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On displacemental version of the non-linear theory of thin shells

S. opoka & W. Piętraszkiewicz
Institute of Fluid-Flow Machinery, PASci, Gdańsk, Poland

ABSTRACT: We propose the modified version of the nonłinear theory of thin shells expressed in terms of
displacements ofthe shell reference surface as the only independent field variables. In our approach the final
displacemental boundary value problem (BVP) and associated homogeneous sheil buckling problem (SBP) are
generated exactly on1y in the computel memory by two packages set up in Merrrpułrrcł. This approach allows
us to account also for those a few supposedly small terms, which may be critical for finding the correct buckling
load of shells sensitive to imperfections.

1 INTRODUCTION

The entirely Lagrangian non-linear theory of thin elas-
tic shells, expressed in terms of displacements u ofthe
sheil reference surface as the only independent field
variabies, was first proposed by Pietraszkiewicz &
Szwabowicz ( 1 98 1 ) and developed by Pietraszkiewicz
( 1984), where references to earlier attempts in the field
were given' The formulation followed from the pńn-
ciple of virtual work (PVW) postulated for the shell
base surface.

Our recent experience gained while writing three
reports by opoka & Pietraszkiewicz (2004,2009a,b)
allows us to propose in this paper the following three
modifications of the non-linear displacemental shell
equations:

. The vector equilibrium equations ofPietraszkiewicz
(1984) are represented through components in the
contravariant base vectors ofthe deformed reference
surface, and the tangential scalar equilibrium equa-
tions are exactiy simplified using the compatibility
conditions.

. Along the boundary contour ofthe reference surface
the new scalar function a rational with regard to dis-
placement derivatives is defined, and the new sets of
four work-conjugate static and geometric boundary
conditions are derived.

. For any definite geometry of the reference surface
parameterized by orthogonal coordinates and for
any of its boundaries, the displacemental BYP and
SBP are generated automatically and exactly by the
use of fwo packages ShellGeom.m and ShellBVPm
set uil in Młrnrlrłncł.
In our approach we do not simplify the shell rela-

tions in tb.e process of expressing the surface stress
and strain measures in terms of displacements. As
a result, the displacemental BVP and the associated
SBP become extremely complex and not tractable by
hand transformations; they appear only as relations

generated directly in the computer memory. This
allows one to account for those a few supposedly small
terms in the SBĘ which may be critically impońant for
finding the correct buckling load of shell structures
sensitive to imperfections.

2 NOTATIONAND KINEMA|IC RELATIONS

In the undeformed configuration the she1l reference
surface '// is givenby the position vector r : r(9") rel-
ativeto apoint o ę 8.ThegeomeĘof -il isdescnbed
by the covariant base vectors ar:T,a, the covariant
components aaf : Zą. ap of the surfacę metric tensor
a with a : det (aop) > 0, the contravariant components
e"F ofthe surface permutation tensor e, the unit normal
vector n - j e" I ao x ap orientin g .//, and the covariant
components bo\:_Ż,r.a,f a.La,F of the surface
curvature tensor b. The boundary contour a.// of ł//
consists of a finite number ofpiecewise smooth curves
given by r(s) : r[d(s)], where s is the arc-iength along
A-//. With each regular point M e O.ril we associate
the unit tangent vector r=r)s :dr/ds:Toao, and
the oulward unit normal vector v: T x n: yaao. For
other geometric definitions and relations we refer to
Pietraszkiew icz (I 97 7 ).

The deformed configur ation Ż of the surface
-il can be described by the position vector i(0"):
r(0") * u(0") relative to the same point O e E, where
0o ate the surface curvilinear convected coordinates,
and u: UoŻo * u3n is the displacement field. ln con-
vected coordinates geometric quantities and relations
on the deformed surface -// are defined analogously
as their counterparts in the undeformed configuration;
they will be marked here by an additionai dash, for

- ^.o :
example ir,doF,bop,fi, D, etc.A11 dashed fieldsont//
can be expressed through analogous undashed fields
defined on -// and the displacement field u, see for

9s



examplę Pietrazkiewicz (1984, 1989). In particular,
we have

&o = l.\oa) ł ąon , n: ,/!(^xu" + mn) ,

9a = U3włb!u1 , l^o : o)o + u^lo -b)ou3 , (1)

rns: polą^ - ęsI?. , Tlt: ż(t?.tr, _ t|J?r)

Components of the symmetric surface strain and
bending measures of the Green Ę?e are defined by
the relations

1,_ 1 ,., .ł.p : ż(a..5B - ao1) = 1U|"l>'a 
ł ?ogB _ o"B),

Kog=ba1_n.a.lB:bą0_ łEux.B, (Ż)

XąB : rn (p"lp +b^pt),) + *^ (tLlp _ bbę) .

3 MODIFIED EQUILIBRTUM EQUATIONS

Under śome kinematic assumptions summarised by
Pietraszkiewicz (1989) for the geometricaliy non-
iinear theory ofelastic shells and proposed by Śchieck
et aI. (199Ż) for the large-strain theory of rubber-like
shells, or alternately under thę constitutive assump-
tions proposed by Libai & Simmonds (1998), tńe
mechanical behaviour of a thin sheli is entirely
described by stretching and bending of its referencl
surface.

Let-til be the reference surface of the deformed
shell in an equilibrium state under the surface
force p(0") = Podo *pń and couple c(0") _ ń' x c, io
vectors, both measured per unit area of the
reference surface ,il, and under the bound-
31r - |orce N*(s)://jy ł Nir *N*n and couple
M*(s): ń x (IĘn + MłT) v-ectors, both measured
per,unit length of the undeformed boundary contour
0'//.Then,for all kinematically admissible v"irrual dis-
placements óu the equilibrium conditions for ,zt are
given by the principle of virrual work (pWV)

JJ W'eh.a + M"B6K,B) d,A

:il*
.r'{

where

tp : (N"p _6iurrc1e^+ (M.lJl^ +-ap*1nsrM^r) ń. (5)

. From (4) we obtain three scalar equilibrium equa-
tions in the deformed surface contravariant bise,
which are expressed through the mixed components
of the surface stress and strain measures 

..^

u !| p +zĄu fl p + (z.y:l p 11'l.J N f _ 2 (u! _ rc)) lif1,

+ i(b}_KŻ)l. 1(b:_K:)|p] uf'_(ł)_"}).^+p. : 0 ,

(A f . / \

|ł |$+z1) @Eł -liY) _zli (zlt| -i|,)] u!}t"

_ 2 |ę +zrtr1 QE 
_ 

"fr) -21i (bt - Kb)] trl _ "l)'f
(6)

+ tr7ll+(tP.- rc*) uE +c"l* +p : o .

4 MODIFIEDWORK-CONruGATE
BOUNDARY CONDITIONS

Along 0// the virtual work performed by M* on ł;,
can equivalently be expressed as

M* . u, = H* 'óń , Ir* : 
^,ĘD 

+ M;ł ' (7)

From our numeńcal experience gained in the recent
report by opoka & Pietraszki ewicz (2009b), in this
paper we introduce along 0.t//the new scalar function
of displacement (or position) derivatives defined by

rnu ,p-l-,, - o,,L-.
a:---:-:Jt"tu Yverr:O(u,r,U,"). 

(8)n-L lrrlr, - IrrI*

The formula for ń in terms of a and u', becomes

|"" - fu,,o+,ł,), +,f . (9)

Variating the expression (8) to have

ao: Ł(t,,m.óu," _l"'ń .óu,, ) ,

and calculating ń .óu,u from (l0), we obtain the new
relation for 3n at \-il

/L.. \ I
lr="ułrB)ń.óu,"l (ll)
\łlr / ]

The expressions (l 1) and (7) can now be used in the
second term of the last line integral in the pVW After
integration by parts the line integral can be trans-
formed to an alternative form from which follow the
natural static boundary and corner conditions

Co^o +Dń = N* _ aopbrxr^f*do + f*," ń,

M,,: a,łEdMł on0.//7 , 
(IŻ)

l"n: ,l-m
V-a

(10)
(3)

óu.rc. .lae* l
0,{t

(N* . óu + M* ' ł's,) ds,

where ly'"P and M"fl are components of the symmetric
surface stress resultant and stress couple tensors of
the Kirchhoff typte,6yop and 6rc,p are virtual changes
of the strain rne&sures lzsp and. rcop, while r.r and-o,
are the virtual rotation vectors at ,,ź/ and a|ong 0Ż,
respectively.

Using the Stokes theorem in .,rt, the pWV can
bę transformed into an alternative form from which
follows the known vector equilibrium equation

TBIB +p + (cBn)lB: o in,,t , (4)
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Ffl : f- fi' at each corner Ci € 0.'//1

In (12) we have introduced

Co : NoDuB - ao+ipx (M^u ", + r^ f) ,

t_

u : tl*, o(u,, , u," ) : a* on \r//a

r* I/I;

ar

(13)

(14)

(1s)

(r7)nro| - 
0D t raB At

d^tott ' )oop '

where H'i^pare components of the modified elastic-
ity tensol 4 denotes the maximal strain in the shell
space and e describes formally the energetic error of
this shell theory (Koiter 19ó0). If we substitute (17)
into the BVP and reject all tęrms of the order of error
intr'oduced by the constitutive equations (17), then only
the underlined terms in (6) and (I4)t'z reńain as the
primaryimportant terms , and, Ę - 1, a, - I.

Another example of the theóry of shells based on
the PVW (3) is the large-strain bending theory of
elastic rubber-like shells. Various versions of such a
theory were proposed in the literature. In particular,
when the greater eigenvalue y of Top was additionally
assumed to bę at most moderate, so that the approxima_
tion I * )r2 t t holds, the strain energy density follows

as

/(';p) : o , (1e)

where the non-linear continuosly differentiable oper-
ator/ is defined on the product space €(lil,lR'3) of
ail components of u and its gradients up to the 4th
order. In engineering applications all the external loads
are usualiy specified by a single coilrmon parameter
peRCIR,pt0.

The solutions uo(p) of(19), which can be reached
stańing form p:0 in the undeformed state, form the
primary equilibrium path. This path becomes unstable
if an infinitesimally close adjacent equilibrium state
u1(p) exists for the same value of p.

D: Yllp uoJ r," * a"PlrspM^Puo + couo ,

t_,,

T: fuI,, ł ]l'I,,

fa lr.m _ ęamu , .*

u a--;i- 1'1"

A11 fields present in the boundary conditions (12) are
functions of the arc-length coordinate s of O-4.

The geometric boundary conditions which are
work-conjugate to the static ones (12) are

5 MODiFIED BVPAND SBP INTERMS OF
DiSPLACEMENTS

To formulate the BVP in terms of displacements, the
stress measur es N ! and M ! should be óliminated from
(6) and (12) by the constitutive equations, and then the
strain measures y! and rc! should be expressed through
displacements using the strain-displacement relations
(2). We briefly discuss below such B\{Ps for rwo simple
cases of the constitutive equations.

Within the first-approximation theory ofthin shells
made of a homogeneous, isotropic, elastic material
undergoing small strains, the strain energy density of
the shell is given by

E:hPo)xl'(,^",, *u' \
- 2-- \ 

/up /^r, ź".a"+) + o(Ehąze), (16)

and the corresponding constitutive equations are

from that proposed by Schięck et aI. (1992) in possibly
the simplest form

A3
D : h|Vęo1?r^) + ąw5!,^" 

(1no)|ooBo^r(r _ r3)], (18)

where Wg and Wtł, are the 3D strain energy density
and its second derivative relative to yrp, both taken
at .,//' Then the corresponding constituńve equations
follow again from (17).

Using the estimate for moderate surface strains
and other assumptions made while deriving (1g), it
is also possible to considerably simpli$ the equilib_
rium equations (6) and boundary conditions (12) with
(la) by omitting many supposedly small terms of the
same order, if necessary.

-. 
However, in the present paper we take a radically

different approach. Accepting our inability to reason_
ably select a few cńtically important smalltęrms inthe
shell equilibrium conditions among many other small
terms which can be ignoreĄ we do not simpliĘ the
shell relations at all in the process of eliminatión of
the surface stress and strain measures. Due to enor-
mous complexity of the resulting displacement shell
relations, such a BVP and the associated SBp have
been derived with the help of two packages Shell_
Geom.m and ShellBVPm wńtźęnwithin the symbolic
programming language of Młrrrnułrrcł.

For the specified position vector r: r(9") the
package ShellGeom.m generates all geometric char_
acteristics of the undeformed shell reference surface
.t// needed in transforming tensorial BVp to that
expressed in partial derivatives. If the surface has
a boundary contour 0.// the package additionally
generates all necessary boundary characteństics.

.For the specified system of orthogonal coordinates
t9',e'\ and the specified constitutive equations (17)
the package ShellBYP.m generates the diśplacemental
BVP and the asociated SBP. The ouĘut of this package
is extremely large, because no approximation is usód
during generation of the BVp. Thus, the resulting B\T
and SBP are availabie only in the computer memory.

The components of external loads p, c and N*, M*
may be specified entirely independently, in general, by
ten dimensionlęss palameters Pp forming the vector
p € R C R.lo. Then the non_linear BVP generated by
the package,Sł ell B VP m can be presented śymbolicaiĘ

9',7



s(u;p) : o

In the neighbourhood of critical values of p we can
replace ur(p) by uo(p) * u, where now u denotes the
small increment ofthe displacements satisĄling homo-
geneous boundary conditions. As a result, we obtain
the homogeneous linear SBp in terms of the incre_
mental displacements u which can be written again
synbolically as

and the corresponding SBp are obviously extremely
complex. They are manageable only as t-he relationi
given in the,computer memory not as those explicitiy
writtgl on the paper. By taking into account ail sup_
posedly small terms in the buckling shell equations
we are sure that among them are also those a fiw sup_
posedly small terms which may appeal to be criticańy
important ones in finding the óorrect buckling load of
thin shells sensitive to imperfections. :'
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(Ż0)

Non-trivial solutions of (20) can exist only at a
discrete set of values of p, which are eigenvalues of
the linear.SBP (20). The lowest positivó eigenvalue
pt = pcrit indicates the first bifurcation poini at with
the primary equilibrium path u6(p) is intirsected by a
secondary equilibrium path u1(p).

. In t!9 paper by Opoka & pietraszki ewicz (2009b,
Appendix) 'rye present in more detail the derivation
of ńe BVP (l9) and the corresponding SBP (20) for
the membrane prebuckling stató in the special'caśe of
axially compressed circular cylinder. We also perform
there the extensive numerical anaiysis of bifirrcation
buckling for a wide range of iength-to-diameter ratios
of the cylinder under fouńeen se1s of work-conjugate
boundary conditions. The results are summarileó in
another our paper submitted to this conference.

6 CONCLUSIONS

We have formulated a new version of the Lagrangean
nonlinear theory of thin shells expressed in terms of
displacements ofthe shell referencó surface as the on1y
independent field variables. The formulation has been
based^on the principle of virtual work postulated for
the reference surface. Both the equilibrium equations
and the set of four work--conjugate static and geomet_

1-c boundary conditions are derived exactly from the
PVW without using any kind of approximations. Elim_
ination of the surface stress and strain measures in
terms of displacements is performed exactly as well
without using the approximate nature of the consti_
tutive equations to simpti$ the B\{p. The latter steps
have been performed automatically with the help of
lwo packages set up in MerHnułrlcł. The final BVP
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