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Refined results on buckling of the axially compressed circular cylinder

S. Opoka & W. Pietraszkiewicz

Institute of Fluid-Flow Machinery, PASci, Gdansk, Poland

ABSTRACT: We present extensive numerical results on bifurcation buckling analysis of the axially compressed
circular cylinder. The analysis is based on the modified displacemental version of the non-linear theory of thin
elastic shells developed recently by the authors. The numerical analysis of the buckling load is performed for the
cylinders with eight sets of incremental work—conjugate boundary conditions analogous to those summarized in
the book by Yamaki (1984), and with six sets of boundary conditions not discussed yet. The results allow us to

formulate several novel important conclusions.

1 INTRODUCTION

Stability of the axially compressed thin, isotropic,
elastic circular cylinder was analysed in thousands
of papers, as well as summarised in several books
and dozens of surveys which were briefly reviewed
by Opoka & Pietraszkiewicz (2009b). In particular,
Yamaki (1984) compared the buckling load curves
based on Donnell’s and Fliigge’s stability equations for
a wide range of length-to-radius ratio of the cylinder
and for eight sets of incremental boundary conditions,
using the membrane prebuckling state. He found that
with the increase in the cylinder length the buckling
loads following from the Fliigge stability equations
took considerably smaller values than those following
from the Donnell ones.

In this paper we present the extensive numeri-
cal results on bifurcation buckling of the axially
compressed circular cylinder. The analysis is based
on the modified version of the geometrically non-
linear theory of thin, isotropic, elastic shells expressed
in terms of displacements as the only independent
field variables developed by Opoka & Pietraszkiewicz
(2009a,b). In those papers we have formulated the
modified equilibrium equations as well as the alter-
native work-conjugate sets of geometric and static
boundary conditions compatible with a new boundary
function « rational in terms of displacement deriva-
tives. Applying this modified version of shell theory
we are able to refine the results summarized by Yamaki
(1984) in three main aspects:

e The two—dimensionally exact, non-linear boundary
value ‘problem (BVP) and the corresponding lin-
earized shell buckling problem (SBP) are generated
automatically by the computer programs written
within the symbolic language of MATHEMATICA.
Such an approach allows one to always account for
those a few small terms in the SBP which may be
critical for finding the correct buckling load of the
axially compressed circular cylinder.

o The incremental boundary conditions of the SBP
are derived by direct linearization of work-conjugate
sets of the non-linear geometric and static boundary
conditions about the prebuckling equilibrium state.
This set allows one either to confirm the results pub-
lished elsewhere, or to refine those which seem to
be questionable.

» We discuss buckling loads of the compressed cylin-
der for eight sets of boundary conditions also
investigated by Yamaki (1984). Additionally, we
analyse buckling loads for six other sets of boundary
conditions not discussed elsewhere.

2 DISPLACEMENT SBP FOR THE AXIALLY
COMPRESSED CIRCULAR CYLINDER

The reference surface M of the circular cylinder
with radius R, length L, and thickness % is loaded
by the compressive axial force component uniformly
distributed on both boundaries perpendicular to cylin-
der’s generators. The cylindrical surface is parameter-
ized by non-dimensional coordinates (¢, x = z/R). The
independent field variables of the BVP are displace-
ments of the reference surface. The non-dimensional
incremental displacements u(¢, x), v(¢, x) and w(¢, x)
denote, respectively, the axial, circumferential and
radial components of the incremental displacement
vector divided by R, see Fig. 1.

The modified displacemental version of the non-
linear theory of thin elastic shells used here was
presented in detail in the paper by Opoka &
Pietraszkiewicz(2009a). In particular, formulation of
the BVP for the cylinder and derivation of the cor-
responding SBP were generated automatically in
Opoka & Pietraszkiewicz (2009b) by two packages
ShellGeom.m and ShellBVPm written within the sym-
bolic language of MATHEMATICA.

Under the axial compressive force components

N::—%, the cylinder becomes shorter and is

129



[Sllel]

Figure 1. The parameterized upper-half of the cylindrical
surface.

assumed to homogeneously expand in the radial
direction. The prebuckling equilibrium solution for the
cylinder can be found to be

uo(¢,z) = —2ep(1+ 3ep)z
'L}o(@,&?) :O, (1)
wo($,2) = 2evp[1 + (2 = v)er]

where v denotes Poisson’sratio, €2 = A% /[12(1 — v?)R?],
and p denotes the load parameter. The value p = 1 isthe
buckling load corresponding to the classical buckling
stress oy = 2¢Eh.

The prebuckling displacements (1) are relatively
small. Using the linear constitutive equations and
the non-linear kinematic relations, we can show that
the prebuckling solution (1) defines approximately the
membrane prebuckling state with only one axial stress
resultant N, = — 2? .

The displacemental SBP derived in detail in
Opoka & Pietraszkiewicz (2009b) consists of three
homogeneous linear PDEs with constant coefficients
with regard to the incremental displacements u, v, w

Ay + Asw'™ + Agu” + A" + Asv + Agw = 0,

Bl (wl..+1/w///)+B2u//_’_BSu..+B4[(l+V)v/.+2Uw/] - 0, )
, 2

Cl ('LUN”+2'U]”"+'U)"">+Gg(’LL/"+I/'LL”/)+Cg'U”'

+C4U'"+C5’UJ”+CG’LU" -+ C7UI+C3U' +Cow = 0,

and four homogeneous work—conjugate boundary con-
ditions defined atx =4/=+ 4

di = Dyw” + D'+ Dy(v'+w) =0 oru =0,

d2 = Byw"+Eyw +Esv' =0 orv =0,

d3 = Fy[w" + (2—v)w™ |+ Fy(u +vu”) (3)
+F3v" +Fyw' =0 orw =0,

ds = G1(w" +vw) +Gov +Gau' +Guw= 0 orw' =0,

Where 3—2 =(), -3% =()". The coefficients appearing
mn (1) and (2) are given in Opoka & Pietraszkiewicz
(2009b).

Table 1. Nomenclature for different sets of clamped and
simply supported boundary conditions.

C—family and S—family

CI(Sl))  u=0 v=0 w=0 w=0(d;=0)
C2(S2):  d1=0  v=0 w=0 Ww=0ds=0)
C3(S3): u=0 dr=0 w=0 Ww=0dsi=0)
C4(S4):  di=0 d,=0 w=0 W =0(ds=0)
C5(S5): u=0 v=0 d3=0 W =0(ds=0)
C6(S6):  dy=0 v=0 d3=0 W =0(d;=0)
C7(S7): u=0 dr=0 dy=0 W =0(ds=0)
C8(88) d] =0 d2 =0 d3 =) 1 =0(d4 :O)
po
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Figure 2. The buckling load of axially compressed perfect
cylinder for boundary conditions C1 and C2.

Numerical results given here have been calculated
for different sets of boundary conditions (3) defined in
Table 1. In particular, in our nomenclature the classical
simply supported and clamped boundary conditions
are denoted, respectively, as S2 and C1.

3 NUMERICAL RESULTS

The solution method based on expanding displace-
ments into Fourier series is used to generate numer-
ical results for SBP (2) and (3). The method has
been described in detail in Opoka & Pietraszkiewicz
(2009Db).

The numerical results indicating buckling load
curves for the perfect, axially compressed cylinder
with different sets of boundary conditions (see Table
1) are given in Figures 2-5. The value p=1 corre-
sponds to the classical value of the buckling load, and
the results are positioned with respect to the horizon-
tal, logarithmic axis of the non-dimensional cylinder
length [ = ﬁ.

Generally, the results for fourteen types of bound-
ary conditions (Figs. 2-5) can be divided into three
groups. For the boundary conditions S1, C1, C3, C5
the buckling load takes generally high values which
practically coincide when /€ (0.7,60). For S2, C2,
C4, C6, C7 boundary conditions the buckling load
takes intermediate values and the curves are choppy.
The results for this group again practically coincide
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Figure 3. The buckling load of axially compressed perfect
cylinder for boundary conditions S3, S4, C3 and C4.
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Figure 4. The buckling load of axially compressed perfect
cylinder for boundary conditions S1, S2, S5 and S6.
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Figure 5. The buckling load of axially compressed perfect
cylinder for boundary conditions C5,C6, C7 and S7.

when /€ (2.5,60). For the boundary conditions S3,
S4, S5, S6, S7 the buckling load o assumes about one
half of the classical value for intermediate cylinder
lengths and the results practically coincide only when
1€(0.1,20).

The numerical results obtained using the complete
SBP (C1 curve) and the simplified one, in which terms
of the order of error introduced by the constitutive
equations were omitted (C1; curve), are shown in Fig-
ure 2. In the intermediate length range, differences
between the results are small, but with the increase of
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the cylinder length the simplified stability equations
lead to more and more overestimated results. Hence,
for the boundary conditions C1 some supposedly small
terms are, in fact, important and cannot be omitted for
long cylinders.

Our results have been compared with eight similar
ones available in Yamaki (1984) based on the Fliigge
stability theory, which are represented by dotted curves
in Figures 4 and 5.

For the boundary conditions C1, C2, C3, S1, S2
and S3 our results practically coincide or are slightly
lower than those of Yamaki in the range of intermediate
and long cylinder lengths. Thus, the Yamaki results for
these cases are not shown in Figures 4 and 5, except
for S1 case in Figure 4 given as an example. Because
of good overall agreement between the corresponding
curves, the Fliigge stability equations with his bound-
ary conditions could be preferred in applications as
the simpler ones.

However, for short cylinders with boundary con-
ditions S4 and C4 (Fig. 3) the corresponding curves
in Yamaki (1984) increase with decrease in the cylin-
der length and exceed p = 1. But our results show
that the resistance to buckling decreases in that range.
This solution behaviour for the boundary conditions
S4 was revealed already by Simmonds & Danielson
(1970), who proved it for short cylinders using the
ring-beam theory and cited the similar result noted by
Koiter (1967). Our stability analysis suggests that such
a behaviour follows from using in our analysis the cor-
rect, integrable forms of the geometric and associated
work—conjugate static boundary conditions.

The exchange of the geometric boundary constraint
u =0 for the static work—conjugate boundary condi-
tion d; =0 causes the following transition between
types of boundary conditions: C1—C2, C3—C4,
C5—C6, S1—-S2, S3—S4 and S5—S6, see Table
1. Generally, this exchange causes that p..; takes
smaller values and within the intermediate lengths dif-

ferences between the corresponding results increase” -

as the length increases, the maximal difference being
about 20%.

The exchange of boundary constraint v =0 (w = 0)
for the static work—conjugate boundary condition
dy=0 (d3=0) leading to transitions Cl—C3,
C2—C4, S5-87 (C1-C5, C2—C6, S3—S7)
causes no effect within the intermediate cylinder
lengths. In the transition C5—C7 (C3—C7 for w =
0) we have the same behaviour as in the transition
C1—C2 described above. In the transitions S1—S3
and S2— 834 (S1-385 and S2—36 for w=0), e
falls down to about one half of the classical value in
the large range of cylinder’s lengths. In cases S1—S3
and S2— S4 this phenomenon was noticed already by
Hoff & Rehfield (1965) and Almroth (1966).

The exchange of the constraint w' =0 for ds =0
causes the transition from the clamped to the cor-
responding simply supported boundary conditions.
Essentially the same results are obtained for tran-
sitions between the boundary conditions C1—S1
and C2—S2. But for the remaining ones Ci—Si,



1=3,..,7, peri falls down again to about one half of
the classical value.

The buckling load for the axially compressed Euler
column with simply-supported (clamped) boundaries
is defined in our terms as p = %1227 (p= 471T_225)’ and its
probed values are denoted in Figures 2-5 by black
squares (black triangles). The axially compressed cir-
cular cylinder with the length parameter /> 20 and
boundary conditions C2, S2, C4, S4, C6, S6, C7,
S7 looses its global stability as the simply-supported
Euler column, while the axially compressed very long
cylinder (I > 40) with C1, S1, C3, S3, C5, S5 bound-
ary conditions behaves itself as the clamped Euler
column. Comparing definitions of the boundary condi-
tions given in Table 1, the long axially loaded cylinder
behaves as an axially loaded clamped column if its
boundaries are constrained as u=v=0oru=w=0.
In the remaining cases the long axially loaded cylinder
behaves as an axially loaded simply supported col-
umn. Therefore, the condition ¥ =0 indicating that
the global rotation of the shell edge as a whole is not
allowed, is necessary but not sufficient for the long
axially loaded cylinder to behave as an axially loaded
clamped column. :

4 CONCLUSIONS

The numerical results allow us to formulate the fol-
lowing conclusions:

o If terms of the order of error introduced by the
constitutive equations are omitted, this elimination
leads to elimination of some supposedly small terms
from the corresponding SBP. For long cylinders this
results in overestimated buckling loads.

o Using the simplified kinematic relations causes the
buckling load to be overestimated as well, especially
for long cylinders.

o The results obtained from our complete SBP coin-
cide in most cases with the available results fol-
lowing from the Fliigge stability equations. How-
ever, the entirely different asymptotic behaviour
has appeared for S4 and C4 boundary conditions
when the length of the short cylinder is decreasing.
We explain this behaviour by completeness of the

work—conjugate boundary conditions used in our
analysis.

o Besides the well-known case of relaxing the
boundary condition v =0 (transitions S1—S3 and
S2—54), which causes the buckling load to fall
down to about one half of the classical value, we
have also discovered that relaxing boundary condi-
tions w=0 (transitions S1—S5 and S2—S6) and
w’ =0 (transitions Ci—Si, i=3, .., 7) also leads to
similar effects.

e The wider scatter of numerical results for simply
supported cylinders, contrary to the corresponding
small scatter for clamped cylinders, suggests that
the buckling load is very sensitive to accurate mod-
elling of the rotations allowed at the boundary. This
seems to be one of the major reasons of discrep-
ancy between theoretical and experimental buckling
loads of the axially compressed circular cylinder.

REFERENCES

Almroth, B. O. 1966. Influence of edge conditions on the
stability of axially compressed cylindrical shells. 4744
Journal 4(1): 134-140.

Hoff, N. J. & Rehfield, L. W. 1965. Buckling of axially com-
pressed circular cylindrical shells at stresses smaller than
the classical critical value. Journal of Applied Mechanics
32: 542-546.

Koiter, W. T. 1967. General equations of elastic stabil-
ity for thin shells, Appendix: The danger of omitting
(supposedly) small buckling terms. In Proceedings of a
Symposium on the Theory of Shells to Honor L. H. Donnell
225-227. University of Houston.

Opoka, S. & Pietraszkiewicz, W. 2009a. On modified dis-
placement version of the non-linear theory of thin shells.
International Journal of Solids and Structures 46(17):
3103-3110.

Opoka, S. & Pietraszkiewicz, W. 2009b. On refined analysis
of bifurcation buckling for the axially compressed circular
cylinder. International Journal of Solids and Structures
46(17): 3111-3123. ,

Simmonds, J. G. & Danielson, D. A. 1970. New results for
the buckling loads of axially compressed cylindrical shells
subject to relaxed boundary conditions. Journal ofApplied
Mechanics 37(1): 93-100.

Yamald, N. 1984. Elastic Stability of Circular Cylindrical
Shells. Amsterdam: Elsevier.

132



