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Abstract  Theoretical values of two correction factors 5 / 6sα =  and 7/10tα =  are established for the 
respective transverse shear stress resultants and stress couples within the general, dynamically and 
kinematically exact, six-field theory of elastic shells. These values do not depend on the shell material 
symmetry, geometry of the base surface, the shell thickness, or any kind of kinematic and/or dynamic 
constraints. The analysis is based on the complementary energy density following from the transverse shear 
stresses acting only on the shell cross section. The appropriate quadratic and cubic distributions of the 
stresses across the thickness allow one to derive the consistent constitutive equations for the transverse shear 
stress resultants and stress couples with sα  and tα  as the respective correction factors. Four numerical 
examples of highly non-linear shell structures illustrate the influence of different values of sα  and tα  on the 
results. In particular, some influence of tα  is noticed on the placement of bifurcation points. In dynamic 
problem of flight of three intersecting plates analysed with Newmark-type temporal algorithm, the value of 

tα  influences the moment at which the relative error of total energy of the system begins to grow indefinitely 
leading to the solution failure. 
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1 Introduction 

 
The general non-linear theory of shells proposed by Reissner (1974) was developed 

in a number of papers, for example by Libai and Simmonds (1983), Chróścielewski et al. 

(1992, 1997, 2002), Ibrahimbegović (1997) and Eremeyev and Pietraszkiewicz (2006, 

2009), and partly summarised in the books by Libai and Simmonds (1998), Chróścielewski 

et al. (2004) and Eremeyev and Zubov (2008), where many additional references are given. 

This dynamically exact and kinematically unique two-dimensional (2D) shell model does 

not require any kind of kinematic or dynamic constraints. It naturally includes the so-called 

drilling rotation and two transverse shear stress couples with corresponding work-

conjugate transverse shear bendings. These fields become of primary importance in 

analyses of irregular shells with kinks, branchings and intersections (Chróścielewski et al. 



  

1997, 2004), when connecting shell elements with beams, columns and stiffeners, as well 

as in two-dimensional formulation of singular phenomena such as phase transitions 

(Eremeyev and Pietraszkiewicz 2004, 2009), crack propagations, dislocations (Eremeyev 

and Zubov 2009), wave motion etc. 

 Within the general 6-field shell model used here it is also reasonable 

(Chróścielewski et al. 1997) to introduce explicitly the shear correction factors sα  and tα  

into the constitutive equations for the respective transverse shear stress resultants and stress 

couples. Yet, the numerical values of sα  and tα  are not established within the general 

shell model, although one expects that the results should be analogous to those available 

for simplified shell and plate models of the Timoshenko-Reissner (T-R) type formulated 

using kinematic and/or dynamic constraints. Please note that various T-R shell models 

developed in many works and summarized for example by Naghdi (1972), Pietraszkiewicz 

(1979), Altenbach and Zhilin (1988), Simo and Fox (1989), Kleiber and Woźniak (1991), 

Antman (1995), Rubin (2000), Bishoff et al. (2004), and used by Vu-Quoc et al. (2000, 

2001) and Vu-Quoc and Ebcioglu (2000, 2005) in multilayered shells, is based on 

kinematic constraints: “shell material fibres, which are initially normal to the undeformed 

shell base surface, are constrained to remain straight  (and possibly inextensible) during 

shell deformation”. This leads to only two rotational dofs available in such shell models. 

The absence of the third drilling rotational dof makes the kinematically constrained shell 

models insufficient for proper analyses of the irregular shell problems mentioned above. 

The aim of this paper is to establish theoretical values of the two shear correction 

factors within the general 6-fields geometrically non-linear theory of elastic shells, and to 

test their influence on numerical results of static and dynamic behaviour of some highly 

non-linear regular and irregular shell structures. 

After reminding some general shell relations, we discuss in section 3 an effective 

part of 3D complementary energy density of the geometrically non-linear elasticity. This 

part is associated with the transverse shear stress components acting only on the shell cross 

section. Then 3D distribution of the transverse shear stresses are represented in (1.10) 

through the transverse shear stress resultants and stress couples. The corresponding 

distribution functions (1.12) are constructed by requiring four conditions (1.11) to be 

satisfied. The 3D stress distribution is then introduced into the effective 3D density and the 

through-the-thickness integration is performed. This leads to appropriate forms of the 

constitutive equations (1.15) and their inverse (1.17). As a result, the uniquely defined 



  

theoretical values of the correction factors 5 / 6sα =  and  7/10tα =   for the respective 

transverse shear stress resultants and stress couples are established. We refer in section 4 to 

some review papers, in which various attempts to calculate sα  within the simplified shell 

models based on kinematic constraints are summarised, and review few earlier attempts to 

derive the correction factor tα  within the simplified shell models. 

In section 5, we present four numerical examples of highly non-linear behaviour of 

elastic shell structures. In two first ones the influence of sα  and tα  on static, stability and 

post-buckling behaviour of the structures are analysed. In the third example we discuss 

how three different values of tα  influence the total, potential and kinetic energies of the 

irregular three-plate structure in its free flight in space. The fourth example shows the 

influence of values of sα  and tα  on numerical results for the shell of variable thickness. 

 

2 Some shell relations 

 

Let P M⊂  and ( )P P Mχ= ⊂  with corresponding edges P∂  and P∂  be 

connected parts of the shell base surface in the undeformed M  and deformed ( )M Mχ=  

configurations defined by the position vectors x  and y , respectively, where χ  means the 

deformation. According to Libai and Simmonds (1998) and Chróścielewski et al. (2004) in 

the referential description the 2D internal stress resultant νn  and stress couple νm  vectors 

acting along P∂ , but measured per unit length of P∂  with the surface outward unit normal 

vector ν , are defined by  

 , , ,
h

h
d dα α

ν α ν αξ ν ξ ν
+

−

+ + + +

− − − −
= = = × = ≡∫ ∫ ∫ ∫n Tl n m z Tl m  (1.1) 

where T  is the 1st Piola-Kirchhoff stress tensor in the shell space, l  the unit normal to the 

reference shell cross section, , 1,2,α αν α= ⋅ =aν  αa  the surface base vectors of the 

curvilinear coordinates 1 2( , )ξ ξ  on M , ξ  the distance from M  along the unit normal 

vector n  orienting M  such that [ , ] ,h h h h hξ − + − +∈ − = +  the shell thickness, and z  a 

deviation vector of the shell material particle in the deformed configuration from M . 

 The unique 2D shell kinematics induced by the resultants αn  and αm  consists of 

the translation vector u  and the proper orthogonal (rotation) tensor Q , both describing the 



  

gross deformation (work-averaged through the thickness) of the shell cross section such 

that 

 , , ,α α= + = =y x u t Qa t Qn  (1.2) 

where ,αt t  are three directors attached to any point of M . As a result, the 2D vectorial 

stress measures αn , αm  and the corresponding work-conjugate 2D vectorial strain 

measures ,α αε κ  are naturally expressed in components relative to the rotated base ,αt t . 

However, it is usually more convenient to use the material representation of these 2D 

measures in the form 
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Here 1  is the metric tensor of the 3D space and ax( )⋅  denotes the axial vector of the skew 

tensor ( )⋅ . In particular, in  (1.3) and  (1.4) the 2D material components Qα α= ⋅n n  and 

M α α= ⋅m n  are the transverse shear stress resultants and couples, while the 

corresponding work-conjugate 2D material components Eα α= ⋅nε  and Kα α= ⋅nκ  are 

the transverse shear strains and bendings, respectively.  

 

3 Constitutive equations for 2D transverse shear measures 
 

In the general six-field theory of shells the strain measures (1.4) are defined only on 

the shell base surface, without any relations to 3D strain measures in the shell space. 

Hence, the idea of Pietraszkiewicz (1979) to use the 3D strain energy density for 

establishing the constitutive equations cannot be applied here. 

Let , 1,2,3,ijS i =  be 3D components of the 2nd Piola-Kirchhoff stress tensor 

1−=S F T , where Gradχ=F  is the 3D deformation gradient tensor in the shell space. 

Since in 3D convected coordinates ( , )αξ ξ , see Pietraszkiewicz and Badur (1983), 

1 i
i

− = ⊗F g g , ij
i jT= ⊗T g g , and ij

i jS= ⊗S g g , with , j
ig g  and , j

ig g  the 3D base 

vectors of the undeformed and deformed shell space, respectively, we also have ij ijS T= , 



  

although ≠S T . Thus, in terms of 3D components of S  the material 2D stress measures 

Qα  and M α  are defined by 

 3 3, ,Q S d M S dα α α αµ ξ µ ξ ξ
+ +

− −
= =∫ ∫  (1.5) 

with 21 2 ,H Kµ ξ ξ= − +  1
2

H bαα=  the mean curvature,  ( )detK bαβ=  the Gaussian 

curvature, and bαβ  the mixed components of the curvature tensor of M . 

 The 2D shear stress resultants and moments (1.5) are not the same as those defined 

in any Timoshenko-Reissner type shell model based on kinematic constraints mentioned 

above. In our definitions (1.5) the complete 3D distribution of shear stresses 3Sα  are 

integrated through the thickness, while in analogous definitions of any constrained shell 

theory the stresses in analogous to (1.5) definitions of shear resultants do not contain 

reactive stresses which are required to maintain the assumed kinematic constraints, see 

Kleiber and Woźniak (1991) and Antman (1995). 
Within 3D geometrically non-linear, homogeneous elastic solids (Green and Zerna 

1968, Gurtin 1972) the complementary energy density per unit volume of the reference 

configuration is given by the quadratic expression 

 1 , = = = , ,
2

ij kl ij ji
ijkl ijkl jikl ijlk klijW K S S K K K K S S= − =  (1.6) 

where ijklK  are components of the compliance 4th-order tensor. In particular, for an 

isotropic elastic solid we have 

 ( )1 (1 ) + 2 ,
2ijkl ik jl il jk ij klK g g g g g g

E
ν ν⎡ ⎤= + −⎣ ⎦  (1.7) 

with E the Young modulus and ν  the Poisson ratio. 

 Taking into account symmetries of ijklK  and ijS , the quadratic expression (1.6) can 

be written as the sum of four separate terms each representing a part of 3D complementary 

energy density calculated from the stresses 3 3, ( )S S Sλµ λ µ=  and 33S . Only the stress 

components 3,S Sλµ λ  act on the shell cross section. The stress components 3 3 33,S S Sµ µ=  

act on shell surfaces constξ = parallel to the base surface M  and, while contributing to 

the effective part of complementary energy density effW , they should not contribute to the 

constitutive equations associated with the resultants (1.1). In particular, the part of effW  

from the shear stresses 3Sα  alone is given by 



  

 
( )( )3 3 3 3

3 3 3 32

3 3 3 3 0

12 2 ,

| ,

eff
sW K S S A S S

A K

λ µ α β λ µ
λ µ α β λ µ

α β α β ξ

µ µ µ µ
µ

=

= − = −

=
 (1.8) 

where bα α α
λ λ λµ δ ξ= −  are the geometric shifters. 

The 2D representation of eff
sW  can now be obtained by direct through-the-thickness 

integration of (1.8), 

 .eff eff
s sΣ W dµ ξ

+

−
= ∫  (1.9) 

 Let us assume, for definiteness, the base surface M  be the middle surface of the 

shell in the undeformed configuration, that is / 2h h h− += = . Assume also, for simplicity, 

that there are no surface tangential forces applied at the upper and lower shell faces where 

/ 2hξ = ± , and no body forces applied in the shell space (otherwise these loads would 

appear explicitly in the 2D constitutive equations, which we would not like). Then the 

reduction of 3D transverse shear stress field to its 2D statically equivalent resultant force 

and couple components according to (1.1) means that in the general shell theory 3( )Sα ξ  

can, in fact, be represented by 

 2
1 6( ) ( ),S Q f M g
h h

α α αµ ξ ξ= +3  (1.10) 

where the functions ( )f ξ  and ( )g ξ  should satisfy the following conditions (see Badur 

1984, page 77): 
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c f d g d
h h
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h h
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ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

+ +

− −

+ +

− −

⎛ ⎞ ⎛ ⎞± = ± =⎜ ⎟ ⎜ ⎟
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− = − = −

= =

= =

∫ ∫

∫ ∫

 (1.11) 

The conditions (1.11) are satisfied, in particular, by the following families of 

polynomials: 

 

2 32 2 2

1 2 32 2 2

2 32 2 2

1 2 32 2 2

3 4 15 4 35 4( ) 1 , ( ) 1 , ( ) 1 ,
2 8 16

5 4 35 4 105 4( ) 1 , ( ) 1 , ( ) 1 , .
4 8
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h h h
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h h hh h h
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ξ ξ ξξ ξ ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠

…

…

 (1.12) 



  

Each pair of the polynomials ( )nf ξ  and ( )ng ξ , 1,2,3,...,n =  assure, in particular, that the 

representation (1.10) for ( )Sαµ ξ3  satisfy the tangential force-free boundary conditions at 

2
hξ = ±  . 

When the shell is homogeneous in the transverse normal direction it is quite natural 

to choose the simplest functions 1( )f ξ  and 1( )g ξ  in the representation (1.10), and we will 

use them in this paper as well. In fact, the function 1( )f ξ  was first introduced in the linear 

bending theory of plates by Reissner (1944), while the function 1( )g ξ  was first used by 

Green et al. (1971) in the linear theory of plates of variable thickness.  

In case of multi-layer shells with odd number of layers of the same thickness, 

higher-order functions (1.12) may become more appropriate, for example 2 ( )f ξ  and 2( )g ξ  

for three-layer shells, 3( )f ξ  and 3( )g ξ  for five-layer shells, etc. When layers have different 

thickness and/or their number is even, one has to use the continuity conditions at the layer 

interfaces to define the global shear correction factors for multi-layer shell through the 

shear correction factors of individual layers. Such an approach can directly be used in the 

dynamically exact multi-layer shells proposed recently by Chróścielewski et al. (2010). Its 

approximate applicability to geometrically exact multi-layer shell models of Vu-Quoc et al. 

(2000-2005) can be discussed within the errors of the second approximation to the elastic 

strain energy density of Pietraszkiewicz (1979), see also discussion in section 4. 

The relations (1.8) and (1.12) for 1n =  indicate that the integrand in (1.9) becomes 

an infinite series of the resultants ,Q Mα α , the curvatures ,H K , the material parameters, 

and polynomials of ξ . Thus, let us now assume that the shell is thin, / 1h R << , so that 

1µ ≈ , and α α
λ λµ δ≈ . Introducing these approximations together with (1.12), (1.8) and 

(1.10) into (1.9), and taking into account that  

 2 2
1 1

6 10( ) , ( ) ,
5 21

f d h g d hξ ξ ξ ξ
+ +

− −
= =∫ ∫  (1.13) 

we obtain the following result: 

 3 3 3
1 12 5 72 , , .

6 10
eff
s s t

s t
Σ A Q Q M M

h h
α β α β

α β α α
α α
⎛ ⎞

= − + = =⎜ ⎟
⎝ ⎠

 (1.14) 

 The constitutive equations for the 2D strain components Eα  and Kα  can now be 

directly calculated differentiating (1.14): 



  

 3 3 3 33
4 48, .

eff eff
s s

s t

Σ ΣE A Q K A M
hQ M h

β β
α α β α α βα αα α

∂ ∂
= − = = − =

∂ ∂
 (1.15) 

 Let ijklL  be 2D components of the 4th-order elasticity tensor which are dual to ijklA  

such that 

 ( ) 3 3 3
3 3 3

1 1 1, , .
2 2 4

ijkl i j i j kl
klmn m n n m klL A L A L Aγ γ γ α γ

β β α β βδ δ δ δ δ δ= + = =  (1.16) 

 Then we can invert the constitutive equations (1.15) for Qα  and M α  and obtain 

 
3

3 3 3 3, .
12s t
hQ hL E M L Kα α β α α β

β βα α= =  (1.17) 

 The value 5 / 6sα =  and 7 /10tα =  of the correction factors derived here do not 

depend on the shell material symmetry, geometry of the base surface, the shell thickness, 

or any kind of kinematic and/or dynamic constraints so popular in the literature. 

 In particular, for the homogeneous isotropic elastic material  

 3 3
3 3

1 , , ,
4 2(1 )

EA a L Ga G
G

α β αβ
α β αβ ν

= = =
+

 (1.18) 

so that the energy (1.14) reads 

 2
1 1 12 1 ,

2
eff
s

s t
Σ a Q Q M M

Gh h
α β α β

αβ α α
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (1.19) 

and the corresponding constitutive equations are 

 3
1 1 1 12, ,

s t
E a Q K a M

Gh Gh
β β

α αβ α αβα α
= =  (1.20) 

 
2

3 3

2

1 (1 ) , ,
2 1

1 (1 ) , .
12 2 12(1 )

s s

t t

EhQ Gha E C a E C

Gh EhM a K D a K D

α αβ αβ
β β

α αβ αβ
β β

α α ν
ν

α α ν
ν

= = − =
−

= = − =
−

 (1.21) 

Please note some symmetry of so defined sα  and tα  with regard to the shell stretching and 

bending stiffness C  and D , respectively. 

 

4 Discussion 
 

Since the role of tα  was not understood within the general 6-field theory of elastic 

shells, Chróścielewski et al. (2004) and Chróścielewski and Witkowski (2010) performed 

extensive numerical tests in order to analyse how values of tα  influence the static and 



  

dynamic behaviour of several regular and irregular elastic shell structures within the linear 

and geometrically non-linear range of deformation. It was found, in particular, that when 

1tα <  the results were practically insensitive to its numerical value. This corresponds well 

with quantitative estimates provided by John (1965) that in thin shells the order of 

transverse shear stresses 3Sα  is lower by some small parameter than the order of stresses 

Sαβ . Thus, the shell complementary energy density following from terms involving Qα  

and M α  is of higher order smallness than the one following from those involving Nαβ  

and M αβ .  

In most plate and shell models available in the literature the shell kinematics, not 

dynamics as in the present paper, is taken as the primitive notion to which various 

simplifying kinematic and/or dynamic constraints are applied. In most cases the 3D 

translation field ( )ξυ  in the shell space is approximated by the linear expression, see for 

example Pietraszkiewicz (1979), 

 3 3 0, , , | .ξξ ξ =≅ + = − = =( ) u a n a Gn G Fυ β β  (1.22) 

In particular, the transverse shear strain components 3( )Γα ξ  of the 3D Green strain tensor 

( )1
2

T= −1F FΓ  are approximated by 

 3 3 3 3 3 3 3 3
1 1( ) , , , , .
2 2

Γα α α α α α α α αξ γ ξ κ γ κ≅ + = ⋅ = ⋅ =a a a a a Ga  (1.23) 

The linear approximations (1.22) and (1.23) are used, for example, in the Timoshenko-

Reissner type plate and shell models, geometrically exact formulations, shell models 

obtained by degeneration of 3D relations, and the 2D models of Cosserat surface with one 

deformable director. Frequently, in such 2D models the dynamic constraint about the plane 

stress state in the shell space is additionally assumed. However, the errors introduced into 

the 2D theory of shells by such kinematic and/or dynamic constraints are not well 

understood even today.   

In all 2D plate and shell models based on such kinematic constraints deformation of 

the base surface is described only by 5 displacemental degrees of freedoms (dof): three 

translations and two rotational parameters. The third rotational dof – the so called drilling 

rotation – cannot be properly defined here, see extensive discussion of this issue in 

Chróścielewski et al. (2004), section 2.7. In order to apply such constrained 2D plate and 

shell models in analyses of irregular shell problems mentioned in Introduction, one has to 

additionally reintroduce the drilling dof into the shell relations.  



  

 The correction factor 5 / 6sα =  in the constitutive equations for Qα  expressed in 

terms of 3αγ  was first proposed by Bolle (1947) within the linear theory of isotropic elastic 

plates. He used the quadratic distribution of transverse shear stresses across the plate 

thickness similar to our (1.10) and (1.12)1. In many later papers reviewed by Grigoljuk and 

Selezov (1973), Noor and Burton (1989), and Jemielita (2001) various static, kinematic 

and dynamic approaches were proposed to redefine this factor leading to its different 

values from the range [0.73 – 1.0]. In those papers the influence of existence of the 

transverse shear stress couples M α  on the value of sα  was not taken into account. 

The correction factor 7/20 in the constitutive equations for 3M Mα α≡  was first 

proposed by Green et al. (1971), see also Naghdi (1972), within the linear theory of 

isotropic elastic plates of variable thickness. Their work-conjugate bending measures 3αρ  

were defined as linear combinations of the main 3αγ  and linear 3ακ  terms of through-the-

thickness expansion of 32 ( )Γα ξ .  

Pietraszkiewicz (1979a) arrived at the correction factors 2 5 / 6k =  and 2 7 /10l = , 

with detailed derivation of these values available in PhD dissertation of Badur (1984). The 

constitutive equations for 3N Qα α≡  and 3M Mα α≡  in terms of corresponding 3αγ  and 

3ακ  were derived by Pietraszkiewicz (1979a, 1979b), within the consistent second 

approximation to the elastic strain energy density of the geometrically non-linear isotropic 

shells. Comparing those constitutive equations with ours (1.17) we can conclude that 

within the error indicated in Pietraszkiewcz (1979a, 1979b) the 2D strain measures 

3 32 ,α αγ κ  defined by Pietraszkiewicz (1979a) and in (1.23) can be interpreted as some 

approximations to ,E Kα α  defined in (1.4). However, the both 2D transverse shear strains 

and bendings should not be identified, because they are introduced by entirely different 

approaches.  

Yeh and Chen (1993) used the transverse shear correction factor 1/ϕ  with 1.2ϕ =  

in their micropolar elastic constant matrix of an isotropic plane stress state for both the 

stress resultants 3Nα  and stress couples 3M α . This corresponds to the assumption that 

both 5 / 6s tα α= = , and such a choice was referred to Owen and Hinton (1980).  

Bischoff and Ramm (2000) and Bischoff et al. (2004) used the correction factors 

5 / 6α =  and β =7/10 in their constitutive equations for 3n Qα α≡  and 3m Mα α≡  within 



  

the 7-parameter shell model, while derivation of such factors was referred to Bischoff 

(1999). The main term of through-the-thickness expansion of the 3D Green strains 3( )Eα ξ  

was 3 3α αα γ≡  while the linear term was denoted as 3αβ , so that 32 αβ  is identical to 3ακ  

given in (1.23). Likewise, the measures Eα  and 32 αε  as well as Kα  and 32 αβ  may be 

seen as some approximations of each other, but they should not be identified. 

Altenbach and Eremeyev (2009) suggested that the constitutive relations used in the 

general shell theory may be viewed as equivalent to their material law proposed for the 

Cosserat plates. In particular, Chróścielewski and Witkowski (2010) derived from results 

of Altenbach and Eremeyev (2009)  the analytic formula for tα  valid in the case of non-

polar material  

 2 .
1t

ν
ν

α −
=

−
 (1.24) 

Since such 2tα ≥  for any 1 0ν> ≥ , it seems that the constitutive equations for Qα  was 

derived by Altenbach and Eremeyev (2009) using different 2D bending measure not 

compatible with our Kα . 

This discussion explicitly indicates that tα  is the constitutive coefficient which 

must not be confused with a ‘penalty multiplier’ as it was used in Eberlein and Wriggers 

(1999) and Tan and Vu-Quoc (2005). 

The discussion above also indicates that the values 5 / 6sα =  and 7 /10tα =  of the 

correction factors derived here can also be used with good approximation in any 

geometrically non-linear versions of homogeneous elastic plates and shells formulated by 

applying various simplifying kinematic constraints of Timoshenko-Reissner type leading 

to 5-, 6- or 7-parameter models,  geometrically exact formulations, 2D models degenerated 

from 3D elasticity, Cosserat surface models with one deformable director, etc. This is so, 

because according to John (1965) the stresses 3Sα  in the shell space are of lower order than 

those of Sαβ . Hence, the energy introduced by Qα  and M α  themselves into the 2D 

complementary energy density of the shell is small, and eventual additional errors of 

kinematic constraints on the values of shear correction factors is expected to be of higher-

order smallness. 

 

 

5 Numerical examples 



  

 
The remainder of this paper is concerned with numerical examples that study 

influence of the values of sα  and tα  on the response of shell structures in FEM analysis. 

In numerical results to follow we use the 16-node displacement/rotation based elements 

CAMe16 with full integration of element matrices, see Chróścielewski et al. (1992, 2004). 

Using dense meshes we avoid discussions about locking phenomena and convergence. The 

analysis is performed within small elastic strains but unlimited translations and rotations. 

 

5.1 Static snap-through of cylindrical panel 

Consider a cylindrical panel depicted in Fig. 1, where the geometry and boundary 

conditions are shown. The material parameters are: 112 10E = × , 0.25v = , 0.01h = . This 

example was examined, among others, in Botasso et al. (2002), Kuhl and Ramm (1996) to 

study properties of time integration schemes. Here we are concerned with the static version 

of this example.  

In the first part we have studied one quarter of the panel due to the double 

symmetry. At the first stage we have performed mesh convergence analysis for two 

discretisations of the quarter with 8×8 and 12×12 CAMe16 elements. It turns out that there 

has been no significant difference in the results, so we present only the results obtained in 

the first mesh.  

In the second part we have studied the influence of different values of tα . The 

overall response of the structure has been almost indistinguishable for 0.01tα =  and  

2.33tα = , with the latter value obtained from (1.24). To show the complicated nature of 

the analyzed problem Fig. 2 depicts the nonlinear load-deformation path of translation w  

of the point (a), and Fig. 3 shows the path of translation u  for the point (a). To conclude 

the study on symmetric analysis, Fig. 4 portrays the load-displacements path in the vicinity 

of the first limit point from Fig. 2. As it can be observed from Fig. 4, the change of 

0.01tα =  into 2.33tα =  does not practically change the placement of the limit point.   

However, the value of tα  has some influence on the non-symmetric bifurcation 

point. Fig. 5 shows the placements of bifurcation points depending on tα . While for 

0.01tα =  and 0.7tα =  the response of the structure is almost the same, for 2.33tα =  the 

bifurcation occurs for slightly larger value of the control parameter λ . 



  

Finally, Fig. 6 and Fig. 7 depict placements of the upper and lower limit points 

from Fig. 3, respectively.  

The presented results show small influence of tα  on the obtained results. The only 

exception is the placement of the bifurcation point in the case of asymmetric buckling. 

 

5.2 Channel section cantilever  

The problem analyzed in this subsection was originally formulated by Lee and 

Harris (1998) as the simply supported beam under action of uniformly distributed 

transverse load. Later, Chróścielewski et al. (1992) analyzed another variant of this 

example: the beam was considered as clamped at one end with the point load applied at the 

free end. This version became the popular benchmark problem and was analyzed among 

others by Ibrahimbegović and Frey (1994), Betsch et al. (1996), Chróścielewski et al. 

(2004), Eberlein and Wriggers (1999), Tan and Vu-Quoc (2005). Wagner and Gruttmann 

(2005) studied another variant of this example, see also Chróćielewski and Witkowski 

(2006).  

The structure analysed here is depicted in Fig. 8. Geometry is described by 36L = , 

2a = , 6b = , 0.05h =  while the load is assumed as proportional ( ) refP λ λP=  with 

100refP = . The material constants are 710E =  and 0.333v = . The mesh used in this study 

consists of 4 elements for lower flange, 6 elements for the web, 4 elements for the upper 

flange and 36 elements along the beam length. Fig. 9 portrays non-linear load-deformation 

path of the horizontal translation w  of the point (a) obtained using 0.01tα = . As it can be 

seen, the response of the structure is complex for values 6w > − . Fig. 10 shows the non-

linear deformation paths of  w  obtained with three different values of 

[0.01; 0.7; 2.499]tα = . The latter value is obtained based on equation (1.24). It may be 

noted that all the solutions are close to each other. This Figure also shows the complicated 

response of the structure. Details of this response are shown in Fig. 10. 

Similarly to the previous example, numerical results show small dependence on the 

values of tα . 



  

5.3 Free flight of three intersecting plates 

This example is representative for the class of tumbling problems initiated by the 

works of Vu-Quoc and Simo, see Vu-Quoc (1986), Simo and Vu-Quoc (1988). We analyze 

the flight of the shell structure as shown in Fig. 11, where geometry, loads and material 

parameters are given. This example was analyzed by Simo and Tarnow (1994), Zhong and 

Crisfield (1998), Miehe and Shroeder (2001). It is interesting to notice that Miehe and 

Shroeder (2001) and Simo and Tarnow (1994) obtained different results though the same 

material, loads and geometrical parameters were used. This issue has recently been studied 

in detail by Chróścielewski and Witkowski (2010), where the internal, kinetic and total 

energies, the kinetic constitutive equations and the time integration schemes were 

described. The importance of this example is that once the external load impulse dies out 

an in free motion the structure is the Hamiltonian system in which we observe, conserved 

by definition, the total energy of the structure.  

The material constants in used in this example are: 72 10E = × , 0.25v = , 0.02h = . 

Simulations carried out in this paper are based on the kinetic constitutive relations 

for the linear ( , ) mt hρ=p x υ  and angular 3( , ) ( /12)It hρ=j x ω  momentum vectors in 

which  ( , ) ( , )t t= =� �υ y x u x  and ( )Tax= �ω QQ  are the translational and angular velocity 

vectors, and coefficients are given by 

 1.0 0.02 0.02mρ h = ⋅ =  
3 3

50.02 3.333 10
12 1

50
2I

hρ −= = ×⋅  (1.25) 

where mρ  stands for the initial mass density of the translational motion, and Iρ  is the 

initial mass density of the rotary motion.  

In this example we have used two time integration schemes. The first one belongs 

to the Newmark family and was described in Chróścielewski et al. (2004), Lubowiecka and 

Chróścielewski (2002). The second scheme falls into category of the energy conserving 

algorithms (ECA, this label is used in the figures to designate the solutions) and its details 

were given by Lubowiecka and Chróścielewski (2005).  

The ECA algorithm has also been used by in the paper by Chróścielewski and 

Witkowski (DOI: 10.1002/cnm.1208).  To validate the correctness of the scheme the 

author run the example known as the toss rule (see for example Kuhl and Ramm 1996, Vu-

Quoc and Tan 2003). It has been shown that the present ECA algorithm furnishes correct 

results.  



  

The time step used in the present calculations has been taken as 0.002∆t s= . 

Fig. 12 shows preservation of the total energy of the structure obtained for three different 

values of the correction factor [0.01; 0.7; 2.33]tα =  by making use of the Newmark 

algorithm. The value 2.33tα =  is obtained through (1.24). These three results are 

compared to the solution obtained for 0.01tα =  with the ECA method. When 3.3t s≈  we 

observe a sudden growth of the total energy for all three values of tα  in the Newmark 

scheme. As it can be observed, for 0.01tα =  this convergence failure appears slightly later 

than for the two remaining values. The same effect is portrayed in Fig. 13 and Fig. 14 for 

the kinetic K  and potential U  energies, respectively. To compare the results further we 

define the relative energy error as 

 100% ,ext

ext

U K Gerror
G

+ −
= ⋅  (1.26) 

where the external work extG  is defined in Chróścielewski and Witkowski (2010). The 

error plotted against time t  is shown in Fig. 15. 

 

5.4 Bending of twisted beam 

We analyze the twisted beam shown in Fig. 16. This example was used in the set of 

problems proposed by MacNeal and Harder (1985). Originally, the thickness 0.32h =  was 

used.  Belytschko et al. (1989) reduced the thickness to 0.0032h =  to invoke the locking 

effect. This is the very popular example, see for instance Wagner and Gruttmann (2005), 

Chróścielewski and Witkowski (2006), Panasz and Wiśniewski (2008), Cardoso et al 

(2008) and the literature given there. In computations we use the following data: 12L = , 

1.1b = , angle of twist o90 , 629 10E = × , 0.22ν = . We perform the analysis for three 

different values of thickness: 0.32h = , 0.032h = , 0.0032h = , using three different values 

of [0.01; 0.7; 2.28]tα = . Here the latter value 2.28tα =  is obtained from (1.24). The 

results are shown in Fig. 17, Fig. 18 and Fig 19. From the figures it is seen that regardless 

of the value of tα  the overall response of the structure has the same character. However, 

with the growth of the shell thickness the influence of tα  becomes more clearly 

pronounced. 

 



  

6  Conclusions 

 

We have established the theoretical values of two correction factors 5 / 6sα =  and 

7 /10tα =  for the respective transverse shear stress resultants and stress couples within the 

general, dynamically and kinematically exact, six-field theory of elastic shells. This values 

do not depend on the shell material symmetry, geometry of the base surface, the shell 

thickness, or any kind of kinematic and/or dynamic constraints.  

We have formulated the 2D constitutive equations for the transverse shear stress 

resultants and stress couples and compared them with those known in the literature, which 

were obtained using various simplifying kinematic and/or dynamic constraints. 

The constitutive equations derived here have been used to analyse numerically 

three highly non-linear shell structures, in which the influence of different values of sα  

and tα  known in the literature on the results are illustrated. In particular, little influence of 

tα  on limit points of the structures has been noted. However, for the placement of 

bifurcation points the influence of tα  is noticeable indeed.  

In case of shell dynamic problem, when the temporal Newmark-type algorithm fails 

to converge, the value of tα  influences the moment at which the relative error of total 

energy of the system begins to grow indefinitely leading to the solution failure. 
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Figure captions 

Figure 1. Cylindrical shell: geometry, load and boundary conditions  

Figure 2. Cylindrical shell: load-deformation path of (a)w  
Figure 3. Cylindrical shell: load-deformation path of (a )u  
Figure 4. Cylindrical shell: vicinity of the first limit point, symmetry  

Figure 5. Non-linear deformation path, bifurcation point 

Figure 6. Upper bifurcation point on secondary path 

Figure 7. Lower bifurcation point on secondary path 

Figure 8. Channel section cantilever: geometry and load 

Figure 9. Channel section cantilever: non-linear deformation paths 

Figure 10. Channel section cantilever: non-linear deformation paths, details 

Figure 11. Three intersecting plates: geometry and loads 

Figure 12. Three intersecting plates: total energy for different values of tα  

Figure 13. Three intersecting plates: kinetic energy for different values of tα  

Figure 14. Three intersecting plates: potential energy for different values of tα  

Figure 15. Three intersecting plates: relative error of the total energy, eq. (1.26) 

Figure 16. Twisted beam, geometry and load 

Figure 17. Twisted beam, results for 0.0032h =  

Figure 18. Twisted beam, results for 0.032h =  

Figure 19. Twisted beam, results for 0.32h =  
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