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ABSTRACT: Within the thermomechanics of the Cosserat-type shells undergoing the diffusionless (displacive)
phase transitions developed by Eremeyev & Pietraszkiewicz (2009), we propose the thermodynamic condition
allowing one to determine quasistatic motion of the phase interface on the deformed shell base surface. The
theoretical model is illustrated by example of a thin-walled circular cylindrical tube made of a two-phase elastic
material subject to tensile forces on the one end and clamped on another one. The solution reveals existence of
the hysteresis loop which size depends upon values of several loading parameters.

1 INTRODUCTION

Phase transition (PT) phenomenon in continuous
media originally described by Gibbs in 1875-1878,
see Gibbs (1928), was developed in a number of
papers summarised in several recent books for exam-
ple by Bhattacharya (2003), Abeyaratne & Knowles
(2006), Lagoudas (2008), and Berezovski et al. (2008).
In this approach one assumes existence of the sharp
phase interface being a sufficiently regular surface
dividing different material phases. The position and
motion of the phase interface itself is among the most
discussed issues in the field. In the literature many
model one-dimensional (1D) problems were analysed
theoretically, numerically and experimentally which
adequately described behaviour of bars, rods, and
beams made of martensitic materials.

However, experiments on shape memory alloys
and other materials undergoing PT are often per-
formed with thin-walled samples such as thin strips,
rectangular plates or thin tubes.

The non-linear equilibrium conditions of elastic
shells undergoing PT of martensitic type were for-
mulated by Eremeyev & Pietraszkiewicz (2004) and
Pietraszkiewicz et al. (2007) within the dynamically
and kinematically exact theory of shells developed
by Libai & simmonds (1998), Chroscielewski et al.
(2004), and Eremeyev & Zubov (2008). In this shell
theory the translation vector u and rotation tensor Q
fields are the only independent variables. By anal-
ogy to the 3D case, the two-phase shell was regarded
as the Cosserat surface consisting of two material
phases divided by a sufficiently smooth surface curve.
Existence of such a curve was confirmed by several
experiments on thin-walled samples.
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2 BASIC RELATIONS OF SHELL
THERMOMECHANICS

In the undeformed placement the shell is represented
by the base surface M described by the position vec-
tor x(6%), and orientation of M is defined by the unit
normal vector n(6%), with {#%}, a=1,2 the surface
curvilinear coordinates.

In the deformed placement the shell is repre-
sented by the position vector y = x(x) of the deformed
material base surface N = x(M) with attached three
directors (d, d) such that

y=zx+u, da:Qm,m d=Qn, (l)

where y is the deformation function, u € E the transla-
tion vector of M, and Q € SO(3) the proper orthogonal
tensor, 0T =0~ !, detQ=+1, representing the work-
averaged gross rotation of the shell cross sections from
their undeformed shapes described by (x 4, n).

In the shell undergoing phase transition above
some level of deformation it is assumed that differ-
ent material phases 4 and B may appear in different
complementary subregions N4 and Ny separated by
the curvilinear phase interface D € N. For a piece-
wise differentiable mapping x we can introduce on
M a singular image curve C= x~!(D) separating
the corresponding image regions My = x~!(N,) and
Mg = x~'(Np).

The two-dimensional (2D) local laws of shell ther-
momechanics can be derived by direct and exact
through-the-thickness integration of global 3D bal-
ances of forces, moments, energy and the entropy
inequality, see Eremeyev & Pietraszkiewicz (2009).



After appropriate transformations the resulting 2D
local Lagrangian laws in M\C become

Div,N+f=0,
Div,M + az(NFT —- FNT)+c=0,
p% = plg* + ¢~ +qn) - Diveq

+NeE°+MeK°, )

PH SME+NeE + MoK®+Grad, (1) ¢

where f, ¢ are the resultant surface force and cou-
ple vector fields acting on N\D, but measured per
unit area of M\C, (N,M) € EQ T.M the surface
stress resultant and stress couple tensors of the first
Piola-Kirchhoff type, F = Grad, y the surface defor-
mation gradient, F € E ® T, M, ax(. . .) the axial vec-
tor associated with the skew tensor (.. .), (E°, K °) €
E ® T M the corotational variations of the shell strain
measures work-conjugate to (N, M), and Div, the sur-
face divergence operator on M. Additionally, ¢ and
n are the surface internal energy and entropy den-
sities, o the undeformed surface mass density, g*
the heat influx densities through the upper (+) and
lower (—) shell faces, g1 the internal surface heat sup-
ply density, ¢ the surface heat influx vector, 7 the
through-the-thickness average temperature, 7.7, and
T, temperatures of the external media surrounding
the shell from above and below, and Y=¢—Tn the
surface free energy density.

Along the curvilinear phase interface C, which is
the quasistatically moving singular curve on A , after
appropriate transformations we also obtain the local
Lagrangian jump conditions

T
T

ext

+pg* (1 - T%) +pq” (1 -

[Nv]=0, [Mv]+[yxNuv]=o, 3)
V[[ps]]-i—[[Nu~v]]+[[Mu‘w]]—ﬂq-u]]=O. 4)
Vlpn] - [#q-v] =62 > 0. &)

where the expression [[...] = (...)3—(...)4 means
the jump at C, v the surface unit vector externally nor-
mal to dM, and &2 represents creation of entropy at the
interface C.

For the coherent phase interface both fields yand Q
are supposed to be continuous at C and the kinematic
compatibility conditions along C become
[v] + V[Fv] =0,

[w] +V[KY] =0, (6)

where v u is the virtual translational vector,
® =ax(QQ7) the virtual rotation vector, V =x¢-vthe
exterior normal virtual translation of the phase curve
C, and ¢ a time-like scalar parameter.

For the coherent phase interface

762 = —v{[[,mpﬂ —v NT[Fv]-v-MT[KV]} atc,
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Figure 1. Tension of the thin-walled two-phase tube.

The entropy production 82 remains always non-
negative for all thermodynamic processes. This allows
us to postulate the kinetic equation, describing motion
of the phase interface for all quasistatic processes, in
the form

V=-F@ [Clv), C=pwA-NTF-MT"K, (7)
where F is the non-negative definite kinetic function
depending on the jump of C at C, i.e. F(s)=0 for
¢>0,andA=1—-n®n.

After Berezovski et al. (2008), we assume Fi (¢)in
the form

k(s — )
_ >
1+a(§-‘§0) $ 2 5oy
Fl)=< 0 =60 < ¢ < <, (8)
k
(c+ %) § £~

1—-a(s+<)

Here ¢y describes the effects associated with nucle-
ation of the new phase and action of the surface
tension, a is a parameter describing the limit value
of the phase transition virtual translation, and & is a
positive kinetic factor.

Summarising, the BVP for the shell undergoing
phase transitions consists of the equilibrium equations
(2)1,2 supplemented by appropriate static and kine-
matic boundary conditions for u and 0, the energy
transfer equation (2); with appropriate boundary con-
ditions for 7, the surface entropy inequality (2)4, as
well as the balance equations (3), (6), and (7) along the
interface C. The equation (7); is used to find position
of the curvilinear interface C in its quasistatic motion.

3 EXAMPLE: TENSION OF TWO-PHASE TUBE

We discuss the thin circular cylindrical shell of length
L, radius R, and thickness #» made of material under-
going phase transition. The tube is extended by forces
P uniformly distributed at the right shell boundary,
Figure 1. The left shell boundary at z =0 is clamped.
We assume that the shell deformation is infinitesimal.
We also assume that the deformation process isisother-
mic, and additionally that 7 =T oty = T = const and
g =0. In such a case the problem is reduced to the
stress-induced phase transition.

We consider the 2D polar-elastic strain energy
densities of the isotropic phases, see Eremeyev



& Pietraszkiewicz (2009), with phase transforma-
tion stretch and bending measures. The both material
phases differ by values of the elastic moduli as well
as by values of the energy densities in the undeformed
state.

Under condition given above there exists axisym-
metric deformation state

)

The discussed example can be reduced to solv-
ing the boundary-value problem consisting of the
following system of ordinary differential equations:

u=u(z)e; +w(zle,, ©=p(z)e,

v /. Mg
sz"‘07 N”_..__ —T_er,

5, My, =
(w/R_ELU)v
Nyz = 0,C(1 - v)(w' — ),

Npp = Cv(v' —€p) + Clw/R — ¢p)

Nee=C(/ - ¢,) +Cv

(10)

My =D -v)y', Mry=-~a;D(1-v)%,
u(0) = w(0) = p(0) =
N..(L) =P, NTZ(L) My (L) =0,

where C, D, v, «;, and «, are elastic moduli, while €
is the phase transformation strain. This is the system
of ODE with constant coefficients expressed in terms
of independent functions u, w, ¢. The system (10) has
always the particular solution

u(z)

up(z) = (m + ep> z + const,

(11
”fp) R, v =0,

w(z) =w, = — (C(IP_"U

for which N,, = P, N,, = 0, Ny = 0, M = 0. This
solution describes the axisymmetric membrane equi-
librium state of the cylinder. In the two-phase cylinder
such a solution is possible only when v4s =vz =0 or

= (;’B and ¢! = €5, since otherwise,
(-

CA(IA—VIZ‘) vE) P D>
according to (11), normal translations of parts 4 and
B would not coincide: wy % wp.

We first solve the simplest case when vy = vz =0.
This problem becomes entirely analogous to the 1D
problem discussed by Abeyaratne & Knowles (2006)
as a model problem of the 3D continuum model of PT.
The relation how the force P depends on deformation
in the equilibrium states is illustrated in Figure 2. Here
Ey=u'(L).

If the quasistatic motion of C is governed by the
kinetic equation (7), in Figure 2 the respective graphs
AB' describe the loading and B4’ the unloading. As a
result, in the deformation process we observe the exis-
tence of the hysteresis loop 4B’'BA’ characteristic to
PT of martensitic type. The size of the loop depends
essentially on the form of function F, and particularly
upon values of the kinetic factor & and the parameter
Py determining the loading velocity. When k=k/P,
increases the area of hysteresis loop decreases. Exam-
ples of several deformation paths for different values

of k are givenin Figure 2. It is seen that with the grow-
ing k we obtain the narrowing loops AB'BA’, AB"BA",
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Figure 2. P — E; curves for two-phase shell for different
values of k.
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Figure 3. P — E; curves for ¢y #0.

AB"BA", etc. The limit k — co corresponds both to

the infinitely large kinetic factor £k — oo and to the
infinitely small loading velocity Py — 0. In the limit

k — oo the hysteresis loop reduces to the equilibrium
segment 4B when P=P*. This means in particu-
lar that with the infinitely small loading velocity the
deformation follows the equilibrium path OABC.
When ¢o #0, the corresponding relation P(E;) is
shown in Figure 3. In this case the size of hystere-
sis loop becomes larger with the growing value of ¢p.

But for & — oo the limiting paths reduce to two dif-
ferent respective segments 4, B, and B_A4 ., and the
hysteresis loop takes place also in this limit case.

In the general case the solutions of (10) for transla-
tion and rotations is more complicated. In particular,
for w we obtain
W = Wo(2) + wp,

(12)

Wo = e“R¥(¢1 cOSwWiZ + ¢o sinwyZ)

+€e“"F (3 coswiZ + ¢y sinwiZ), Z=2z/R

where ¢, k = 1,..., 4, are integration constants,

{wr,w1} = {Re,Im}\/Q m + 2iv/4dna —m?/2,
:)
Qg | ?

§=h/R.

— Ceai+14v
m= s

(= 1+v) (12673 + au671),

= (1+v) (1267 +



Figure 4. Shape of the thin-walled two-phase tube after
phase transition (magnified).

# !
P- < ]
///
A/
i T
B
//,
A -
L’
.
.
-
-
.
-
-
-
.
v
P
-
O Ep EL

Figure5. P—Ej curves following from the general solution.

For a thin tube 7, > 7,. Indeed, if one takes v=1/3,
o;=5/6, ¢, =7/10 and §=0.1, then 1 =2.3 and
1y =1601.12, wr =4.537 and w; =4.408, respec-
tively. Hence, we can apply some asymptotic formulae
for the boundary layers.

The general solution of (10) differs essentially from
the previous membrane one, because now we have
also the boundary layer solutions in the neighbour-
hood of the clamped edge and the phase interface, see
Figure 4. The boundary layer parts of the solutions
quickly decay, and far from the clamping and the phase
boundary w becomes constant coinciding with Wp.

Dependence of w upon z leads to the qualitative and
quantitative differences of the general solution as com-
pared with the membrane solution discussed in Figures
2 and 3. In particular, the equilibrium part of the dia-
gram P — E now becomes not a horizontal segment as
before, see AB in Figure 5. The influence of boundary
layer parts of the solution manifests itself most when
£~0and £~L, ie. at the shell edges. Also the shape
and size of the hysteresis loop becomes different when
the general solution is used.
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The proposed 2D model allows one to take into
account several additional factors unavailable in the
existing 1D models of phase transitions, such as solu-
tions of the boundary layer type or more differentiated
ways of loading and unloading. We are also able
to analyse even analytically quite complex problems
which in the 3D models are possible to discuss only
by numerical methods.
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