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ABSTRACT: Within the thermomechanics ofthe Cosserat-Ępe sheils undergoing the diffusionless (displacive)
phase transitions developed by Eremeyev & Pietraszkiewicz (2009), we propose the thermod1łnamic condition
allowing one to determine quasistatic motion of the phase intęrface on the dęformęd shell base srirface. The
theoretical model is illustrated by example of a thin-walled circular cylindrical tube made of a two-phase elastic
materiai subject to tensile forces on the one end and clamped on another one. The solution reveals existence of
the hysteresis loop which size depends upon values of several loading parameters.

On tension of a two-phase elastic tube

1 INTRODUCTION

Phase transition (PT) phenomenon in continuous
media originally described by Gibbs in 1875-1878,
see Gibbs (1928), was developed in a number of
papers summarised in several recent books for exam-
ple by Bhattacharya (2003), Abeyaratne & Knowles
(2006), Lagoudas (2008), and Berezovski et al. (2008).
In this approach one assumes existence of the sharp
phase interface being a sufficiently regular surface
dividing different material phases. The position and
motion of the phase interface itself is among the most
discussed issues in the field. In the literature many
model one-dimensional (iD) problems were analysed
theoretically, numeńcally and experimentally which
adequately descńbed behaviour of bars, rods, and
beams made of martensitic materials.

Howeveą experiments on shape memory alloys
and other materials undergoing PT are often per-
formed with thin-walled samples such as thin strips,
rectangular plates or thin tubes.

The non-linear equilibrium conditions of elastic
shells undergoing PT of mańensitic type were for-
mulated by Eremeyev & Pietraszkiewicz (2004) and
Pietraszkiewicz et aI. (2007) within the dynamically
and kinematically exact theory of shells developed
by Libai & simmonds (1998), Chróścielewski et al.
(2004), ańd Eremeyev & Zlbov (2008). In this shell
theory the translation vector z and rotation tensor Q
fields are the only independent variables. By anal-
ogy to the 3D case, the two-phase shell was regarded
as the Cosserat surface consisting of two material
phases divided by a sufficiently smooth surface curve.
Existence of such a curve was confirmed by several
experiments on thin-walled samples.

2 BASIC RELATiONS OF SHELL
THERMOMECHANICS

In the undeformed piacement the shell is represented
by the base surface M dęscribed by the position vec-
torx(d"), and orientation of M is defined by the unit
normal vector z(0"), with {0"}, a:I,2 the surface
curvilinear coordinates.

In the deformed placement the shell is repre-
sented by the position vector/ : X(x) of the deformed
material base surface N : X(M) with attached three
directors (d",d) such that

a:ł+u, do:Qł,o, d:Qn,

where x is the deformation function, u eE thę transla-
tion vecto-r of M , and Q ę So(3) the proper orthogonal
tensor' Q' : Q-' , det Q 

_ + 1, repróseńting the work-
averaged gross rotation ofthe shell cross sections from
their undeformed shapes described by (x,o,n).

in the shell undergoing phase transition above
some level of deformation it is assumed that differ-
ent material phases A and B may appear in different
complementary subregions iy'7 and N3 separated by
the curvilinear phase interface D eN. For a piece-
wise differentiable mapping X we can introduce on
M a singular image curve C : X-t (D) separating
the corresponding image regions Mn: X-t (N1) and
Mp: x-l(Nfi.

The two-dimensional (2D) local laws of shell ther-
momechanics can be deńved by direct and exact
tbrough-the-thickness integration of global 3D bal-
ances of forces, moments, energy and the entropy
inequaliĘ see Eremeyev & Pietraszkiewicz (2009).

(1)
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After appropriate transformations the resulting 2D
local Lagrangian laws in M\C become

Diu"N*l:0,
Diu"M + or(J\lFr - FIf") * c : 0,

p* : pk* + q- + qr.) - Diu"q

łAlopo łMof{" (Ż)

p# ś prt#* N r.Eo ł M l I{o * Grad'" (il . s

+oo+ (s'- -Ł\ - (. r \
\ r;",1 + PQ (t - i=/ ,

where 1f, c are the resultant surface force and cou_
ple vector fields acting on N\D, but measured per
unit area of M\C, (N,M) € E8 T,M the surface
stress resultant and stress couple tensors of the first
Piola-Kirchhoff type, F : Grad,y the surface defor_
mation gradient, F e Eg TrM, ax(...) the axial vec-
tor associated with the skew tensor ( ' . . ), (E.,ł(.) e
E 8 TrM the corotational vańations of the shell strain
measures work-conjugateto (N,M), and Div, the sur_
face divergence operator on M. Additionaliy, e and
4 are the surface internal energy and entropy den_
sities, p the undeformed surfaóe mass densiry 4*
the heat influx densities through the upper (+) u"a
lower (_) shell faces, qn theintórnal 

',r'ii"" 
liai sup-

ply density, q the surface heat influx vector, 7 tńe
through-the-thickness average temperature, T"+r, and
T* temperatures of the external media su'ro,'ńdi.rg
the shell from above and below, and {r 

_ t _ T ą the
surface free energy density.

- Along the curvilinear phase interface C, which is
the quasistatically moving singular curye on M, aft.er
appropriate transformations wę aIso obtain the local
Lagrangian jump conditions

[Nz]:6, [Mv!+ [p x Nz]:6, (3)

Vfpe! + [Nz . tl] ł ffxrv. .] _ [q ' un: O. (4)

V[p,ln _ 
['*q . 

"] = ó2 2 0. (5)

where the ex-pression [. . .n: (. . .)r - (. . .] means
the jump atC, v the surface unii veóńr externally nor-
1al t^o 3M, and ó2 represents creation of entropy at the
interface C.

For the coherent phase interface both fieldsy and, eare supposed to be continuous at C and the kinematii
compatibility conditions along C become

[u] + V[Fz] : o, [cr] + Z[,rCz] :6, (6)

where q : ź is the virlual translational Vector,, : o*18Q' ) the virtual rotation vecto r, i : *, . r 11^r"

exterior normal virrual translation of the phase curve
C, and r a time-like scalar parameter.

For the coherent phase interface

T62 : _V 
{trłl _ u ' lłryrul _, . uTyx,1} at C'

Figure l. Tension of the thin-walled two_phase tube. ,,

The entropy production ó2 remains always non-
negative for all thermodynamic processes. Thii aliows
us to postulate the kinetic equation, describing motion
ofthe phase interface for all quasistatic processes, in
the form

V : -F (v .tcl") , C : pi,A - Jr/rF - M, I{, (7)

where f is the non-negative definite kinetic function
depending on rhe jump of C at C, i.e. F(g)> 0 forg>0,andA:1-n&n.

After Berezovski et al. (200g), we assume F(g) in
the form

( ł(q - qo)

I l-"r.-a ()(o'
Tt-\- t 

^f\!/:lu -{o(Ś{(o, (8)l ł(s + sn)

t 1;((+,4 ((-(o'

Here gs describes the effects associated with nucle_
ation of the new phase and action of the surface
tension, a is a parameter describing the limit value
of the phase transition virtrial translation, and ł is a
positive kinetic factor.

. Summarising, the BVp for the shell undergoing
phase transitions consists ofthe equilibrium equalioni
(2)1,2 supplemented by appropriite static uo-d kirr"_
matic- boundary conditions for u and, e, the energy
transfer^equation (2)3 with appropriate b-oundary co;_
ditions for 7, the surface 

"nłopy 
inequality 1ź1a, as

well as the baiance equarions (3);(O, and (7) alongihe
nteń'ace C,The equation (7)1 is used to find position
of thę curvilinear interface C inits quasistatic motion.

3 EXAMPLE: TENSIONOFTWO-PHASETUBE

We discuss the thin circular cylindrical shell of length
Z, radius R, and thickness h made of matęrial under-
going phase transition. The tube is extended by forces
P uniformly distńbuted at the right shell boundary,
Figure 1 . The left shell boundary it z : O is clampeó.
We assume that the shell deformation is infinitesimal.
We also assume that the deformation process is isother_
mic, ald-additionally that T :Tł,:4'r : const and
Qn:0.In such a case the problóm is ióduced to the
stress-induced phase transition.

We consider the 2D polar-elastic strain energy
densities of the isotopic phases, see E.e-eyóv
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& Pietraszkiewicz (2009), with phase transforma-
tion stretch and bending measures. The both material
phases differ by vaiues of the elastic moduli as well
as by values of the energy densitięs in the undeformed
state.

Under condition given above there exists axisym-
metric deformation state

u:u(z)e.*w(z)e,, ę:ę(z)eę. (9)

The discussed example can be reduced to solv-
ing the boundary-value problem consisting of the
following system of ordinary differential equations:

N!.:0, Ni": Y, turi,:-# - r,",
N,,: C(u'_ €o) * Cu(wlR_ er),

y'y'.':o"C(l _r)(w'-ę).

NÓÓ : Cv(lr' _ ep) + C(wlR _ er), (10)

M4," : D(\ - u)ę', 
^,I"Ó: 

_ap(1 _ 
")t ,

z(0):,u(0):p(0):0,
N"2(L) : P, N,,(L) : tuIa.(L) : O,

where C, D, v, cv", and a, are elastic moduli, while eo
is the phase transformation strain. This is the system
of ODE with constant coefficients expressed in terms
of independent functions u, w, g. The system (10) has
always the particular solution

u(z): ur(z) = ("e- + e,) "* const,

w(z) -- up a - (*, - .o) 
", 

e :0,
(1 1)

for which Nr, : P, N. : 0, Nff : 0, M : 0. This
solution describes the axisymmetric membrane equi-
librium state of the cylinder. In the two-phase cylinder
such a solution is possible only when lA:vB:0 or

ąil,T : ,rf,6 *d'i : 
"r' 

since otherwise,
according to (11), normal translations of parts A and
B would not coincide: w1t'ws.

We first solve the simplest case when t)1 : vp - Q.

This problem becomes entirely analogous to the lD
problem discussed by Abeyaratne & Knowles (2006)
as a model problem of the 3D continuum model of pT.
The relation how the force P depends on deformation
in the equilibrium states is illustrated in Figure Z.Hęre
Et: u'(L).

If the quasistatic motion of Ć is governed by the
kinetic equation (7), in Figure 2 the respective graphs
,4.8' describe the loading and BA' the unloading. As a
result, in the deformation process we observe the exis-
tence of the hysteresis loop AB'BA' characteństic to
PT of rqańensitic type. The size of the loop depends
essentially on the form of function F, andparticularly
upon values of the kinetic factor ł and the parameter
Pe determining the loading velocity. When fr:k/Po
increases the area of hysteresis loop decreases. Exam-
ples of several deformation paths for different values
of i are given in Figu re 2.Itis seen that with tle grow-
ing ł we obtain the narrowin gloops AB'BA' , AB,'BA,, ,

uE1

Figure 2. P - h curves for two-phase shell for different
values of[,

uE2

Figure 3. P - Et curves for So *0.
AB"'BA"', etc. The limit i -+ oo corresponds both to
the infinitely large kinetic factor ł -+ oo and to the
infinitely small loading velocity ps -+ 0. In the limit
ł --+ co the hysteresis loop reduces to the equiiibrium
segment AB when P:P*. This means in particu-
lar that with the infinitely small loading velocity the
deformation foilows the equilibrium path OAB C .

When 96 10, the corresponding relation p(E) is
shown in Figure 3. In this case the size of hystere-
sis loop becomes larger with the growing value of ge.

But for k -> e the limiting paths reduce to two dif-
ferent respective segments AaB6ę and B_A*,and the
hysteresis loop takes place also in this limit case.

In the general case the solutions of ( I 0) for transla-
tion and rotations is more complicated. In particular,
for w we obtain
g:p"(z)łur,

u)o: e_alŻ(6.1cosa1ż ł c2sinu1Ż) (L2)

+e'oż(cscosuIż * casilu..z), Ż : zlR,

where cp, k : 1,...,4, are integration constants,

{'n,''} : {Re, tn)1f zn, +ztłąi- ą? lz,

,r: *#Ł, 7]2: (1+ ,,) (tn_' + *) ,

4: (1+ v) Qza_s*o1ó-1), 6 :hfR.

A
A"'.
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Figure 5. P-E1 curves following from the general solution.

For a thin tube ą2) łl. Indeed, if one takes u =7/3,
a,=5f6, at:7/10 and ó:0.1, then 4l:2.3 and'
112:160I.72, ćdR:4'537 and al:4.408, respec-
tively. Hence' we can appiy some asymptotic formulaę
for the boundary layers.

The general solution of (10) differs essentially from
the previous membrane one, because now we have
also the boundary layer solutions in the neighbour-
hood of the clamped edge and the phase interface, see
Figure 4. The boundary layer parts of the solutions
quickly decay, and far from the clamping and the phase
boundary w becomes constant coinciding with wr.

Dependence of wuponz leads to the qualitativó and
quantitative differences ofthe general solution as com-
pared with the membrane solution discussed in Figures
2 and 3. In particular, the equilibrium part of the dia-
$amP - E; now becomes not a horizontal segment as
before, see AB in Figure 5. The influence ofboundarv
layer pańs of the solution manifests itself most when
! - 0 and L - L, i.e. at the shell edges. Also the shape
and size of the hysteresis loop becomes different whón
the general solution is used.

Figure 4. Shape of the thin-walled two-phase tube after
phase transition (magnified).

The proposed 2D model allows one to take into
account several additional factors unavailable in the
existing 1D models of phase transitions, such as solu_
tions of the boundary layer type or more differentiated
ways of loading and unloading. We are also able
to analyse even analytically quite complex problems
which in the 3D models are possible tó disóuss only
by numerical methods.
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