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On displacemental version of the non—linear theory of thin shells

S. Opoka & W. Pietraszkiewicz

Institute of Fluid-Flow Machinery, PASci, Gdansk, Poland

ABSTRACT: We propose the modified version of the non-linear theory of thin shells expressed in terms of
displacements of the shell reference surface as the only independent field variables. In our approach the final
displacemental boundary value problem (BVP) and associated homogeneous shell buckling problem (SBP) are
generated exactly only in the computer memory by two packages set up in MATHEMATICA. This approach allows
us to account also for those a few supposedly small terms, which may be critical for finding the correct buckling

load of shells sensitive to imperfections.

1 INTRODUCTION

The entirely Lagrangian non-linear theory of thin elas-
tic shells, expressed in terms of displacements u of the
shell reference surface as the only independent field
variables, was first proposed by Pietraszkiewicz &
Szwabowicz (1981) and developed by Pietraszkiewicz
(1984), where references to earlier attempts in the field
were given. The formulation followed from the prin-
ciple of virtual work (PVW) postulated for the shell
base surface.

Our recent experience gained while writing three
reports by opoka & Pietraszkiewicz (2004, 2009a,b)
allows us to propose in this paper the following three
modifications of the non-linear displacemental shell
equations:

The vector equilibrium equations of Pietraszkiewicz
(1984) are represented through components in the
contravariant base vectors of the deformed reference
surface, and the tangential scalar equilibrium equa-
tions are exactly simplified using the compatibility
conditions.

o Along the boundary contour of the reference surface
the new scalar function « rational with regard to dis-
placement derivatives is defined, and the new sets of
four work-conjugate static and geometric boundary
conditions are derived.

For any definite geometry of the reference surface
parameterized by orthogonal coordinates and for
any of its boundaries, the displacemental BVP and
SBP are generated automatically and exactly by the
use of two packages ShellGeom.m and ShellBVEm
set up in MATHEMATICA.

In our approach we do not simplify the shell rela-
tions in the process of expressing the surface stress
and strain measures in terms of displacements. As
a result, the displacemental BVP and the associated
SBP become extremely complex and not tractable by
hand transformations; they appear only as relations
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generated directly in the computer memory. This
allows one to account for those a few supposedly small
terms in the SBP, which may be critically important for
finding the correct buckling load of shell structures
sensitive to imperfections.

2 NOTATION AND KINEMATIC RELATIONS

In the undeformed configuration the shell reference
surface .# is given by the position vector » = r(8%) rel-
ative to a point O € &’ The geometry of .# is described
by the covariant base vectors a, =r, the covariant
components aq.g = a, - ag of the surface metric tensor
awitha = det (aqg) > 0, the contravariant components
% of the surface permutation tensor &, the unit normal
vectorn= %5"‘5 ay X ag orienting ./, and the covariant
components byg = —2a,, - N,g =1 - 84,5 0f the surface
curvature tensor b. The boundary contour 8.4 of .4
consists of a finite number of piecewise smooth curves
given by r(s) = r[6(s)], where s is the arc-length along
0.#. With each regular point M € 3.4 we associate
the unit tangent vector T =r,; =dr/ds=1%a,, and
the outward unit normal vector v=1t x n=1%a,. For
other geometric definitions and relations we refer to
Pietraszkiewicz (1977).

The deformed configuration .# of the surface
M can be described by the position vector F(8%) =
r(6%) + u(6%) relative to the same point O € &, where
6% are the surface curvilinear convected coordinates,
and u =u,a% + u3n is the displacement field. In con-
vected coordinates geometric quantities and relations
on the deformed surface .# are defined analogously
as their counterparts in the undeformed configuration;
they will be marked here by an additional dash, for
example 34, @, byg, 1, , etc. All dashed fields on.#
can be expressed through analogous undashed fields
defined on ./ and the displacement field u, see for



example Pietrazkiewicz (1984, 1989). In particular,
we have

ay = [yqa* + Yo, n= \/g(mAa’\-f-mn) ,
(1)

Po = Uz, +DAUS , lra = axa + Urla —brqus ,

M= palf - eal%, m= (1505 - 14%)

Components of the symmetric surface strain and
bending measures of the Green type are defined by
the relations

L, 1
Yop = 5 (8a "85 — Gap) = 5 (lf\al/\ﬁ + Patps — aaﬂ) )

[\V]

)

Kop = bag — 0 - 8alp = bap — \/ZXas ,

Xag =M (Qoalﬁ +bz\ﬂl.>\a) +ma (Z-)\Ulﬂ - ngDa) ’

3 MODIFIED EQUILIBRIUM EQUATIONS

Under some kinematic assumptions summarised by
Pietraszkiewicz (1989) for the geometrically non-
linear theory of elastic shells and proposed by Schieck
et al. (1992) for the large-strain theory of rubber-like
shells, or alternately under the constitutive assump-
tions proposed by Libai & Simmonds (1998), the
mechanical behaviour of a thin shell is entirely
described by stretching and bending of its reference
surface. _

Let.Z be the reference surface of the deformed
shell in an equilibrium state under the surface
force p(8%) = p,a® + pii and couple c(6%)=n x c*a,
vectors, both measured per unit area of the
reference surface .#, and under the bound-
ary force N*(s)=N}v+N*t-+N*n and couple
M*(s)=0 x (M}V+MT) vectors, both measured
per unit length of the undeformed boundary contour
0.7 Then, for all kinematically admissible virtual dis-

placements éu the equilibrium conditions for .4 are
given by the principle of virtual work (PVW)

f / (N*P6va5 + M*8k,5) dA
M

=//(p~5u+c-w)dA+/ (N* - du+M"* - w,)ds, o
A o# s

where N* and M are components of the symmetric
surface stress resultant and stress couple tensors of
the Kirchhoff type, 8vap and kg are virtual changes
of the strain measures Yap a0nd Ky, While @ and w,

are the virtual rotation vectors at .2 and along 4.7,
respectively.

Using the Stokes theorem in .#, the PVW can
be transformed into an alternative form from which
follows the known vector equilibrium equation

s Lot (c’h)|p=0 in.# , )
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where

TP = (N - B M) Gig+ (M| 4%y, M) 8. (5)
From (4) we obtain three scalar equilibrium equa-

tions in the deformed surface contravariant base,

which are expressed through the mixed components
of the surface stress and strain measures
NZla+292N316+ (2738 <vjla) N§ —2 (B2 —r2) M5

(05 —r3)la =2 (b3 =r2)10] MY - (b2 —r2) ex+pa =0,

{

=2 [(r298) (5 —ng) —20 (s5~r) | (42-2) 1af
(6)

[(1+29£) (2951 31 =232 (22 )] 228 Ha

SIS

+ Mg15+ (5 —KE) Ng+c®o +p=0.

4 MODIFIED WORK-CONJUGATE
BOUNDARY CONDITIONS

Along 3.7 the virtual work performed by M* on w,
can equivalently be expressed as

M* w,=H"-60, H'=MDb+M7. (7)

From our numerical experience gained in the recent
report by opoka & Pietraszkiewicz (2009b), in this
paper we introduce along 8.4 the new scalar function

of displacement (or position) derivatives defined by
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=a(u,,u;) . (8

My
@ = ——
m Zuulrr

The formula for @i in terms of @ and u; becomes

o= \/gm [au— li(lwaJrsOr)TJrnJ . 9
Variating the expression (8) to have
da = F(lrym “0u,s —l--mm - fu,, ), (10)

and calculating m - 8u,, from (10), we obtain the new
relation for 6n at 9.4
) n- 6u,3:’ :

am? Low

:*ZT—TV[}(;C( o <Zl/5 + 75
The expressions (11) and (7) can now be used in the
second term of the last line integral in the PVW. After
integration by parts the line integral can be trans-
formed to an alternative form from which follow the
natural static boundary and corner conditions

(5ﬁ:éﬂ[ 11

C%aq +Dh = N* — g™\ 7" F*a, + F* .01,
(12)
My, =a-\/EM} ond; ,



(13)

Fii=F"h ateach cornerC; € OM .

In (12) we have introduced
C* = NQﬁVE - (_Zaugu,\ (MM;VE +T”\f) i

D= Mg v + Frs + 8% M P v + v

by (14)
F= I““Muu +Af[u7' 9
o M g——___l”m — P e
ar a Gl r

All fields present in the boundary conditions (12) are
functions of the arc-length coordinate s of 3./7.

The geometric boundary conditions which are
work-conjugate to the static ones (12) are

u=u",

(15)

O!(ll,l, y Uy ) =a" on 3.///,1 .

5 MODIFIED BVP AND SBP IN TERMS OF
DISPLACEMENTS

To formulate the BVP in terms of displacements, the
stress measures N/ and M should be eliminated from
(6) and (12) by the constitutive equations, and then the
strain measures y£ and «# should be expressed through
displacements using the strain-displacement relations
(2). We briefly discuss below such BVPs for two simple
cases of the constitutive equations.

Within the first-approximation theory of thin shells
made of a homogeneous, isotropic, elastic material
undergoing small strains, the strain energy density of
the shell is given by

h

h2
L= §Haﬁ/\“ <7aﬁ7)\u =+ I_Q‘Kaﬁ"iku) <+ O(Ehnzﬁ) 3 (16>

and the corresponding constitutive equations are

oz
870,6 '

MB — 6_2
alﬁag ’

Neb (17)

where H*** are components of the modified elastic-
ity tensor, 7 denotes the maximal strain in the shell
space and € describes formally the energetic error of
this shell theory (Koiter 1960). If we substitute 17
into the BVP and reject all terms of the order of error
introduced by the constitutive equations (17), then only
the underlined terms in (6) and (14),, remain as the
primary. important terms, and /2 ~ 1, a, ~ 1.
Another example of the theory of shells based on
the PYW (3) is the large-strain bending theory of
elastic rubber-like shells. Various versions of such a
theory were proposed in the literature. In particular,
when the greater eigenvalue y of y,s was additionally
assumed to be at most moderate, so that the approxima-
tion 1 + 2 & 1 holds, the strain energy density follows

9

‘where W) and

from that proposed by Schieck et al. (1992) in possibly
the simplest form

R® ]
B = hWio) (1) + 57 Wiy (mep) [mapran(1 = 15)] . (18)

Wg)g M are the 3D strain energy density

and its second derivative relative to y,,, both taken
at .. Then the corresponding constitutive equations
follow again from (17).

Using the estimate for moderate surface strains
and other assumptions made while deriving (18), it
is also possible to considerably simplify the equilib-
rium equations (6) and boundary conditions (12) with
(14) by omitting many supposedly small terms of the
same order, if necessary.

However, in the present paper we take a radically
different approach. Accepting our inability to reason-
ably select a few critically important small terms in the
shell equilibrium conditions among many other small
terms which can be ignored, we do not simplify the
shell relations at all in the process of elimination of
the surface stress and strain measures. Due to enor-
mous complexity of the resulting displacement shell
relations, such a BVP and the associated SBP have
been derived with the help of two packages Shell-
Geom.m and ShellBVEm written within the symbolic
programming language of MATHEMATICA.

For the specified position vector r=r(6%) the
package ShellGeom.m generates all geometric char-
acteristics of the undeformed shell reference surface
A needed in transforming tensorial BVP to that
expressed in partial derivatives. If the surface has
a boundary contour 3.7 the package additionally
generates all necessary boundary characteristics.

For the specified system of orthogonal coordinates
{6',6%} and the specified constitutive equations (17)
the package Shell[BVPm generates the displacemental
BVP and the asociated SBP. The output of this package
1s extremely large, because no approximation is used
during generation of the BVP. Thus, the resulting BVP
and SBP are available only in the computer memory.

The components of external loads p, ¢ and N*, M*
may be specified entirely independently, in general, by
ten dimensionless parameters p, forming the vector
p€RCR'Y. Then the non-linear BVP generated by
the package ShellBVPm can be presented symbolically
as

flaip)=0, (19)
where the non-linear continuosly differentiable oper-
ator f is defined on the product space (. #,R%) of
all components of u and its gradients up to the 4th
order. In engineering applications all the external loads
are usually specified by a single common parameter
PERCR, p>0.

The solutions ug(p) of (19), which can be reached
starting form p = 0 in the undeformed state, form the
primary equilibrium path. This path becomes unstable
if an infinitesimally close adjacent equilibrium state
u;(p) exists for the same value of p.



In the neighbourhood of critical values of p we can
replace u;(p) by ug(p) + u, where now u denotes the
small increment of the displacements satisfying homo-
geneous boundary conditions. As a result, we obtain
the homogeneous linear SBP in terms of the incre-
mental displacements u which can be written again
symbolically as

g(u;p) =0. (20)

Non-trivial solutions of (20) can exist only at a
discrete set of values of p, which are eigenvalues of
the linear SBP (20). The lowest positive eigenvalue
P1 = porir indicates the first bifurcation point at with
the primary equilibrium path ug(p) is intersected by a
secondary equilibrium path u; (p).

In the paper by Opoka & Pietraszkiewicz (20090,
Appendix) we present in more detail the derivation
of the BVP (19) and the corresponding SBP (20) for
the membrane prebuckling state in the special case of
axially compressed circular cylinder. We also perform
there the extensive numerical analysis of bifurcation
buckling for a wide range of length-to-diameter ratios
of the cylinder under fourteen sets of work—conjugate
boundary conditions. The results are summarised in
another our paper submitted to this conference.

6 CONCLUSIONS

We have formulated a new version of the Lagrangean
non-linear theory of thin shells expressed in terms of
displacements of the shell reference surface as the only
independent field variables. The formulation has been
based on the principle of virtual work postulated for
the reference surface. Both the equilibrium equations
and the set of four work—conjugate static and geomet-
ric boundary conditions are derived exactly from the
PVW without using any kind of approximations. Elim-
ination of the surface stress and strain measures in
terms of displacements is performed exactly as well
without using the approximate nature of the consti-
tutive equations to simplify the BVP. The latter steps
have been performed automatically with the help of
two packages set up in MATHEMATICA. The final BVP
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and the corresponding SBP are obviously extremely
complex. They are manageable only as the relations
given in the computer memory, not as those explicitly
written on the paper. By taking into account all sup-
posedly small terms in the buckling shell equations
we are sure that among them are also those a few sup-
posedly small terms which may appear to be critically
important ones in finding the correct buckling load of
thin shells sensitive to imperfections. ‘
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