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Abstract

We construct the unique two-dimensional (2D) kinematics which is work-
conjugate to the exact, resultant local equilibrium conditions of the non-
linear theory of branching shells. It is shown that the compatible shell dis-
placements consist of the translation vector and rotation tensor fields defined
on the regular parts of the shell base surface as well as independently on
the singular surface curve modelling the shell branching. Discussing rela-
tions between limits of the translation vector and rotation tensor fields when
approaching the singular curve, and analogous fields given only along the
singular curve itself, several types of the junctions are described. Among
them are the stiff, entirely simply connected and partly simply supported
junction as well as the elastically and dissipatively deformable junction, and
the non-local elastic junction. For each type of junction the explicit form of
the principle of virtual work is derived.

Keywords: shell, junction, branching, finite rotation, principle of virtual
work

1. Introduction

Already Reissner (1974, 1982) noticed that the 2D kinematic structure of
the general theory of regular shells, which is uniquely induced by the exact,
resultant local shell equilibrium equations, corresponds to that proposed by
Cosserat and Cosserat (1909). Libai and Simmonds (1983, 1998) formulated
the 2D kinematics for shells modelled by a non-material weighted surface of
mass taken as the shell base surface during deformation process. When the
base surface is taken to be a material surface arbitrary located in the shell-
like body, the 2D shell kinematics was discussed by Makowski and Stumpf
(1990) and Chróścielewski et al. (1992) and summarised in detail in the book
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by Chróścielewski et al. (2004), where references to other papers are given.
In the above works the 2D shell kinematics was uniquely established as the
work-conjugate dual structure following from some 2D integral identity of
the virtual work type. As a result, the unique 2D shell displacements are
described by six fields: three components of the translation vector u and
three independent parameters of the rotation tensor Q fields describing the
gross deformation of the shell cross section.

In case of irregular shell structures, called also multi-shells, several special
cases of 2D six-field shell kinematics were discussed by Makowski and Stumpf
(1994), Chróścielewski et al. (1997), Pietraszkiewicz (2001) and Chróścielewski
et al. (2004). In those works it was assumed that the region of irregularity
(branching, self-intersection, stiffening, technological junction etc.) is small
as compared with other dimensions of the shell base surface and its size can
be disregarded. Such an assumption introduced an undefinable error into the
resultant dynamic continuity conditions at the singular surface curves and
points modelling the regions of irregularity. Konopińska and Pietraszkiewicz
(2007) removed this inaccuracy and formulated the exact, resultant 2D equi-
librium conditions for the general, non-linear six-field theory of branching
and self-intersecting shells.

In this note by extending the results of Konopińska (2007) we construct
the dual structure work-conjugate to the exact resultant equilibrium con-
ditions derived by Konopińska and Pietraszkiewicz (2007). This structure
represents the unique 2D kinematics on the irregular shell base surface M

for the branching shell. We begin with the integral identity (9) in which
initially arbitrary vector fields v and w are interpreted as the kinematically
admissible virtual translations δu and rotations ω corresponding to the real
deformation of the shell base surface. This allows us to introduce the 2D
principle of virtual work (21) formulated on the irregular material base sur-
face M which includs the stationary singular curve Γ modelling the region of
shell branching. As a result, the shell displacements consist of two fields u ,
Q on M \ Γ and independent two fields uΓ, Q

Γ
defined only along Γ. Then

we discuss relations between limits of the fields u , Q when approaching Γ
and the fields uΓ, Q

Γ
themselves. In this way several types of junctions at

Γ can be described. Among them are the stiff, entirely simply connected,
partly simply supported and partly deformable junctions. For each type of
junction we characterize its specific kinematics and establish the appropriate
form of the principle of virtual work.
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2. Notation and local equilibrium conditions

A shell is a 3D thin solid body identified in a reference (undeformed)
placement with a region B of the physical space E having E as its 3D trans-
lation vector space. The position vector x = x−o of any point x ∈ B relative
to an origin o ∈ E can be given by

x(x, ξ) = x (x) + ξt(x) , (1)

where x (x) = x(x, 0) is the position vector of a point x of some undeformed
base surface M , while ξ is the distance from M to x along the unit vector t

not necessarily normal to M .
The position vector y = χ(x) = y − o relative to the same origin o ∈ E

of any shell point y in the deformed placement B = χ(B) can always be
represented by

y(x, ξ) = y(x) + z(x, ξ) , z(x, 0) = 0 , (2)

where y = χ(x ) is the position vector of the deformed material base surface
M = χ(M), and z is a deviation of y ∈ B from M = χ(M).

For the branching and self-intersecting shells Konopińska and Pietraszkiewicz
(2007) worked out the through-the-thickness integration procedure leading
to the exact, resultant local equilibrium conditions for any part Π ∈ M which
includes the singular surface curve Γ modelling the common junction of reg-
ular branches Mk, k = 1, ..., n, of M , with n = 3 for the branching and n = 4
for the self-intersection.

In the referential description these resultant local equilibrium conditions
consist of:
the equilibrium equations in Π ⊂ M \ Γ,

DivsN + f ≡ f̃ = 0 , DivsM + ax
(
NF T − FN T

)
+ c ≡ c̃ = 0 ; (3)

the static boundary conditions along that part ∂Πf ⊂ ∂Mf where the resul-
tant forces and couples are prescribed,

n∗ −Nν ≡ ñ = 0 , m∗ −Mν ≡ m̃ = 0 ; (4)

the static continuity conditions along Γ ∩ Π,

[[ Nν ]] + f
Γ
≡ f̃

Γ
= 0 , [[ Mν ]] + cΓ ≡ c̃Γ = 0 ; (5)
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and the static boundary conditions

ne − n i ≡ ñx = 0 ,

me −m i + y e × ne − y i × n i ≡ m̃x = 0
(6)

at the singular points xi, xe ∈ Γ ∩ ∂Mf , see Fig.1.
In (3)-(5), (N ,M ) ∈ E ⊗TxM are the surface stress resultant and stress

couple tensors of the 1st Piola-Kirchhoff type, which are related to the corre-
sponding stress resultant and stress couple vectors nν , mν , defined along any
edge ∂Π of a regular part Π ⊂ M by the surface Cauchy theorem nν = Nν,
mν = M ν, where ν ∈ TxM is the unit vector externally normal to ∂Π. In
(3)-(6), (f , c) ∈ E are the surface resultant force and couple vectors, Grads

and Divs denote the referential surface gradient and divergence operators
on M , (n∗,m∗) ∈ E are the boundary resultant force and couple vectors
along ∂Mf , (f

Γ
, cΓ) ∈ E are the compensating curvilinear resultant force

and couple vectors along Γ, while n i, m i and ne, m e are the compensat-
ing concentrated force and couple vectors applied at the initial xi and end
xe points of Γ, respectively. Additionally, ax(A) means the axial vector of
the skew tensor AT = −A, [[ a ]] is the jump of the vector field a(x) at the
singular surface curve Γ, and (.)′ ≡ d

ds
(.).

In Konopińska and Pietraszkiewicz (2007) the compensating concentrated
forces ne, n i and couples m e, m i were equivalently represented by curvilinear
integrals over some distributed loads n , m along Γ. In the present paper we
do not use this equivallent representation.

The relations (3) and (4) are formally equivalent to those given for the
regular shell for example by Libai and Simmonds (1983) and Makowski and
Stumpf (1990). The static relations (5) and (6) complete by some correcting
terms various analogous approximate relations proposed by Makowski and
Stumpf (1994), Chróścielewski et al. (1997, 2004) and Pietraszkiewicz (2001)
using alternative approximate reduction procedures.

To avoid ambiguity, let us recall that in this paper the surface gradient
Grads of a differentiable vector field v(x) ∈ E is the 2nd-order tensor field
Gradsv(x) ∈ E ⊗ TxM defined by

{Gradsv(x)}a =
d

dt
v(x + ta)|t=0 for any t ∈ R, a ∈ TxM. (7)

The surface divergence Divs of a differentiable tensor field A(x) ∈ E ⊗ TxM
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Figure 1: The branching shell element: a) the 3D shell, B) the corresponding 2D base
surface

is the vector field DivsA(x) ∈ E satisfying

{DivsA(x)} · b = Divs{A
T (x)b} = tr{Grads(A

T (x)b)} for any b ∈ E.

(8)

3. Work-conjugate shell kinematics

Let (v ,w) ∈ E be two vector fields smooth in regular points of M \ Γ,
and (vΓ,wΓ) ∈ E be two other vector fields smooth along Γ including the
initial xi and end xe points of Π ∩ Γ. Then for any part Π ⊂ M containing
a part of Γ, Fig. 1, we can set the integral identity

∫ ∫

Π\Γ

(
f̃ · v + c̃ ·w

)
da +

∫

Π∩∂Mf

(ñ · v + m̃ ·w ) ds

−

∫

Π∩Γ

(
f̃

Γ
· vΓ + c̃Γ ·wΓ

)
ds − ñx · vΓ − m̃x ·wΓ = 0 .

(9)

Introducing (3)-(6) into (9) we can transform the identity as suggested in
Chróścielewski et al. (2004), chapter 3.

In particular, note that by simple algebra

(DivsN ) · v = N • Gradsv , (DivsM ) ·w = M • Gradsw ,

ax(NF T − FN T ) ·w = −
1

2
(NF T −FN T ) •W = N • (WF ) ,

(10)
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where • is the scalar product in the tensor space such that for any A, B ∈
E ⊗ TxM , A •B = tr

(
ATB

)
, W = w × 1 is the skew tensor, and 1 means

the unit tensor of E ⊗ E.
Let us aply in the reverse order the divergence theorem used by Konopińska

and Pietraszkiewicz (2007), f. (23)-(26). Then the first integral of (9) with
(10) can be transformed as follows:

∫ ∫

Π\Γ

(
f̃ · v + c̃ ·w

)
da

=

∫ ∫

Π\Γ

{
(DivsN + f ) · v +

[
DivsM + ax(NF T − FN T ) + c

]
·w

}
da

= −

∫ ∫

Π\Γ

{N • Gradsv −N • (WF ) + M • Gradsw}da

+

∫

Π∩Γ

( [[ Nν · v ]] + [[ Mν ·w ]] ) ds +

∫

Π\Γ

(f · v + c ·w)da

+

∫

Π∩∂Mf

(N ν · v + Mν ·w)ds +

∫

Π∩∂Md

(Nν · v + Mν ·w )ds .

(11)

In (11), ∂Md = ∂M \ ∂Mf is the complementary part of ∂M where the
kinematic boundary conditions u = u∗, Q = Q∗ are prescribed, and the
jumps along the singular curve Γ are defined by

[[ N ν · v ]] =

3∑

k=1

N kνk · vk , [[ Mν ·w ]] =

3∑

k=1

M kνk ·wk . (12)

In (12), N k and M k are the one-sided finite limits of N and M when the
respective boundary ∂Mk coinciding with Γ is approached, respectively, and
νk ∈ TxMk is the unit vector externally normal to ∂Mk.

The second integral of (9) can be divided into two parts

∫

Π∩∂Mf

(ñ · v + m̃ ·w ) ds

=

∫

∂Π∩∂Mf

(n∗ · v + m∗ ·w) ds −

∫

∂Π∩∂Mf

(N ν · v + Mν ·w) ds .

(13)
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The third integral of (9) can also be rewritten in two parts

−

∫

Π∩Γ

(
f̃

Γ
· vΓ + c̃Γ ·wΓ

)
ds

= −

∫

Π∩Γ

( [[ Nν ]] · vΓ + [[ Mν ]] ·wΓ) ds −

∫

Π∩Γ

(f Γ · vΓ + cΓ ·wΓ) ds ,

(14)

where all fields are defined only along Γ.
Since Π is an arbitrarily chosen part of M , the results presented in (11)-

(14) are valid for the whole M as well, so that (9) with (11), (13) and (14)
for the whole M with Γ leads to

−

∫ ∫

M\Γ

{N • (Gradsv −WF ) + M • Gradsw}da

+

∫ ∫

M\Γ

(f · v + c ·w) da +

∫

∂Mf

(n∗ · v + m∗ ·w) ds

−

∫

Γ

(f
Γ
· vΓ + cΓ ·wΓ) ds

+

∫

∂Md

(N ν · v + Mν ·w) ds

+

∫

Γ

{ [[ Nν · v ]] − [[ N ν]] · vΓ + [[ Mν ·w ]] − [[ Mν ]] ·wΓ} ds

− (ne · vΓe − n i · vΓi)

− {(me + y e × ne) ·wΓe − (m i + y i × n i) ·wΓi} = 0 .

(15)

Let the real shell deformation be described by the translation vectors
u = y − x ∈ E and uΓ = yΓ − xΓ ∈ E of the base surface as well as the
rotation tensors Q and Q

Γ
∈ SO(3) of the shell cross sections defined as

Q = d i ⊗ t i, QΓ = dΓ

i ⊗ tΓ

i , where d i, dΓ

i and t i = (tα, t), tΓ

i , i = 1, 2, 3,
α = 1, 2, are triads of orthonormal directors in the deformed and undeformed
placement associated with M \ Γ and Γ, respectively. Then the vector fields
v , vΓ and w , wΓ may be interpreted, in particular, as the kinematically
admissible virtual translations and rotations

v = δu , vΓ = δuΓ , w = (δQ)QT ≡ ω , wΓ = (δQΓ)QT
Γ
≡ ωΓ , (16)

such that δu = ω = 0 along ∂Md, and δ is the symbol of virtual change
(variation). With such virtual displacements the integral in the fourth row
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of (15) vanishes. In the last row of (15) the terms at points (xi, xe) ∈ ∂Md

identically vanish as well, because the compensating concentrated forces and
couples are defined only at (xi, xe) ∈ ∂Mf .

Moreover, two integrals in the second row, the integral in the third row
and terms in the last row of (15) may now be interpreted as the external
virtual work performed by the given surface f , c, boundary n∗, m∗ and
compensating concentrated n i, ne, m i, m e loads as well as by the compen-
sating loads f Γ, cΓ prescribed along Γ, respectively. In this context the first
surface integral in (15) should have the meaning of internal virtual work per-
formed by N , M on the respective virtual strain measures Gradsδu −ΩF ,
Gradsω, where Ω = ω×1. These virtual strain measures should now be ex-
pressed by variations of appropriately defined global 2D stretch and bending
measures on M \ Γ.

The 2D strain measures on M \ Γ corresponding to the 2D virtual strain
measures were discussed in Chróścielewski et al. (2004), Pietraszkiewicz et
al. (2005) and Eremeyev and Pietraszkiewicz (2006). It was found that

Gradsδu −ΩF = δcE , Gradsω = δcK , (17)

where δc(.) = Qδ
{
QT (.)

}
is the co-rotational variation of (.), and the 2D

stretch and bending tensors are defined by

E = JF−QI , K = CF−QB . (18)

In (18), I = Gradsx ∈ E ⊗ TxM and J = gradsy ∈ E ⊗ TyM are the
inclusion operators on M \ Γ and M \ Γ, F ∈ TyM ⊗ TxM is the tangential
surface deformation gradient such that dy = Fdx, while B and C are the
structure curvature tensors of the base surface in the undeformed M \Γ and
deformed M \ Γ placements, respectively, defined as follows:

T = t i ⊗ e i , ax
(
dTT−1

)
= Bdx , B ∈ E ⊗ TxM ,

D = QT = d i ⊗ e i , ax
(
dDD−1

)
= Cdy , C ∈ E ⊗ TyM ,

(19)

where e i are the orthonormal base vectors of a 3D inertial frame of reference.
The description of shell deformation given in (16)-(19) is equivalent to

that proposed by Cosserat and Cosserat (1909).
If we introduce the virtual strain energy density in M \ Γ defined as

σ = N • δcE + M • δcK , (20)
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then the principle of virtual work following from (15) for the branching shell
can be given in the form

∫ ∫

M\Γ

σ da

=

∫ ∫

M\Γ

(f · δu + c · ω) da +

∫

∂Mf

(n∗ · δu + m∗ · ω) ds

−

∫

Γ

(f Γ · δuΓ + cΓ · ωΓ) ds

+

∫

Γ

{ [[ N ν · δu ]] − [[ Nν ]] · δuΓ + [[ Mν · ω ]] − [[ Mν ]] · ωΓ}ds

− (ne · δuΓe − n i · δuΓi)

− {(me + y e × ne) · ωΓe − (m i + y i ×m i) · ωΓi} .

(21)

In the PVW (21), two surface integals over M \ Γ and one line integral
along ∂Mf are the classical contributions appearing for the regular base sur-
face. All other terms in (21) take into account that now M is the irregular
surface containing the singular curve Γ modelling the surface branching. The
minus sign in front of some terms reflects the virtual works of compensating
loads which had to be subtracted in Konopińska and Pietraszkiewicz (2007)
to assure the exact global force and couple equilibrium of the branching shell.

The line integral along Γ in the fourth row of (21) contains the jump
terms which explicit forms depend on the type of junction modelled by Γ.
This integral describing the shell-junction interaction (S-JI) for some types
of shell junction will be discussed in detail below.

4. Junctions at shell branching

Let us discuss in more detail the branching shell whose undeformed base
surface M consists of three regular parts Mk, k = 1, 2, 3, joined together
along the common junction modelled by the singular curve Γ, see Fig. 1.

In general, one can independently characterise the behaviour of all six
components of u and Q when Γ is approached along a path within each Mk.
This would lead to a large variety of junctions characterised by any of 36
combinations of such relations for each Mk.

In this paper we assume that the translations of the base surface always
remain continuous during deformation, i.e. the kinematic continuity condi-
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tions uk = uΓ are always satisfied, where uk mean the one-sided limits of u

on each Mk when Γ is approached.
Since

[[ Nν · δu ]] = [[ Nν ]] · 〈δu〉 + 〈N ν〉 · [[ δu ]] , (22)

where 〈a〉 means the average value of a at Γ, by translational continuity
conditions we have 〈δu〉 = δuΓ and [[ δu ]] = 0, so that in this case

[[ Nν · δu ]] = [[ Nν ]] · δuΓ . (23)

With (23), the first two terms in the S-JI integral of the fourth row of (21)
cancel each other out. As a result, different types of junctions along Γ can
now be characterised by additional constraints put on one-sided limits Qk of
Q when Γ is approached.

4.1. Stiff junction

The junction is called stiff along Γ if both u and Q are continuous on
the whole M including Γ, see Fig. 2, that is

uk = uΓ , Qk = QΓ , k = 1, 2, 3 . (24)

In this case in the integrand of the S-JI integral we have not only (23)
but also

[[ Mν · ω ]] = [[ Mν ]] · ωΓ , (25)

so that the S-JI integral indentically vanishes. As a result, the kinematics of
the branching shell with all junctions stiff allong Γ is entirely described by
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two fields u , Q smooth in the whole M containing Γ. The corresponding
PVW reads

∫ ∫

M\Γ

σda

=

∫ ∫

M\Γ

(f · δu + c · ω) da +

∫

∂Mf

(n∗ · δu + m∗ · ω) ds

−

∫

Γ

(f Γ · δuΓ + cΓ · ωΓ) ds

− (ne · δue − n i · δu i)

− {(m e + y e × ne) · ωe − (m i + y i × n i) · ωi} ,

(26)

where δue, δu i and ωe, ωi are the virtual translation and rotation vectors
of M evaluated at the points xe, xi ∈ M , respectively.

4.2. Entirely simply connected junction

The junction is called entirely simply connected along Γ if only u is con-
tinuous at Γ but Q is not constrained when approaching Γ along a path on
each Mk, see Fig. 3.

In this case, when approaching Γ we have to satisfy the following inde-
pendent static continuity conditions:

M kνk = 0 , k = 1, 2, 3 . (27)

Then, besides of (23), the third and fourth terms of S-JI integral identically
vanish

[[ Mν · ω ]] = 0 , [[ Mν ]] · ωΓ = 0 . (28)
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Figure 4: Partly simply supported junctions of the branching shell

The relations (23) and (28) mean that the S-JI integral vanishes as well
and the corresponding PVW reduces to (26). In this case the relation of
any Qk to the rotation field Q

Γ
cannot be uniquely established, because

definition of Q
Γ

itself is not unique.

4.3. Partly simply supported junction

The shell junction can be called partly simply supported along Γ if u is
continuous at Γ, one of Qk is not constrained while the remaining two of
Qk are assumed to coincide with Q

Γ
when Γ is approached. Since in our

branching shell there are three branches Mk, each of them may be regarded
as simply supported in the junction Γ, while the remaining two are then
assumed to be stiffly connected with each other, see Fig. 4.

Let us assume, for definiteness, that the branches M1 and M2 are stiffly
connected with each other and the branch M3 is simply supported, see Fig.
4b). Then the continuity conditions along Γ become

uk = uΓ , Q1 = Q2 = QΓ , M 3ν3 = 0 ,

δuk = δuΓ , ω1 = ω2 = ωΓ , ω3 6= ωΓ .
(29)

Let νΓ, τΓ, nΓ be the orthonormal triad along Γ that defines Q
Γ

with
τΓ tangent to Γ in the positive direction as in Fig. 1b). Then choosing
orientations of M1 and M2 defined by the unit normals n1 and n2 and taking
nΓ = n2|Γ, as is shown in Fig. 4b), we may relate νΓ to the respective ν1

and ν2 according to

νΓ = τΓ × nΓ = −
1

cosα
ν1 = +ν2 , (30)
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where α is the angle between ν1 and the tangent space TxM2 along Γ, see
Fig. 4b). In this case, within the Lagrangian description used in the PVW
(21) we obtain

[[ Mν · ω ]] = (M 1ν1) · ω1 + (M 2ν2) · ω2 + (M 3ν3) · ω3

= {(M 2 −M 1cosα)νΓ} · ωΓ = [[ Mν ]] · ωΓ ,
(31)

and this term cancels out with the last term in the S-JI integral of (21). Then
the curvilinear S-JI integral (21)4 vanishes as well leading to the same form
(26) of the PVW as for the stiff and entirely simply connected junctions.
However, now Q

Γ
is defined by the kinematic continuity conditions (29)1

while Q
3

can be found only in the process of solution of the boundary value
problem, in which the static continuity conditions M 3ν3 = 0 is taken into
account.

5. Deformable junctions

Let us discuss again the junction of the branching shell for which the
translational continuity conditions uk = uΓ still hold along Γ and the rota-
tion tensor QΓ of Γ is defined again by two stiffly connected branches M1

and M2, so that Q
1

= Q
2

= Q
Γ
. But now the branch M3 is assumed to be

connected along the junction Γ in some deformable manner, Fig. 5.
The junction of M3 is called deformable along Γ if, besides of the con-

tinuity conditions given above, the edge couple vector m3 = M 3ν3 ∈ E

depends on Q3, Q ′
3

and/or δQ3 as follows:

m3 = m̂3 (Q3,Q
′
3
, δQ3) 6= 0 , (32)

where (.)′ = d

ds
(.) is derivative along Γ. Of course, higher-order derivatives

and higher-order variations of Q
3

may enter the function m̂3 as well, if
necessary.

Let us discuss in more detail the influence of separate ingredients of the
function m̂3 on the form of S-JI integral of (21).

5.1. Elastic junction

The junction of M3 is called elastic along Γ if m3 in (32) depends on Q3

alone,
m3 = m̂3(Q3

) . (33)
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Using the results of section 4.3, the moment terms in the S-JI integral
with account of (33) can be given by

[[ Mν · ω ]] = {(M 2 −M 1cosα)νΓ} · ωΓ + m̂3(Q3
) · ω3 ,

[[ Mν ]] · ωΓ = {(M 2 −M 1cosα)νΓ} · ωΓ + m̂3(Q3
) · ωΓ .

(34)

For the elastic junctions of M3 the S-JI integral in the PVW (21) should be
replaced by

S-JI =

∫

Γ

m̂3(Q3) · (ω3 − ωΓ)ds . (35)

For some elastic junctions it is more appropriate to use the linear function
m̂3,

m3 = A •Q
3

= Aφ
3

, (36)

where A and A are given 3rd-order and 2nd-order junction stiffness tensors,
respectively, composed of scalar coefficients, and φ3 = φi is the equivalent
finite rotation vector of Q

3
with φ as the angle of rotation about the rotation

axis defined by the unit vector i . For such linearly elastic junction of M3 the
S-JI integral becomes

S-JI =

∫

Γ

(A •Q3) · (ω3 − ωΓ)ds =

∫

Γ

φ(Ai) · (ω3 − ωΓ)ds . (37)
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5.2. Non-locally elastic junction

The junction of M3 is called non-locally elastic along Γ if m3 in (32)
depends on Q ′

3
alone,

m3 = m̂3(Q
′
3
) . (38)

Let us take into account that QT
3
Q ′

3
= −

(
QT

3
Q ′

3

)T
is the skew tensor

expressible through its axial vector κ3 by, see Pietraszkiewicz and Badur
(1983), f. (4.22),

QT
3
Q ′

3
= κ3 × 1 , κ3 = φ′i + {sinφ1 − (1 − cosφ)i × 1} i ′ , (39)

so that (38) can equivalently be expressed by

m3 = m̂3{Q3(κ3 × 1)} = m̃3(κ3) . (40)

For the non-locally elastic junction the S-JI integral takes the form

S-JI =

∫

Γ

m̂3(Q
′
3
) · (ω3 − ωΓ)ds =

∫

Γ

m̃3(κ3) · (ω3 − ωΓ)ds . (41)

If, in particular, the functions m̂3 in (38) and m̃3 in (40) are linear, then

m3 = G •Q ′
3

= Gκ3 , (42)

where now G and G are known 3rd-order and 2nd-order stiffness tensors
composed of scalar coefficients, respectively. For such non-locally linearly

elastic junction the S-JI integral reads

S-JI =

∫

Γ

(G •Q ′
3
) · (ω3 − ωΓ)ds =

∫

Γ

(Gκ3) · (ω3 − ωΓ)ds . (43)

5.3. Dissipative junction

The deformable junction of M3 can be called dissipative along Γ if m3 in
(32) depends on δQ3 alone,

m3 = m̂3(δQ3
) . (44)

Taking again into account that QT
3
δQ3 = −

(
QT

3
δQ3

)T
is the skew tensor

expressible through its axial vector ω3 by

QT
3
δQ

3
= ω3 × 1 , ω3 = (δφ)i + {sinφ1 − (1 − cosφ)i × 1} δi , (45)
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the relation (44) can equivalently be expressed by

m3 = m̂3 {Q3(ω3 × 1)} = m3(ω3) . (46)

In this case the S-JI integral takes the form

S-JI =

∫

Γ

m̂3(δQ3
) · (ω3 − ωΓ)ds =

∫

Γ

m3(ω3) · (ω3 − ωΓ)ds . (47)

If, in particular, the functions m̂3 in (44) and m3 in (46) are linear, then

m3 = H • δQ
3

= Hω3 , (48)

where again H and H are known 3rd-order and 2nd-order stiffness tensors
composed of scalar coefficients, respectively. For such linearly dissipative

junction the S-JI integral becomes

S-JI =

∫

Γ

(H • δQ3) · (ω3 − ωΓ)ds =

∫

Γ

(Hω3) · (ω3 − ωΓ)ds . (49)

6. Conclusions

It has been shown that the unique 2D kinematics of the branching shell
consists of the translation vector u and rotation tensor Q fields defined on
the regular parts of the shell base surface as well as of independent fields
uΓ, QΓ defined only along the singular surface curve Γ modelling the shell
branching.

For the branching shell we have derived the 2D principle of virtual work
(21), in which different types of junctions are taken into account by appro-
priate forms of the shell-junction interaction integral. It has been found that
the S-JI integral vanishes for the stiff, entirely simply connected and partly
simply supported junctions. In case of deformable junctions, the S-JI integral
has been explicitly calculated for the elastic and dissipative junctions as well
as for the non-locally elastic junction, and their particular linear behaviour
is characterized as well.

The 2D principle of virtual work (21), with S-JI integrals corresponding
to the particular type of junctions along Γ, may be used to develop appro-
priate computer programs for analyses of branching shells with various types
of junctions.
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