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Refined results on buckling of the axially compressed circular cylind.er

S. Opoka & W. Pietraszkiewicz
Institute of Fluid-Flow Machinery, PASci, Gdańsk, Potand

ABSTRACT: We present extensive numerical results on bifurcation buckling analysis ofthe axially compressed
circu_lar cylinder. The analysis is based on the modified displacemental versión of the non-linear iheory of thin
elastic shells developed recently by the authors. The numerical analysis of the buck1ing load is performń for the
cyiinders with eight sets of incremental work-conjugate boundary conditions analogous to thoie summarized in
the book byYamaki (1984), and with six sets of boundary conditions not d.iscussed yet. The results allow us to
formulate several novel important conclusions.

1 INTRODUCTION

Stabilify of the axially compressed thin, isotropic,
elastic circular cylinder was analysed in thousands
of papers, as well as summarised in several books
and dozens of surveys which were briefly reviewed
by opoka & Pietraszkiewicz (2009b)' In pańicular'
Yamaki (1984) compared the buckling ioad curves
based on Donnell's and Fiiigge's stability equations for
a wide range of length-to-radius ratio of the cylinder
and for eight sets of incremental boundary conditions,
using the membrane prebuckling state. He found that
with the increase in the cylinder length the buckling
loads following from the Flugge stabiiity equations
took considerably smaller vaiues than those following
from the Donnell ones.

In this paper we present the extensive numeri-
cal results on bifurcation buckling of the axialiy
compressed circular cylinder. The analysis is based
on the modified version of the geometrically non-
linear theory ofthin, isotropic, elastic shells expressed
in terms of displacements as the only independent
field variables developed by Opoka & Pietraszkiewicz
(2009a,b). In those papers we havę formulated the
modified equilibrium equations as weli as the alter-
native work-conjugate sets of geometric and static
boundary conditions compatible with a new boundary
function cv rational in terms of displacement deriva-
tives. Applying this modified version of shell theory
we arę able to refine the results summarized byYamaki
(1984) in three main aspects:

. The two-dimensionaily exact, non-linear boundary
value problem (BVP) and the corresponding lin-
earized shell buckling problem (SBP) are generated
automatically by the computer programs written
within the symbolic language of MłrrrruATICA.
Such an approach allows one to always account for
those a few smali terms in the SBP which may be
critical for finding the correct buckling load ofthe
axialiy compressed circular cylinder.

. The incremental boundary conditions of the SBp
are deńved by direct linearization ofwork-conjugate
sets ofthe non-linear geometric and static boundary
conditions about the prebuckling equilibńum state'
This set allows one either to confirm the results pub-
lished elsęwhere' or to refine those which Seem to
be questionable.

. We discuss buckling loads of the compressed cylin-
der for eight sets of boundary conditions also
investigated by Yamaki (1984). Additionally, we
analyse buckling loads for six other sets ofboundary
conditions not discussed elsewhere.

2 DISPLACEMENT SBP FORTHEAXALLY
COMPRES SED CIRCULAR CYLiNDER

The referęnce surface M of the circular cylinder
with radius R, length L, and thickness ł is loaded
by the compressive axial force component uniformly
distributed on both boundaries perpendicular to cylin-
der's generators. The cylindrical surface is parameter-
ized by non-dimensional coordinates (l,x: z lR).The
independent field variables of the BVp are displace-
ments of the reference surface. The non-dimensional
incremental displacemen ts u(Q, x), v @, x) and w (Q, x)
denote, respectively, the axial, circumferential and
radial components of the incremental displacement
vector divided by -R, see Fig. 1.

The modified displacemental version of the non-
linear theory of thin elastic shells used here was
presented in detail in the paper by Opoka &
P ietraszkiew icz(2009 a). In p articular, formulation of
the BVP for the cylinder and derivation of the cor-
responding SBP were generated automatically in
Opoka & Pietraszkiewicz (2009b) by rwo packages
ShellGeom.m ar-ld ShellBYP.n written within the sym-
bolic language of MłIIłEMATIcA.

Under the axial compressive force components
Nł:_'ź, the cylinder becomes shorter and is
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Table 1. Nomenclature for different sets of clamped and
simply supported boundary conditions.

C-family and S-family

C1(S1): u:0
C2(S2): dt:0
C3(S3): u:0
Ca(S4): dt:0
C5(S5): u:0
C6(S6): dt:0
C7(S7): u:0
C8(S8): dt:0

v:0 w:0
v:0 w:0

dz:O w:0
dz:O w:0
v:0 dt:0
v:0 ds:O

dz:0 dt:0
dz:O dt:O

u/ _0(dą_0)
wt =O(ia:Q)
wt=O(da:Q)
w/=.0(/a - Q)

w':0(dą:0)
w':0(dą=0)
w' =0(dą =0)
w'--1(da:0)

Figure 1. The parameterized upper-half of the cylindrical
surface.

assumed to homogeneously expand
direction. The prebuckling equilibrium
cylinder can be found to be

,o(l, r) : -2ep(I ł 3ep)x,

us(g,x) -- o ,

radial
for the

wo(Ó,r) :zeupLl + (2 _ u)ep] ,

where v denotes Poisson's ratio, e2 : hz lL12(I - ,2)R21,
and p denotes the loadparameter. The value p : 1 is the
buckling load corresponding to the classical buckling
Stress oĆl:ŻeEh.

The prebuckling dispiacements (1) are relatively
small. Using the linear constitutive equations and
the non-iinear kinematic relations, we can show that
the prebuckling solution (1) defines approximatelythe
menbrane prebuckiing state with only one axial stress
resultant Nr: -1 .

The displaceńental SBP derived in detail in
Opoka & Pietraszkiewicz (2009b) consists of three
homogeneous linear PDEs with constant coefficients
with regard to the incrementai displacements u, v, w

Atu'" ł Azw"' * A3ul' a Ąa1rłr * A5a" * A6w' : O,

B1(w'"+uw"')ł B2u||* B3u''+ Ba|(l+ u)uL*2uw) : ,, 
,r,

C1(w"" +zw"" +u".') +Cz(u,.'+uu,,,) +Csu,,,

łCąu'" *Csw'l *C6u- +C7u| łCgu'*Cgw :0,

and four homogeneous work-conjugate boundary con-
ditions defined at x : *l : + #
dt : Dtw" łD2u| łDg(u' łw) : 0 or u : 0,

d,z = Etw'' *Ezu' łEsul : 0 or u : 0,

d,g = F1|w"t * (2_ u)w'-]+ F2(u'. łuu,,) (3)

* F3u|' ł Faw| : 0 or tł : 0,

d'ą = Gl(w" +uu')*G2u'łG3u'łGaw: 0 or u)' : O,

where ff :O', H:0.. The coefficients appearing
in (l) and (2) are given in Opoka & Pietraszkiewicz
(200eb).
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Figure 2. The buckling load ofaxially compressed perfect
cylinder for boundary conditions Cl and CZ.

Numerical results given here have been calculated
for different sets ofboundary conditions (3) defined in
Table 1. In particulaą in our nomenclature the classical
simply supported and clamped boundary conditions
are denoteĄ respectively, as 52 and C1.

3 NUMEzuCAL RESUI.JTS

The solution method based on expanding dispiace-
ments into Fourier series is used to generate numer-
ical results for SBP (Ż) and (3). The method has
been described in detail in Opoka & Pietraszkiewicz
(200eb).

The numerical results indicating buckling load
curves for the perfect, axially compressed cylinder
with different sets of boundary conditions (see Table
1) are given in Figures Ż_5. The value p:1 corre-
sponds to the cIassical value ofthe buckling loaĄ and
the results are positioned with respect to the horizon-
tal, logarithmic axis of the non-dimensional cyiinder
length l: *.

Generally, the results for fourteen types of bound-
ary conditions (Figs. 2-5) can be divided into three
groups. For the boundary conditions Sl, Cl, C3, C5
the buckling load takes generally high values which
practically coincide wlren /€(0.7,60). For s2, C2,
C4, C6, C7 boundary conditions the buckling load
takes intermediate values and tire curves are choppy.
The results for this group again practically coincide
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Figure 3. The buckling load ofaxially compressed perfect
cylinder for boundary conditions 53, 54, C3 and C4.
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Figure 4. The buckling load ofaxially compressed. perfect
cylinder for boundary conditions S l, 52, 55 and 56.
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Figure 5. The buckling load ofaxially compressed perfect
cylinder for boundary conditions CS, C6, C7 and 57.

when / ę(2'.5,60). For the boundary conditions 53,
54, 55, 56, 57 the buckling load p assumes about one
half of the classical value for intermediate cylinder
lengths and the results practically coincide only when
/ e (0. l, 20).

The numerical results obtained using the complete
SBP (Cl curve) and the simplified one, inwhich terms
of the order of error introduced by the constitutive
equations were omitted (C15 curve), are shown in Fig-
ure 2. In the intermediate iength rangę' differences
bętween the results are Small, but with the increase of

the cylinder length the simplified stability equations
lead to more and more overestimated results. Hence,
for the boundary conditions C 1 some supposedly small
terms are, in fact, important and cannot be omitted for
long cylinders.

our ręsuits have been compared with eight similar
ones available in Yamaki (1984) based on the Fliigge
stability theory which are represented by dotted curyes
in Figures 4 and 5.

For the boundary conditions C7, CZ, C3, 51, 52
and 53 our results practically coincide or are slightly
lower than those ofYamaki in the range of intermediate
and long cylinderlengths. Thus, theyamaki results for
these cases are not shown in Figures 4 and 5, except
for Sl case in Figure 4 given as an example. Because
of good overall agreement between the corresponding
curyes' the Fliigge stabiliĘ equations with his bound-
ary conditions could be preferred in applications as
the simpler ones.

However, for short cylinders with boundary con-
ditions 54 and Ca (Fig. 3) the correspond.ing curves
in Yamaki (1984) increase with decrease in the cylin-
der length and exceed p : 1. But our results show
that the resistance to buckling decreases in that range.
This solution behaviour for the boundary conditions
54 was revealed already by Simmonds & Danielson
(1970), who proved it for shoń cylinders using the
ring-beam theory and cited the similar result noted by
Koiter ( I 967). Our stabiliry analysis suggests that such
a behaviour foliows from using in our analysis the cor-
rect, integrable forms of the geometric and associated
work-conjugate static boundary conditions.

The exchange of the geometric boundary constraint
u:0 for the static work-conjugate boundary condi-
tion d1 :0 causes the following transition bętween
types of boundary conditions: C1-->C2, C3-->C4,
C5-->C6, S1+S2, S3-+54 and S5-+56, see Table
1. Generally, this exchangę causes that p.';, takes
smaller valuęs and within the intermediate lengths dif-
ferences between the corresponding results inc,.easę.
as the length increases, the maximal difference being
about20%o.

The exchange ofboundary constraint v:0 (w: 0)
for the static work-conjugate boundary condition
dz:0 (ds:0) leading to transitions Cl-+C3,
C2--+C4, S5-+57 (Cl-+C5, C2-->C6, S3-+57)
causęS no effęct within the intermediate cylinder
lengths. In the transition C5+C7 (C3-->C7 for ły :
0) we have the same behaviour as in the transition
C1--+C2 described above. In the transitions S1-+53
and S2+S4 (S1-+S5 and 52-+56 for w:0), p",it
falis down to about one half of the classical value in
the large range of cylinder's lengths.In cases Sl+53
and S2-+54 this phenomenon was noticed aiready by
Hoff& Rehfield (1965) andAlmroth (1966).

The exchange of the constraint w, :0 for da:e
causes the transition from the clamped to the cor-
responding simply supported boundary conditions.
Essentially the same results are obtained for tran-
sitions between the boundary conditions Cl-+Sl
and C2-+S2. But for the remaining ones Ci+Si,

p
1.0

0.6

0.4
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i:3, .', 7, qcńt falls down again to about one half of
the classical value.

The buckling load for the axially compressed Euler
column with simply-suppońed (clamped) boundaries
is defined in our terms ds p: # fr: #), and its
probed values are denoted in Figures 2-5'by black
squares (black triangles). The axially compressed cir-
cular cylinder with the length parameter I > 20 and,
boundary conditions C2, SZ, C4, 54, C6, 56, C'7,
57 looses its global stabiiity as the simply-supported
Euler column, while the axially compressed very long
cylinder (l > 40) with Cl, S1, C3, 53, C5, 55 bound-
ary conditions behaves itself as the clamped Euler
column. Comparing definitions ofthe boundary condi-
tions given in Table 1, the iong axially loaded cylinder
behaves as an axially loaded clamped column if its
bonndaries are constrained as u -- v : 0 or u : w : 0.
In the remaining cases the long axially loaded cylinder
behaves as an axially loaded simply supported col-
umn. Therefore, the condition a:0 indicating that
the global rotation of the shell edge as a wholels not
alloweĄ is necessary but not sufficient for the long
axially loaded cylinder to behave as an axially loaded
clamped column.

4 CONCLUSIONS

The numerical resuits allow us to formulate the fol-
lowing conclusions:

. If terrns of the order of error introduced by the
constitutive equations are omitted" this elimination
leads to elimination of some supposedly smali terms
from the corresponding SBP. For long cylinders this
results in overestimated buckling loads.

. Using the simplified kinematic reiations causes the
buckiing load to be overestimated as well, especiaily
for long cylinders.

. The results obtained from our complete SBp coin-
cide in most cases with the available results fol-
lowing from the Fliigge stability equations. How-
ever, the entirely different asymptotic behaviour
has appeared for 54 and C4 boundary conditions

_when 
the length of the short cylinder is decreasing.

We explain this behaviour by completeness of the

work-conjugate boundary conditions used in our
anaiysis.

. Besides the well-known case of relaxing the
boundary condition v:0 (transitions S1--+S3 and
S2-+S4 ), which causes the buckling load to fall
down to about one half of the classical value, we
have also discovered that relaxing boundary condi-
tions w:0 (transitions s1-+s5 and s21s6) and
w' :0 (transitions Ci-+Si, i:3, ..,7) also leads to
similar effects.

. The wider scatter of numerical results for siriłply
supported cylinders, contrary to the corresponding
small scatter for clamped cylinders, suggests thJt
the buckling load is very sensitive to accurate mod-
elling of the rotations aliowed at the boundary. This
seems to be one of the major reasons of discrep-
ancy between theoretical and experimental bucklińg
loads of the axially compressed circular cylinder.
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