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ABSTRACT: We construct the two-dimensional (2D) kinematics which is work-conjugate to the exact 2D
local equilibrium conditions of the non-linear theory of branching shells. It is shown that the compatible shell
displacements consist of the translation vector and rotation tensor fields defined on the regular parts of the
shell base surface as well as independently on the singular surface curve modelling the shell branching. Several
characteristic types of the junctions are discussed and for each of them the explicit form of the principle of

virtual work is suggested.

I INTRODUCTION

Konopinska & Pietraszkiewicz (2007) and Konopifiska
(2007) formulated the exact, two-dimensional (2D)
equilibrium conditions (3)—(6) for the non-linear the-
ory of branching and self-intersecting shells. The
conditions are derived by performing direct through-
the-thicknes integration in the global 3D equilibrium
conditions of continuum mechanics. The results do not
depend on the value of shell thickness, the internal
through-the-thickness shell structure, material prop-
erties, and are valid for an arbitrary deformation of
the shell material elements.

In this note we construct a dual mathematical
structure representing an exact 2D kinematics on the
irregular shell base surface M for the branching shell.
The kinematics is work conjugate to the exact 2D equi-
librium conditions (3)—(6). We begin with the integral
1dentity (7) and then interpret some arbitrary vector
fields as the kinematically admissible virtual displace-
ments corresponding to the real shell deformation.
This allows us to construct the 2D exact expression
(12) for the principle of virtual work (PVW) defined
on the shell base surface M having the singular surface
curve I' modelling the shell branching. As a result,
the shell displacements are expressed by the work-
averaged-translation vector u and rotation tensor 0
fields describing the gross deformation of the shell
cross section independently in M \ T' and along T
Discussing relations between limits at I" of the dis-
placements defined in M \ T and of those defined
only along I', we are able to characterise several types
of shell junctions at the singular curve I".
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2 NOTATION AND LOCAL EQUILIBRIUM
CONDITIONS

A shell is a 3D thin solid body identified in a refer-
ence (undeformed) placement with a region B of the
physical space £ having E as its 3D translation vector
space. The position vector x of any point x € B can be
given by

X(:E,E) =x($) F ft(l‘) ’ (1)

where x(x) =x(x, 0) is the position vector of a point x
of some base surface M, while £ is the distance to x
along the unit vector # not necessarily normal to M.

The position vector y = x(x) of any shell point y
in the deformed placement B = x(B) can always be
represented by

¥(2,€) =y(z) +¢(z,€), ¢(z,0)=0, ()

where y = x(x) is the position vector of the deformed
material base surface M = y(M), and ¢ is a deviation
of y € B from M = x(M).

For the branching shell Konopifiska &
Pietraszkiewicz (2007) worked out the through-
the-thickness integration procedure leading to the
exact 2D local equilibrium conditions for any part
ITeM having the singular surface curve I" mod-
elling the common junction of several regular branches
My, k=1,...,n, of M. In the referential description



these local equilibrium conditions consist of: the
equilibrium equations in IT Cc M \ T"

Div.N+f=f=0,

3)
DiveM + ax (NFT ——FNT) +c=¢=0;
the static boundary conditions along oll, C oMy
n"-Nv=a=0, m*"-Mv=m=0; 4)
the static continuity conditions along I' N IT
W+ [Nvl+fr=fr=0,

)
m +yr xn+ [Mv]+er=6ér=0;
and the static boundary conditions
ni-n=n;=0, m-m=m=0,

(6)

n—n.=n.=0, m:-m.=m,=0
at the singular points x;, x, € ' N oM.

In (3)~(6), (N,M) € E ® T M are the surface stress
resultant and stress couple tensors of the 1st Piola-
Kirchhoff type, (f,¢) € E the surface resultant force
and couple vectors, Grad, and Div; the surface gra-
dient and divergence operators on M, (n* m*)eE
the boundary resultant force and couple vectors along
oMy, (fr, cr) € E the curvilinear resultant force and
couple vectors along I", (n, m) € E the curvilinear vec-
tors generated along I' by the concentrated vectors
ni, m; and n}, m} applied at the initial x; and end
x. points of I, respectively. Additionally, ax(4) means
the axial vector of the skew tensor A, v € 7, M the unit
vector externally normal to 911, [a] the jump of the
vector field a(x) at the singular surface curve I, and
()= %(.).

The relations (3) and (4) are equivallent to those
given for the regular shell for example by Labai &
Simmonds (1983) and Makowski & Stumpf (1990).
The static relations (5) and (6) complete by some
correcting terms various analogous approximate rela-
tions proposed by Mokowski & Stumpf (1994),
Chroscielewski etal. (1997, 2004) and Pietraszkiewicz
(2001) using alternative approximate reduction proce-
dures.

3 WORK-CONJUGATE SHELL KINEMATICS

Let (v,w) € E and (vr, wr) € E be two pairs of smooth
vector fields on M \ T and T, respectively. Then we
can set the integral identity

//M\F <f~v+2:~w>da+/aMf(ﬁ.v+,71,w)d5

_‘/F<-7F'VF +Ep~wF> ds—(ﬁi-vri-i-ﬁe-vre) ™)

~ (M - wpi + e - wre) =0,
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where vr;, wr; and vr, wr, are values of v, wr in the
initial and end points of T, respectively.

Introducing (3)—(6) into (7) we can transform the
identity as suggested in Chroéscielewski et al. (2004),
chapter 3. Then, if v and w are interpreted as the kine-
matically admissible virtual displacement vectors such
that v =w =0 along 0M,; = M \ dMy, then (7) takes
the form

/ (f~v+c~w)da+/ (n" v+m*-w)ds
MA\T oM; ;

- // {N - (Grad,y — WF) + M - Grad,w} da
M\P

—/(fr-vF+Cp-wP)d8
4 )

-1—/ {n-(Vr —yr xwr) +m-wi}ds
r

_/r{[NV] vr = [NV -v] + [Mv] -wr — [Mv - w]} ds

— (n-vre —n] -vpi) — (m} - wre —m} - wry)

0,

where the scalar product of two tensors (4, B) € E ®
T.M is defined as 4 - B=tr (ATB), and for the skew
tensor we have W =w x 1, with 1 the unit tensor of
EQ®E.

Let shell displacements associated with a real defor-
mation consist of a translation vector u = y—xeEof
M and a rotation tensor Q € SO(3) of the shell cross
sections defined as Q =d; ® t;, where d;, i = 128,
and t;=(t,,1), a=1,2, are triads of orthonormal
directors in the deformed and undeformed placement,
respectively. The virtual displacements can then be
1dentified as v=¢6u and w=380Q7, where § is the
symbol of virtual change (variation).

It can be shown that the exact 2D kinematic struc-
ture of M \ I" coincides with the one of the Cosserat
surface and that of I" with the one of the Cosserat rod,
see Cosserat & Cosserat (1909) and Chréécielewski
et al. (2004), because some virtual expressions in (8)
can be calculated as variations of the natural strain
measures by
Grad;y — WF = 6°E, Grad,w = 0°K ,

)
VP — Y X Wwr = 8%, wh=6kp .
Here §°() = Q{8(Q7 (.))} is the co-rotational variation
of (.), and the strain measures of M \ I" and I are
defined by
E=F-QI, K=CF-0B,

(10)

er=yr—Qtr, Kr=ax (Q%ijj) ;

where I is the inclusion operator of M \ I', while C,
B are the structure curvature tensors of the shell in the



undeformed and deformed placement, respectively,
see Eremeyev & Pietraszkiewicz (2006).

With (9) and (10) the integral identity (8) has the
meaning of the principle of virtual work (PVW) for the
branching shells. The first two lines of (8) are equiv-
allent to the PVW of the regular shell suggested in
somewhat different notation by Libai & Simmonds
(1983). The remaining lines of (8) represent addi-
tional virtual work following from existence of the
shell branching.

If we introduce the virtual strain energy densities in
M \ T and along I" defined as

O=N-E+M-6K, or=n-dr+m-8cpr, (11)

then the PVW (8) for the branching shells can be given
in the form

// (f~5u+c-w)da—// oda
M\T M\T

+/ (n* - bu+m*-w)ds
oM

—/(fp-éup+cr-wr)ds+/dpds
g r (12)

—/F{[Nu] “Oup — [Nv - ul + [Mv] - wr — [Mv - w]} ds

~ (n} - dur. — n} - Sur;) — (m} -wpe —m? wr;) =0.

4 JUNCTIONS AT SHELL BRANCHING

To be more specific, let as discuss in more detail the
branching shell consisting of three regular parts M,
k=1,2,3, joined together along the common junction
modelled by the curve T, see Fig. 1. Let us assume
that the base surface M remains continuous during the
deformation process, i.e. the translation field at I sai-
isfy the continuity conditions u; = ur, where u; is the
one-sided limit of # on My when I"is approached. Then
different types of junctions along I can be described
in terms of different constraints put on the one-sided
limits @, of Q when I is approached.

4.1

The junction is rigid along I' if both u and 0 are
continuous at I', that is also 0.=0r, k=1,2,3, at
I, see Fig. 2a). In this case [Vv-8u]l=[Nv] - bur,
[Mv-w]=[Mv]-wr and the integral (12), identically
vanishes. As a result, the kinematic structure of the
branching shell with all junctions rigid along I coin-
cides with that of the regular Cosserat surface M with
the regular Cosserat curve I'. Since n, m along I are
generated by n}, m} and n*, m? given at the ends of T,
the value of fr ords can easily be calculated for any
geometry of I'. As a result, kinematics of the branching
shell is entirely defined by two fields u, Q continuous
on the whole M containing I'.

Rigid junction
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Figure 1. The branching shell element: a) the 3D shell, B)

the corresponding 2D base surface.
a) M, b) M;
M/[\Mz St
<) d)

M; e)
V]
Mz ) -To ny
g M,

Figure 2. Junctions in the branching shell: a) rigid, b)
entirely simply supported, c)-¢) partly simply supported.

4.2 Entirely simply supported junction

The junction is entirely simply supported along I" if
only u is continuous at T", but Q is not constrained at all
when approaching I" on M, k = 1,2, 3. It means that
approaching I' we have to satisfy three independent
static continuity conditions M v, =0, see Fig. 2b).
Then the relation [Nv- Su] = [Nv]- Sur still holds, the
third term of (12), identically vanishes, the forth term
of (12)4 also vanishes because [Mv - w] =0, and the
curvilinear integral (12)4 over I" vanishes as well. In
this ease the rotation field Q. becomes undefinable
relative to any Q) on M \ I.

4.3 Partly simply supported junction

The junction can be called partly simply supported
along I' if u is continuous at I', one 0, is not con-
strained while the remaining two 0, are assumed to
coincide with Qr when I is approached. Let us, for
definiteness, discuss the case sketched in Fig. 2d).
Then the continuity conditions along I become

M3v3=0, 0,=0,=0. (13)
To be more specific, one has to introduce along T" the
orthonormal triad vr, tr, nr with 7 tangent to I' in
the positve direction, see Fig. 1b). Then choosing ori-
entations of M; and M, described by the unit normals

ny and ny and taking nr =n,|p, as in Fig. 2d), we



may relate the respective v; and v, to the common vp-.
Since in this case T} = —r, T, = + 71, we may choose
for example v, = v and then v; = —vrcose. In such
a case, according to (13) we obtain

My -w] ={(My — Mycosa)vr} wr = [Mv] -wr, (14)
so that the curvilinear integral (12)4 vanishes again
leading to the same form of the PVW as for the rigid
and entirely simply supported junctions. However, now
Or is defined in (13), while Q5 may be found only in
the process of solution.

4.4 Partly deformable junction

Besides of simple types of junctions discussed above,
there may be a number of other types of junctions
defined by assuming various combinations of con-
straints put on components of u; and Q, relative
to appropriately defined ur and Q. In particular,
these may be elastically deformed junctions defined
by Nyv; = Crur and/or M v, = Dy ¢, where Cy, D,
are given 2nd-order tensors, while ¢ = ¢rer is the
finite rotation vector corresponding to Q- such that
Or =exp(¢r x 1). But the tensors Cy, D) themselves
may be assumed to depend on u;, @, to model non-
linear behaviour of the junction and possibly also
on Suy, (SOAQ,C to model dissipative effects. Each
combination of such constraints put on particular com-
ponents of u;, @, should be annalysed separately, and
in each case the curvilinear integral (12); may be
reduced to a different expression leading to a differ-
ent form of the PVW for this particular type of partly
deformable junction.
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