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ABSTRACT: We construct the two-dimensional (2D) kinematics which is work-conjugate to the exact 2Dlocal equilibrium conditions of the non-linear theory of branching shells. It is shown ńt ti'" compatible shel1
displacements consist of the transiation vector and rotation tenór fields dęfined on the regular parts of the
shell base surface as well as independently on the singular surface curvę modelling the shęll bianching. Seve.al
characteristic fypes of the junctions are discussed ńa to' each of them the 

"*pii.it 
foń of'the pńciple ofvirtual work is suggested.

1 INTRODUCTION

Konopińska & Pietraszki ewicz (2a0Ą and Konopińska
(2007) formulated the exact, two-dimensionai iZO;
equilibrium conditions (3)_(6) for the nonłinear the-
ory of branching and self-intersecting shells. The
conditions are derived by performing direct through-
the-thicknes integration in the global 3D equilibrium
conditions of continuum mechanics. The results do not
depend on the value of shell thickness, the internal
through-the-thickness shell structure, material prop-
erties, and are valid for an arbitrary deformatión óf
the shell material elements.

In this note we construct a dual mathematical
structure representing an exact 2D kinematics on the
irregular shell base surface M for the branching shell.
The kinematics is work conjugate to the exact 2ń equi-

librium conditions (3H6).We begin with the intefral
iclentity (7) and then interpret some arbitrary vector
fields as the kinematically admissible virtual displace-
ments corresponding to the real shell deformition.
This allows us to construct the ZD exact expression
(12) for the principle of virtual work (pV!V) defined
on the shell base surface M having the singular surface
curve f modelling the shell branching. As a result,
the shell displacements are expressed by the work-
averaged".translation vector u and rotation tensor p
fields describing the gross deformation of the shell
cross section independenrly in M \ f and along f.
Discussing relations between limits at f of the dis-
placements defined in M \ f and of those defined
only along f, we are able to characterise several rypes
of shell junctions at the singular curve f .

2 NOTATION AND LOCAL EQUILIBRIUM
CONDITIONS

A shell is a 3D thin solid body identified in a refer-
ence (undeformed) placement with a region B of the
physical space t having E as its 3D translation vector
space' The position vęctol x ofany point x e B can be
given by

x(c' {) : x(x) + ęt(x) , (l)

w-here x(x) : x(x, 0) is the position vector of a point x
of some base surface M , whllę f is the distance to x
along the unit vector l not necessańly normai to M.

The position vęctor y: {G) of any shell point y
in the deformed placement B: X(B) can always be
represented by

y(c, {) : y(o) + ((r, 1) , ((r, 0) : 0 , (Z)

wherey: x(x) is the position vector of the deformęd
material base surface M : X(M), and { is a deviation
ofye B fromM:X(M).

For the branching shell Konopińska &
Pietraszkiewicz (Ż007) worked out tłle through-
thełhickness integration procedure leading to ihe
Tact 2D local equilibrium conditions for any part
17 e M having the singular surface curve f mod_
eliing the common junction of several regular branches
Mp,k:1, . . . ,il, of M. In the referential description
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these local equilibrium conditions consist of:
equilibrium equations in fI c M \ f
Div"N*/ =7:0,

Div"M +* (l*nt - ,*,)+ c 
= r: o ;

where vp;, l/p; and |re, |!re are valuęs of v;,, w1 in the
initial and end points of f, respectively.

Introducing (3){6) into (7) wę can transform the
identity as suggested in Chróścielewski et a|. (2004),
chapter 3. Then, ifv and w are interpreted as the kine-
matically admissible virtual displacement vectors such
that p: nr:0 along \Ma: AM \ AMf , then (7) takes
the form

.v ł m* 'w) ds

- I I {N.(Grad.v-WF)+M.Grad"w}daJ J 
^,1\T

- I (fy vf+clwp)ds
rt (8)

+ | tn' (r, _ ł', X lpn) + m. w'r)ds

- |-1ll'ł"].v7 _ [Nu .v) + [Mu].wy _ [Mu. u]i ds

_ (rź.rr. - ni .vy1) _ (-ź .wr" _ mł. yrl) : 0 ,

where the scalar product of two tensors (A,B) e E g
T,M is defined as A . B : tr (er B) , and for the skew
tensor we have W :w x 1, with I the unit tensor of
EAE.

Let shell displacements associated with areal defor_
mation consist of a translation vector u:y - x e E of
M and a rotation tensor Q e SO(3) of the shell cross
sections defined as Q- dt I tr, where d.;, i:1,2,3,
and t;:(to,t), d':I,2, are tńads of orthonormal
directors in the deformed and undeformed placement,
respectively. The virfual displacements can then be
identified as y: 3u and w:\Q.Qr , where ó is the
symbol of virtual change (variation).

It can be shown that the exact 2D kinematic struc_
nxe of M \ f coincides with the one of the Cosserat
surface and that of f with the one of the Cosserat roĄ
see Cosserat & Cosserat (1909) and Chróścielewski
et al. (2004), because some virtual expressions in (g)
can be calculated as variations of thó natural strain
measures by

Grad"v - WF : 6'8, Grad"u : 6"K ,

(e)
,'r - y'r X ilrp : icgp , w'r : 6. nr .

Here ó"(.) : Q{s(Qr ()} is the co-rotationalvariation
of (.), and the strain measures of M \ I and I are
defined by

E:F _QI, K:CF _QB 
,

er :yi -Qtr , 'ir: ax (eratr) ,

(10)

where 1 is the inclusion operator of M \ f, while C,
B arcthe structure curvature tensors of the shell in the

the

(3)

the static boundary conditions along óII1 C aMf

n*.-Nu=7=0, fr*-Mu:fi,:0; (4)

the static continuiĘ conditions along f ll fI
n'+fNulły'r =ń:0,

(s)
m' * l'r x n * [Mv]tcr : ći : 0 ;

and the static boundary conditions

nł _n;= tr:g, mł _mt=ń:0,
(6)

nź - n. = fr" : 0, mź _ rn. :_ ń : 0

at the singular points xi, xs e f n AMf .

In (3)_(6)' (N,M) ę E & TxM are the surface stress
resultant and stress couple tensors ofthe lst piola-
Kirchhoff Wpe, (f ,c) e E the surface resultant force
and couple vectols, GraĄ and Div, the surface gra-
dient and divergence operators on M, (n*,m")ŻE
the boundary resultant force and couple vectors along
3M7, (f r,cy) e E the curvilinear ręsultant force anó
couple vectors along f , (n, m) e E the curvilinear vec-
tors generated aiong f by the concentrated vectors
,i, -! and n!, m! applied at thę initial x; and end
x" points of f, respectively. Additionally, ax(A) means
the axial vector of the skew tensorl, v ę TxM the unit
vector externally normal to ólI, [a] the jump of the
vector field a(x) at the singular surface curve I-, and
(.)'= *s(.).

The relations (3) and (4) are equivallent to those
given for the regular shell for example by Labai &
Simmonds (1983) and Makowski & Stumpf (1990).
The static relations (5) and (6) complete by son e
correcting terms various analogous approximate rela-
tions. proposed by Mokowski & Stumpf (1994),
Chróścielewski et al. (I 9 9 7,2 004) and Pi etr aszkiew icz
(2001 ) using alternative approximate reduction proce-
dures.

3 WORK-CONJUGATE SHELL KINEMA|ICS

Let (rr, w) e E and (vp, y,y) e E be two pairs of smooth
vector fields on M \ I- and f, respectively. Then we
can set the integral identity

t t ff',+r.,u)ao+ [ ru-v-rń.w)dsJ JM\r \ / Jat,t1'

f t- \_ 
Jrer ' vr * 7r ' '.) o, _ (i; .vrł łi" .vy") (7)

_ (ńt'wrłłń.-wyr):6,

tt V.,+c.Ąaa+[ (n-
J Jn,r\t Jdtvrt
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a

undeformed and dęformed placement, respectively,
see Eremeyev & Pietraszkiewicz (2006).

With (9) and (10) the integrat identity (8) has the
meaning of the principle of virtual work (PVĘ for the
branching shells. The first two lines of (8) are equiv-
allent to the PWV of the regular shell suggestea in
somewhat difflerent notation by Libai & Simmonds
(1983). The remaining lines of (8) represent addi-
tional virtual work following from existence of the
shell branching.

If we introduce the virlual strain energy densities in
M \ f and along f defined as

o :N.6"E+M -6'K, of :n.ó"ep+ m.6,np, (11)

then the PVIV (8) for the branching shells can be given
in the form

Figure 1. The. branching shell element: a) the 3D shell, B)
the corresponding 2D base surface.

I I ff.6u*cJ J rvr\t
,)d,- [ [ oda

J J łt\r

6ur + cr. wp) ds + frcr as

_ 
frłwa'6ur 

_ [Nu . 6u] + IM,l

+ I (n*.6u+m-.w)ds
Japr,

-[w
JT

oŻ)

wy - [Mu. w]] ds

_ (ni. 6uy. _ ni . 6up;) _ (-ź. wre - mi.'yr,;) : 0 .

4 JLINCTIONS AT SHELL BRANCHING

To be more specific, lęt as discuss in more detail the
branching shell consisting of three regular parts M1,,
k : l, ?, 3, j oined together along the common junction
modelled by the curve f, see Fig. l. Let us assume
that the base surface M remains continuous during the
deformation process, i.e. the translation field at f sai
isfy the continuity conditions ilk : ttr, where ap is the
one-sided limit of u on Mp when f is approached. Then
different types ofjunctions along f óin be described
in terms of different constraints put on the one_sided
Iimits po of p when I- is approaóhed.

4.1 Rigid junctton

The junction is rigid along f if both u and, e are
continuous at I-, that is also et :er, k:1,2,3, at

l-',". Fig. 2a)' In this case [Nu .iu]:[Nu] . óap,
IM ! rl : lM v). w p andthe integral 1i Z;f iOentlcatiy
vanishes. As a result, the kinematic structure of thi
branching shell with all junctions rigid along f coin_
cides with that of the regular Cosserit surfac-e M with
the regular Cosserat curve f. Since n, rz along f are
generated by ryi , -i andn!, m! givenat the ends of f,
the value of /f opds can easily be calculated for any
geometry of f. As a result, kinematics ofthe branching
shell is entirely defined by two fields z, p continuoui
on the whoie M containing I-.

Figure 2' Junctions in the branching shell: a) rigiĄ b)
entirely simply supporteĄ c)-e) partly simpiy sl,ppo.tód.

4.2 Entirely simply supported junction

The junction is entirely simply supported along f if
only u is continuous at I-, but Q is nói constraineJat all
when approaching f on M1,, k:1,2,3. It means that
approaching f we have to satisfu three independent
static continuity conditions M 1,v1,:0, see Fig. 2b).
Then the relation [.n/u.óa]: [Nu] .óz; still hońs, the
third term of (12)a identically vanishes, the forth term
of (IZ)a also vanishes because lMv . wl:0, and the
curvilinęar integral (12)a over f vanishis as well. ln
this ease the rotation field Q. becomęs undęfinablę
relative to any Qo on M \1.

4.3 Partly simply supported junction

The junction can be called partly simply supported
along f if ł is continuous at I-, one Qo- is not con-
strained whilę the remaining two Qt aró assumed to
coincide with Q'- when f is approióhed. Let us, for
definiteness, discuss rhe case sketched in Fig. 2d).
Then the continuiĘ conditions along f become

Msus-0, Qt:Qz:Qr (13)

To be more specific, one has to introduce along f the
orthonormal triad ur, Tr, n; with rr tangent to f in
the positve direction, see Fig. lb). Then cńoosing ori-
entations of M1 and M2 described by the unit normals
n1 and n2 and taking nr:nzlr, as in Fig. Zd), we
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may relate the respective ll1 and u2 to the corffiron up.
Since inthis C&S€ T1 _ _Tr, t2 : |Ty,wemaychoose
for example tlz : ur and then pl : -utcosa. In such
a case, according to (13) we obtain

[Mu .w]: {(Mz - Mlcosa) ur} .wr : [Mu).wp , (I4)

so that the curvilinear integral (12)a vanishes again
leading to the same form of the PWV as for the rigid
and entirely simply supported junctions. However, now
Q. is defined in (13)2 while Q, may be found only in
the process of solution.

4.4 Partly deformable junction

Besides of simple types ofjunctions discussed above,
there may be a number of other tlpes of junctions
defined by assuming various combinations of con-
straints put on components of z1 and Qo relative
to appropriately defined uy and Qr. In particular,
these may be elastically deformed junctions defined
by N1rl1 = C łur and/or M pvp : Dtlr,where C 1r, Dp
are given 2nd-order tensors, while /" - @pep is the
finite rotation vector correspondin E to Qr such that
2r : exp(lr x 1). But the tensors Ct, Dr themselves
may be assumed to depend oT1 lł1r, Qo to model non-
linear behaviour of the junction and possibly also
on \up, aQuQI to model dissipative iffects. Each
combination of such constraints put on particular com-
ponents of u7,, Qo should be annalysed separately, and
in each case the curvilinear integral (12)a may be
reduced to a different expression leading to a differ-
ent form of the PWV for this particular Ępe of partly
deformable junction.
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