)

[
(1+2γφ)(γ′xγ

�
φ−γ

′
φγ

�
x)+2γxφ(γ′φ

2
+γ�

φ(γ
�
x−2γ′xφ))

]
+2(1+2γφ)γxφ[γ�

x
2

+γ′x(γ
′
φ−2γ�

xφ)]−8γ2
xφ
[
γ′φγ

′
xφ+γ�

xφ(γ
�
x−2γ′xφ)

]}
−(1+2γφ)[(χφ+(2−ν)χx)χ2

xφ+(χx+νχφ)χ2
x]

+4γxφχxφ[χ2
φ+χ2

x+(1+ν)χφχx+(1−ν)χ2
xφ]−(1+2γx)[(χx+(2−ν)χφ)χ2

xφ+(χφ+νχx)χ2
φ]

+3(χφ+νχx)
{
8γ2

xφ(γ
�
xφγ
′
φ−γ

′
xφγ

�
φ)+(1+2γx)(1+2γφ)[γ�

φγ
�
x+γ′φ(γ

′
φ−2γ�

xφ)]

+(1+2γφ)2[γ�
x

2
+γ′x(γ

′
φ−2γ�

xφ)]+2(1+2γφ)γxφ[γ′xγ
�
φ+2(2γ′xφ−γ

�
x)γ

�
xφ−γ

′
φ(2γ

′
xφ+γ�

x)]
}

+3(χx+νχφ)
{
8γ2

xφ(γ
′
xφγ

�
x−γ

�
xφγ
′
x)+(1+2γx)(1+2γφ)[γ′φγ

′
x+γ�

x(γ
�
x−2γ′xφ)]

+(1+2γx)2[γ′φ
2
+γ�

φ(γ
�
x−2γ′xφ)]+2(1+2γx)γxφ[γ′xγ

�
φ+2(2γ′xφ−γ

�
x)γ

�
xφ−γ

′
φ(2γ

′
xφ+γ�

x)]
}
,

d1 =2
{
8γ2

xφγ
′
xφ+(1+2γx)[(1+2γx)γ�

φ+(1+2γφ)γ�
x−2γxφ(γ′φ+2γ�

xφ)]−2γxφ(1+2γφ)γ′x
}

(γ�
φ−νγ

�
x+2νγ′xφ)−2

{
8γ2

xφγ
�
xφ+(1+2γφ)[(1+2γx)γ′φ+(1+2γφ)γ′x−2γxφ(γ�

x+2γ′xφ)]

−2γxφ(1+2γx)γ�
φ

}
(γ′φ−νγ

′
x−2γ�

xφ)+(1+2γφ)(χ2
xφ+νχ2

x)+(1+2γx)(χ2
φ+νχ2

xφ)−4γxφχxφ(χφ+νχx) ,

d2 =2(1−ν)
{
χ′xφ[2γxφγ

′
φ−(1+2γφ)γ�

x]−χ
�
xφ[(1+2γx)γ′φ−2γxφγ

�
x]
}
−2(1+ν)(χφ+χx)γ′�xφ

+(χ′φ+νχ′x)
[
(1+2γφ)(γ′φ−2γ�

xφ)+2γxφγ
�
φ

]
−(χ�

φ+νχ�
x)
[
(1+2γx)γ�

φ+2γxφ(γ′φ−2γ�
xφ)

]
+(χ�

x+νχ�
φ)
[
(1+2γx)(γ�

x−2γ′xφ)+2γxφγ
′
x
]
−(χ′x+νχ′φ)

[
(1+2γφ)γ′x+2γxφ(γ�

x−2γ′xφ)
]

+4(1−ν)χxφ
[
γxφ(γ′′φ −2γ′�xφ+γ��

x )+γ′xγ
�
φ+γ′φ(γ

′
xφ−γ

�
x)−γ

�
xφ(2γ

′
xφ−γ

�
x)
]

+(χx+νχφ)
[
(1+2γx)(γ′′φ +γ��

x )−4γxγ
′�
xφ+2γ�

x(γ
�
x−3γ′xφ)+2γ′x(γ

′
φ+γ�

xφ)
]

+(χφ+νχx)
[
(1+2γφ)(γ′′φ +γ��

x )−4γφγ′�xφ+2γ′φ(γ
′
φ−3γ�

xφ)+2γ�
φ(γ

�
x+γ′xφ)

]
,

d3 =2
[
γ′φ(γ

′
φ−νγ

′
x−3γ�

xφ)+γ
′
xφ(γ

�
φ+2νγ′xφ−3νγ�

x)+γ
�
xφ(2γ

�
xφ+νγ′x)−γ

�
x(γ

�
φ−νγ

�
x)
]

− (1+2γx)(γ��
φ−νγ

��
x +2νγ′�xφ)+(1+2γφ)(γ′′φ −νγ

′′
x −2γ′�xφ)+4γxφ(γ��

xφ+νγ′′xφ) .
(A-11)

The small parameter ε in (A-10) is defined as ε2 = AD/R2 = h2/[12(1 − ν2)R2],
and partial derivatives are denoted as (),x = ()′, (),φ = ()�.

The work–conjugate boundary conditions (Opoka and Pietraszkiewicz, 2009,
eq. (41)) at x = ±l, l = L/2R, are transformed to the following form expressed in
surface strains γxφ, γx, γφ, modified curvatures χxφ, χx, χφ and displacements u, v,
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w:

lνν(Cν−G∗ν)+lντ(Cτ−G∗τ)+mν(D− F ∗,s )−KN∗ν = 0 or u = ± 1
RC1 ,

lτν(Cν−G∗ν)+lττ(Cτ−G∗τ)+mτ(D− F ∗,s )−KN∗τ = 0 or v = ∓ 1
RC2 ,

ϕν(Cν−G∗ν)+ϕτ(Cτ−G
∗
τ)+m(D− F ∗,s )−KN∗ = 0 or w = 1

RC3 ,

χx+νχφ+

√
ā
aν+aτM∗

ν = 0 or mν = C4m .

(A-12)
The coefficients appearing in (A-12) are defined by

lνν = 1+u′ , lντ = −u� , mν = ±[v′(w�−v)−w′(1+w+v�)] ,

lττ = 1+w+v� , lτν = −v′ , mτ = ±[(w�−v)(1+u′)−w′u�] ,

ϕν = ±w′ , ϕτ = ±(v−w�) , m = (1+w+v�)(1+u′)−v′u� ,
(A-13)

and

Cν =( ā
a )2(1+w+v�)2(γx+νγφ)+ε2(1−ν2)

{
(1+w+v�)2

(
χx+νχφ+

√
ā
aν

)
[(1+2γφ)χx−2γxφχxφ]

+
[
2(1−ν)(1+w+v�)2χxφ + v′(1+w+v�)

(
χx+νχφ+

√
ā
aν

)]
[(1+2γφ)χxφ−2γxφχφ]

}
,

Cτ =( ā
a )2(1+w+v�)2(ν−1)γxφ−ε

2(1−ν2)
{
(1+w+v�)2

(
χx+νχφ+

√
ā
aν

)
[(1+2γx)χxφ−2γxφχx]

+
[
2(1−ν)(1+w+v�)2χxφ + v′(1+w+v�)

(
χx+νχφ+

√
ā
aν

)]
[(1+2γx)χφ−2γxφχxφ]

}
,

D = ± ε2(1−ν2)
{
(1+w+v�)2

{√
ā
a [(1+2γφ)(γ′φ−νγ

′
x−2γ�

xφ)+2γxφ(γ�
φ−νγ

�
x+2νγ′xφ)]

+2(1−ν)χxφ[(1+2γx)γ�
φ+2γxφ(γ′φ−2γ�

xφ)]+(χx+νχφ)[(1+2γx)γ′φ−2γxφγ
�
x]

+(χφ+νχx)[(1+2γφ)(γ′φ−2γ�
xφ)+2γxφγ

�
φ]−

ā
a [χ′x+νχ′φ+2(1−ν)χ�

xφ]
}

− ā
a

{
(1+w+v�)v′(χ�

x+νχ�
φ)+

(
χx+νχφ+

√
ā
aν

)
[(1+w+v�)v′�−v′(w�+v��)]

}
+(1+w+v�)(χx+νχφ)v′[(1+2γx)γ�

φ+(1+2γφ)γ�
x−4γxφγ

�
xφ] + ( ā

a )
3
2 (1+w+v�)2cx

}
,

K =( ā
a )2ε2(1−ν2)(1+w+v�)2 .

(A-14)
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Terms in (A-12) containing the external boundary moments are of the form

G∗ν =a−1
τ ε

2(ν2−1)(1+w+v�)[(1+2γφ)χxφ−2γxφχφ]
[
S M∗

ν−

√
ā
a (1+w+v�)M∗

τ

]
,

G∗τ =a−1
τ ε

2(1−ν2)(1+w+v�)[(1+2γx)χφ−2γxφχxφ]
[
S M∗

ν−

√
ā
a (1+w+v�)M∗

τ

]
,

F ∗,s = ∓ ε2(1−ν2)
{
( ā

a )
3
2 (1+w+v�)2(a−1

τ M∗
τ
�
−a−3

τ γ
�
φM∗

τ)+a−1
τ

ā
aS [(w�+v��)M∗

ν−(1+w+v�)M∗
ν
�]

−a−1
τ (1+w+v�)

{
ā
a (S �−a−2τ S γ�

φ)−S [(1+2γφ)γ�
x+(1+2γx)γ�

φ−4γxφγ
�
xφ]

}
M∗

ν

}
,

(A-15)

where

S = u�[v′u�−(1+u′)(1+w+v�)]−(v−w�)[v′(w�−v)−w′(1+w+v�)] ,
ā
a = (1 + 2γφ)(1 + 2γx) − 4γ2

xφ , aτ =
√

1 + 2γφ .
(A-16)

The BVP (A-10) to (A-16) describes the equilibrium prebuckling state of the
finite cylinder. It is expressed in terms of the surface strain measures and modified
curvatures as intermediate dependent functions. Please note that the upper (lower)
signs in (A-10) to (A-15) correspond to ∂M1 (∂M2).

The non-dimensional surface strains and modified curvatures are expressed in
displacements by the exact kinematic relations

γφ =w + v� +
1
2
[
u�2 + (w + v�)2

+ (w� − v)2]
,

γxφ =
1
2
[
u� + v′ + u′u� + v′(w + v�) + w′(w� − v)

]
,

γx =u′ +
1
2
(
u′2 + v′2 + w′2

)
,

χφ =[(1 + w + v�)(1 + u′) − v′u�](w�� − 2v� − w − 1) + [w′u� − (1 + u′)(w� − v)](v�� + 2w� − v)
+ [v′(w� − v) − w′(1 + w + v�)]u�� ,

χxφ =[(1 + w + v�)(1 + u′) − v′u�](w′� − v′) + [w′u� − (1 + u′)(w� − v)](w′ + v′�)
+ [v′(w� − v) − w′(1 + w + v�)]u′� ,

χx =[(1 + w + v�)(1 + u′) − v′u�]w′′ + [w′u� − (1 + u′)(w� − v)]v′′

+ [v′(w� − v) − w′(1 + w + v�)]u′′ ,
(A-17)
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which should be substituted into (A-10)-(A-15) in order to obtain the BVP ex-
pressed explicitly in terms of displacements. Unfortunately, such a displacement
BVP is extremely complex and is available only in the computer memory, from
which it can easily be made available, if necessary.

A.4. The membrane prebuckling state of axially compressed cylinder
In case of bifurcation buckling of the axially compressed circular cylindrical

shell, only the axial force components parallel to the undeformed cylinder’s gen-
erators is applied at its boundaries. Let us define this boundary force component
by

N∗ν = −
2ρ
ε
, (A-18)

which compresses the cylinder when ρ takes positive values. The value ρ = 1
corresponds to the stress σcl = 2εEh. This value was first calculated by Lorenz
(1911) by the linear stability theory of the axially compressed circular cylindrical
shell with simply supported boundary conditions, see also Brush and Almroth
(1975), Yamaki (1984). In this paper, we call ρ = 1 the classical value of the
buckling load.

It is assumed that the axial compressive force causes contraction of the cylin-
der which is allowed to homogeneously expand in the radial direction. Such an
assumption produces the following prebuckling equilibrium state for the axial u,
circumferential v and radial w components of the displacement vector being the
approximate solution of (A-10) to (A-17) with all external loads zero, except the
force component N∗ν given in (A-18):

u0(φ, x) = Ux = [−2ερ(1 + 3ερ) + O(ε3)]x ,
v0(φ, x) = 0 ,

w0(φ, x) = W = 2ενρ[1 + (2 − ν)ερ] + O(ε3) ,
(A-19)

where terms of the order O(ε3) are omitted in the solution. The solution (A-19)
satisfies exactly the first two equilibrium equations as well as the second and third
static boundary conditions. The third equilibrium equation and the first static
boundary condition are satisfied within the error O(ε3). The remaining fourth
static boundary condition is satisfied within the error O(ε). The first three geo-
metric boundary conditions are satisfied because of free constants C1, C2, C3. The
remaining fourth geometric boundary condition is satisfied also because of free
constant C4, but in the derivation of incremental boundary conditions we have
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assumed C4 = 0. Because all the non-equilibrated terms are of the order of er-
ror introduced by the constitutive equations (Opoka and Pietraszkiewicz, 2009,
eq. (44)), the solution (A-19) can be considered as the quite accurate prebuckling
equilibrium solution for the axially compressed cylinder satisfying static as well
as geometric boundary conditions.

If we express the surface internal stress and moment resultants by the non-
dimensional functions

N1
1 = D

R2 Nφ(φ, x) , N2
2 = D

R2 Nx(φ, x) , N2
1 = R2N1

2 = D
R Nxφ(φ, x) ,

M1
1 = D

R Mφ(φ, x) , M2
2 = D

R Mx(φ, x) , M2
1 = R2M1

2 = DMxφ(φ, x) ,
(A-20)

then for the equilibrium state (A-19) the surface stress and moment resultants
obtained from the constitutive equations and the kinematic relations are

Nφ = O(1) , Nxφ = O(1) , Nx = −
2ρ
ε

+ O(1) ,
Mφ = O(ε) , Mxφ = O(ε) , Mx = O(ε) ,

(A-21)

where O(1) and O(ε) are errors of the constitutive equations expressed in terms of
the small parameter ε. Solution (A-21) describes, with accuracy up to unavoidable
error in the constitutive equations, the membrane prebuckling state equivalent to
the one used by Yamaki (1984) and in many other papers devoted to this problem.

A.5. Stability equations and corresponding incremental boundary conditions for
the cylinder

The primary equilibrium state u0 being the solution of (A-10) to (A-15) may
become unstable if an infinitesimally close adjacent equilibrium state u1 exists
under the same system of external loads and boundary conditions. The loss of
stability can be detected by the perturbation technique.

Let
u1 = u0 + µu , v1 = v0 + µv , w1 = w0 + µw (A-22)

are values describing an adjacent equilibrium state, where now u, v, w are small
increments of the basic displacement variables u0, v0, w0 that occur at buckling,
and µ is a small parameter. Introducing (A-22) into (A-10) and (A-12) expressed
in displacements we can linearize the resulting equations with regard to the incre-
mental fields and take into account that the fields u0, v0, w0 satisfy the equilibrium
BVP. Allowing no change in the applied loads at buckling, all linear terms in
µ lead to the stability equations and incremental work–conjugate boundary con-
ditions for the perfect cylinder. In order to perform this task we also have to
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transform the square roots of ā
a to the equivalent forms; for example, the expres-

sion ( ā
a )

3
2 has been transformed to the form ā

a

√
ā
a , where ā

a is represented exactly

in strains, whereas
√

ā
a ≈ 1 + γαα. Finally, introducing (A-19) and rejecting terms

which are of the order of error introduced by (A-19), we have obtained the follow-
ing homogeneous stability equations for the axially compressed, perfect circular
cylinder:

A1w��� + A2w′′� + A3u′� + A4v′′ + A5v�� + A6w� = 0 ,

B1(w′�� + νw′′′) + B2u′′ + B3u�� + B4[(1 + ν)v′� + 2νw′] = 0 ,

C1(w′′′′ + 2w′′�� + w����) + C2(u′�� + νu′′′) + C3v′′� + C4v��� + C5w′′

+ C6w�� + C7u′ + C8v� + C9w = 0 ,

(A-23)

with the corresponding sets of incremental work–conjugate boundary conditions

D1w′′+D2u′+D3(v�+w) = 0 or u = 0 ,

E1w′�+E2u�+E3v′ = 0 or v = 0 ,

F1[w′′′+(2−ν)w′��]+F2(u��+νu′′)+F3v′�+F4w′ = 0 or w = 0 ,

G1(w′′+νw��)+G2v�+G3u′+G4w = 0 or w′ = 0 .

(A-24)
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The coefficients in (A-23) and (A-24) are defined as follows:

A1 = 4ε2(1 − ν2)[1 − ε(2 − 5ν)ρ − ε2(7 + 2ν)ρ2] + O(ε5) ,

A2 = 4ε2(1 − ν2)[1 − ε(2 − 4ν − ν2)ρ − ε2(6 + ν + 2ν2)ρ2] + O(ε5) ,

A3 = −(1 + ν)[1 − 2ε(2 − 3ν)ρ − 2ε2(4 + 6ν − 3ν2)ρ2] + O(ε3) ,

A4 = −(1 − ν){1 − ε(6 − 4ν)ρ + 2ε2[2(1 − ν2) − (3 + 8ν)ρ2]} + O(ε3) ,

A5 = −2{1 − 2ε(1 − 4ν)ρ + 2ε2[2(1 − ν2) − (3 − 8ν2)ρ2]} + O(ε3) ,

A6 = −2{1 − 2ε(1 − 4ν)ρ + 2ε2[1 − ν2 − (3 − 8ν2)ρ2]} + O(ε3) ,

B1 = 4ε3(1 − ν2)ρ[ν − ε(1 + 2ν)ρ] + O(ε5) ,

B2 = −2[1 − 2ε(5 − ν − ν2)ρ + 2ε2(2 − 8ν − 3ν2 + 2ν3)]ρ2] + O(ε3) ,

B3 = −(1 − ν)[1 − 2ε(4 − ν)ρ − 2ε2ν(6 + ν)ρ2] + O(ε3) ,

B4 = −1 + ε(6 − 4ν)ρ + 2ε2(3 + 8ν)ρ2 + O(ε3) ,

C1 = −2ε2(1 − ν2)[1 − ε(6 − 4ν)ρ − 2ε2(3 + 8ν)ρ2] + O(ε5) ,

C2 = 4ε3(1 − ν2)ρ[ν − ε(1 + 4ν − 2ν2)ρ] + O(ε5) ,

C3 = 4ε2(1 − ν2)[1 − ε[6 − 4ν − ν2]ρ − ε2(6 + 17ν + 6ν2)ρ2] + O(ε5) ,

C4 = 4ε2(1 − ν2)[1 − ε(6 − 5ν)ρ − ε2(7 + 22ν)ρ2] + O(ε5) ,

C5 = −4ε(1 − ν2)[ρ − ε(ν + 4(1 − ν)ρ2)] + O(ε3) ,

C6 = 4ε2(1 − ν2) + O(ε3) ,

C7 = −2ν[1 − 2ε(4 − 3ν)ρ − 6ε2(6 − ν)νρ2] + O(ε3) ,

C8 = −2[1 − 2ε(3 − 4ν)ρ + 2ε2(1 − ν2 − (3 + 16ν − 8ν2)ρ2)] + O(ε3) ,

C9 = −2[1 − 2ε(3 − 4ν)ρ + ε2(1 − ν2 − 2(3 + 16ν − 8ν2)ρ2)] + O(ε3) ,

(A-25)
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and

D1 = −4ε3ν(1 − ν2)ρ[ν − ε(1 + 2ν)ρ] + O(ε5) ,

D2 = 2[1 − 2ε(5 − ν − ν2)ρ + 2ε2(2 − 8ν − 3ν2 + 2ν3)ρ2] + O(ε3) ,

D3 = 2ν[1 − ε(6 − 4ν)ρ − 2ε2(3 + 8ν)ρ2] + O(ε3) ,

E1 = 4ε2(1 − ν2)[1 − ν − ε(2 − 6ν + 3ν2)ρ − ε2(6 − 5ν + 2ν2)ρ2] + O(ε5) ,

E2 = −(1 − ν)[1 − 2ε(2 − 3ν)ρ − 2ε2(4 + 6ν − 3ν2)ρ2] + O(ε3) ,

E3 = −(1 − ν)[1 − ε(6 − 4ν)ρ + ε2(4 − 4ν2 − 6ρ2 − 16νρ2)] + O(ε3) ,

F1 = −2ε2(1 − ν2)[1 − ε(6 − 4ν)ρ − 2ε2(3 + 8ν)ρ2] + O(ε5) ,

F2 = 4ε3(1 − ν2)ρ[ν − ε(1 + 4ν − 2ν2)ρ] + O(ε5) ,

F3 = 4ε2(1 − ν2)[1 − ε(6 − 4ν − ν2)ρ − ε2(6 + 17ν + 6ν2)ρ2] + O(ε5) ,

F4 = −2ε(1 − ν2)[2ρ − ε(ν + 8(1 − ν)ρ2)] + O(ε3) ,

G1 = −1 + 2ε(1 − ν)ρ + 2ε2(3 + ν2)ρ2 + O(ε3) ,

G2 = 2ν[1 − ε(3 − 2ν)ρ − ε2(9 + 2ν + 2ν2)ρ2] + O(ε3) ,

G3 = 2ενρ[1 + 2ν + ε(3 + 4ν)ρ] + O(ε3) ,

G4 = ν[1 − 2ε(2 − ν)ρ − 2ε2(6 + 2ν + ν2)ρ2] + O(ε3) .
(A-26)

where the terms O(εk) at the end of each line are omitted because they all fall into
the error introduced by the approximate prebuckling solution (A-19).

If we substitute the prebuckling solution u0(φ, x) = Ux, v0(φ, x) = 0, w0(φ, x) =

W into the general stability problem containing u0, v0, w0 and u, v, w then the co-
efficients Ai, Bi, Ci in (A-25) and Di, Ei, Fi, Gi in (A-26) are not all equal zero.
If we assume (A-19) to contain only the principal terms of the order O(ε), the co-
efficient C6 falls into the error order of the approximate prebuckling solution and
the term C6w�� in (A-23) disappears, which can lead to inaccurate results. There-
fore, in derivation (A-23)–(A-26) we have used the prebuckling state (A-19) in
which the principal terms O(ε) as well as the secondary terms O(ε2) must have
been taken into account. Including tertiary terms O(ε3) in (A-19) takes no effect
on the value of buckling load for the axially compressed cylinder with clamped
boundary condition C1 and, thus, such tertiary terms are not considered in (A-19).

Repeating the above procedure for the simplified BVP, in which only the un-
derlined terms are taken into account (Opoka and Pietraszkiewicz, 2009, eq. (21)),
and using the same prebuckling state (A-19) (the corresponding prebuckling states
differ in tertriary order terms), the following simplified stability equations are ob-
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tained

A1u′� + A2[2w� + 2v�� + (1 − ν)v′′] = 0 ,

B1[(1 − ν)u�� + 2u′′] + A2[(1 + ν)v′� + 2νw′] = 0 ,

C1(w���� + 2w′′�� + w′′′′ − 2v′′� − 2v���) + C2w′′ + C3w�� + C4u′ + C5(v� + w) = 0,
(A-27)

where

A1 = (1 + ν)(1 − 2ερ − 6ε2ρ2) + O(ε3) ,

A2 = 1 + 2ενρ + 2ε2(2 − ν)νρ2 + O(ε3) ,

B1 = 1 − 2ερ − 6ε2ρ2 + O(ε3) ,

C1 = ε2(1 − ν2)(1 − 2ερ − 6ε2ρ2) + O(ε5) ,

C2 = ε(1 − ν2)(2ρ − εν) + O(ε3) ,

C3 = −ε2(1 − ν2) + O(ε3) ,

C4 = ν[1 − 2ε(2 − ν)ρ − 2ε2(4 + 2ν + ν2)ρ2] + O(ε3) ,

C5 = 1 − ε(2 − 4ν)ρ − 6ε2ρ2 + O(ε3) .

(A-28)

The corresponding simplified static boundary conditions are not relevant for the
case of clamped boundary considered in the main body of this paper and therefore
they are not provided here.

The BVP (A-10) and (A-12) as well as the kinematic relations (A-17) and the
general stability problem have been automatically generated using the package
ShellBVP.m.
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