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The undeformed base surface of the irregular thin shell is modelled by the union of a finite number of regular 

smooth surface elements joined together along spatial curvilinear surface edges. The equilibrium conditions 

are formulated by postulating an appropriate form of the principle of virtual work, where also deformability 

of shell junctions is taken into account. The PVW is then discretised by 1C  finite elements and the 

incremental-iterative procedure is applied to solve the highly non-linear BVP. As an example, the 

axisymmetric deformation state is calculated in the casing of devise measuring the external pressure and 

having two pairs of circular welded junctions. The problem is solved within the elasto-plastic range of 

material behaviour with linear combination of isotropic and kinematic hardening, and deformability of the 

junctions is taken into account. 

 

 

1 Introduction 

 

Thin-walled shell structures often consist of several regular shell elements interconnected along 

curvilinear junctions. Pressure vessels, silos, liquid and gas storage tanks, offshore platforms, 

tubular towers, branching and intersecting pipelines, rockets, multi-segment underwater pressure 

hulls are just a few examples of such irregular shell structures. In most of such multi-shells the 

adjacent elements are usually stiffly connected to each other. But in some cases the shell junctions 

may have their own mechanical properties allowing the adjacent shell elements to deform (usually 

rotate) one with respect to the other. Such junctions are called deformable here. 

In the literature, there is a number of papers on axisymmetric behaviour of structures 

consisting of two or more thin shells of revolution (cylinders, cones, spheres, toroids) stiffly 

connected along the common circular junctions. These analyses performed within the classical 

linear theory of shells were partly summarised for example by Chernykh [6], Calladine [3], Baker et 

al. [1], and Novozhilov et al. [19]. The reviews of recent research on strength and stability of 

axisymmetric steel shell intersections was presented by Teng [28,29]. More general cases of 

intersecting shells within the linear elastic material behaviour were discussed for example by 

Voloshin and Samsonov [31], Bernadou [2], Ciarlet [9], Skopinsky [25-27] and Xue et al. [32,33]. 

But deformability of the junction itself according to the simplest model of linearly elastic behaviour 

was accounted for only by Bernadou [2], Nardinocci [17] and Titeux and Sanchez-Palencia [30] 

when discussing junctions of the linearly elastic plates. 

The non-linear theory of thin irregular shells was developed in [15,16]. The irregular shell 

structure is modelled by a material irregular base surface-like continuum which is capable of 

resisting only to stretching and bending. In the undeformed configuration the surface-like continuum 

is a union of regular smooth surface elements joined together along spatial curvilinear surface 

edges. Each spatial curve can represent a singular surface curve, but also a one-dimensional 

continuum modelling the deformable junction. The behaviour of the whole irregular shell structure 
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is formulated in the Lagrangian description by postulating an appropriate form of the principle of 

virtual work (PWV) in terms of displacements of the base surface-like continuum as the only 

independent field variables. Besides the equilibrium equations and boundary conditions known from 

the theory of thin regular shells, several forms of static and kinematic jump conditions at the 

junction are proposed in [16]. The jump conditions constitute an integral part of the boundary value 

problem (BVP). Simplified forms of the jump conditions appropriate for simpler models of thin 

irregular shells are given in [8]. 

Deformability of the junction is modelled in [16] implicitly by allowing appropriate forms of 

the one-dimensional virtual strain energy density. Unfortunately, we are not aware of any 

representative non-linear numerical example of thin irregular shells with deformable junctions, 

where the jump conditions and the effects of junction deformability itself would be tested. These 

remark are in sharp contrast to analyses of one-dimensional steel framed structures, where various 

semi-rigid beam-to-column connections were discussed in a number of papers, summarised in 

several recent books such as [5,10,4,12] and have even been introduced into Eurocode 3, [10]. 

In this paper we first recall in Section 2 the theoretical formulation of [16] and extend it 

slightly at the junction by explicit account of the junction deformability in the principle of virtual 

work. Then in Section 3 following the books [13,24,20] we briefly remind the incremental-iterative 

solution procedure of the non-linear boundary value problem, which is formulated for the whole 

irregular shell structure with deformable junctions. For any known approximation to the equilibrium 

state, an explicit form of incremental relations for the correcting increment of the displacements can 

be derived just by extending those presented in [22]. However, in this paper we do not derive 

explicitly all ingredients of such an incremental-iterative procedure, but perform all appropriate 

transformations implicitly within the numerical code. Such an approach seems to be more efficient 

for numerical analysis of this highly non-linear problem of irregular shells. 

In order to evaluate the effectiveness of such modelling of elasto-plastic shell behaviour with 

deformable junctions in a simple one-dimensional case, an appropriate algorithm based on the 

computer code MINIMOD described in [7] is developed. The algorithm uses the C
1
 axisymmetric 

displacemental finite elements applied within the elasto-plastic shell behaviour, which is extended 

here to account the deformable junctions. Numerical tests are performed for an axisymmetric non-

linear behaviour of the casing of measuring device subjected to external pressure. The casing 

consists of the cylindrical part joined with two toroidal caps connected at boundaries with other 

parts through welding modelled here as either stiff or simply connected junctions. The influence of 

the type of junction stiffness on the stress distribution in the casing is discussed within the elasto-

plastic range of material behaviour of the shell. 

 

2 Notation and basic relations for irregular shells 
 

According to [15,16], the consistent field equations and jump conditions of thin irregular shell 

structures can be derived using two postulates. In the kinematic one, the deformation of the irregular 

shell is assumed to be determined by stretching and bending of the irregular surface-like material 

continuum being a union of regular smooth surface elements joined together along spatial 

curvilinear surface edges, which in the reference configuration are denoted as M  and  , 

respectively. Then the equilibrium conditions are required to be derivable from the principle of 

virtual work (PVW) involving only dynamic fields associated with the assumed kinematics of M . 

Such PVW is postulated in the form 

 0,i eG G G G     (1) 
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where iG  means the internal virtual work, eG  is the external virtual work, and G  accounts for an 

additional virtual work of forces and couples acting only along all singular curves modelling the 

shell junctions. 

Let x  and y  be the position vectors of the shell base surface-like continuum in undeformed 

M  and deformed  M M  configurations, respectively, such that ( ) y x u x , with   

denoting deformation and u  the translation vector field on M . Let GradsG P  be the surface 

deformation gradient, with P  the perpendicular projection on the tangent plane T My . Then two 

symmetric tensors 

    
1

,
2

T T    E G AG A K G BG B  (2) 

are the Green-type strain and bending measures of any regular surface element ( )kM M . In (2), 

,A B  and ,A B  are the surface metric and curvature tensors in the undeformed and deformed 

configuration, respectively. In the Lagrangian description iG  in (1) can now be written as 

  
( )

: : ,
ki

M
k

G da   N E M K  (3) 

where ,N M  are the surface symmetric stress resultant and stress couple tensors of the 2
nd

 Piola - 

Kirchhoff type,   is the symbol of variation, the double-dot :  means the scalar product in the tensor 

space T M T Mx x  such that : tr( )TS T S T  for any surface tensors ,S T , and da  means the 

elementary surface element of M . 

 Let p  and h  be the external surface force and moment resultant vectors acting on each ( )kM  

but measures per unit area of  ( )kM , *t  and *h  be the external boundary force and moment 

resultant vectors prescribed along regular parts of the deformed boundary fM  but measured per 

unit length of fM , while *bf  be the external concentrated forces prescribed at each singular point 

b fP M . Then eG  in (1) takes the form [16] 

      
( )

* * ,
k

f
b f

e b b
M M

k P M

G da ds    




           p u h n t* u h n f u  (4) 

where n  means the unit normal vector of M . 

 It was proved in [16] that the most general form of G  allowed within the non-linear theory of 

thin irregular shells is 

   ,

i

i i

P

G h ds     




     f u f u  (5) 

where f  and h  are the external force and couple-like loads distributed along regular parts of   

but measured per unit length of  , if  are the external concentrated forces applied at each singular 

point iP  , and   is the scalar function describing the rotational deformation of the curve  . 

 When (3)-(5) are introduced into (1) one has to perform appropriate transformations. It should 

be taken into account that inside each smooth ( )kM  the kinematic fields ,E n  are expressible 

through u  and sGrad u  while K  depends also on 2Gradsu , so that three components of u  are the 

only independent field variables. But at regular points of ( )kM  and hence along M  the field n  

can be expressed in terms of ds  u u/  and a scalar function ( , , )   u u  describing the 
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rotational deformation of the shell lateral boundary surface, so that at edges of the shell base surface 

there are four independent field variables and    n L u q , see [14].  

Let u  denote symbolically the translation field u  inside ( )kM M , the translation and 

rotation-like fields ( , )u  and ( , ) u  along regular parts of ( )kM  and  , respectively, the 

translation iu  at each iP , and the translation bu  at each bP M . Then after complex 

transformations given in detail in [16] we obtain 

 

 

   

 

   

\
( ; ) Div

( * ) ( *) [ ] *

( ) [ ]

([ ] ) ([ ] ) [ ] 0.

f
b f

d
b d

i

s
M

b b b
M

P M

b
M

P M

i i i

P

G da

h h ds

h ds

h h ds







 

   

  

  









   




   

         

     

         









T l u

p p k u f u f u

p k u f u

p k f u f f u

u u

 (6) 

In (6), the compound tensor T , vector , , *,l p p k  and scalar , *h h  fields are defined in [2] through 

corresponding fields ,N M  and , , *, *p h t h  described above, [...]  means the jump of (...)  along 

each regular part of  , [...]i  is the jump of (...)  at each singular point of  , while [...]b  means the 

jump of (...)  at each singular point of M . 

 For any kinematically admissible virtual displacement u  the fields u  and   identically 

vanish along dM , so that the third line of (6) identically vanish as well. Then the transformed 

PVW (6) requires the equilibrium equations, the static boundary and corner conditions as well as the 

corresponding jump conditions along   to be satisfied. In such formulation the kinematic relations, 

the material and junction characterisation by the constitutive equations as well as the kinematic 

boundary conditions should additionally be specified. The whole set of shell relations constitute the 

highly non-linear boundary value problem (BVP) in terms of translations as the only independent 

field variables. 

 

3 Remarks on incremental-iterative solution of the BVP 

 

The non-linear BVP of the irregular thin elasto-plastic shells with deformable junctions can 

effectively be solved by numerical methods applying some incremental-iterative solution procedure. 

The procedure is usually based on approximation of the non-linear BVP by series of linearised 

BVPs. For the Lagrangian non-linear theory of thin, regular elastic shells (without junctions) such 

solution procedure was worked out in [22], where the general structure of incremental shell 

equations and corresponding buckling shell equations were explicitly derived. However, in case of 

highly non-linear irregular elasto-plastic shell problems it is more efficient to apply the numerical 

incremental-iterative procedure directly to the incremental variational functional, not to the shell 

equations following from it.  

Let us briefly recall some statements of [22] and extend them to shell problems with 

deformable junctions. Notice that components of the external loads ,p h  in M , *, *, *bht f  along 

fM  and , if f  along   may be specified entirely independently, in general, by now 18 

dimensionless parameters 
18Rp  . Then the non-linear BVP for a thin irregular shell 

generated by (6) can be presented symbolically as ( , ) 0pF  u , where the non-linear continuously 



 5 

differentiable operator F  is defined on the product space 3 18( , ) RC M E   with values in the Banach 

space, where 3( , )C M E  is a set of all components of u  and its surface gradients up to the 4th order.  

In engineering applications all external loads are usually specified by a single common 

parameter R . In this case the solution ( )u  of the BVP form a one-dimensional 

submanifold in 3( , )C M E  usually called the equilibrium path. ( )u  is called the weak solution if 

 ( ); ( ) 0G    u u  for all kinematically admissible ( ) u . For finding the weak solution ( )u  

one usually applies the Newton-Kantorovich method [13] based on successive approximations to 

the exact solution at some 1m   through solving a series of linearised BVPs following from 

linearisation of  ( ); ( ) 0G    u u  about a m  close to 1m  . 

Let us assume that smooth changes of   generate locally regular weak solutions of the BVP. 

One can divide the equilibrium path ( )u  into a finite number of equilibrium states corresponding 

to increasingly ordered discrete values of the load parameter 0 1 1, ,..., , ,...m m      . It is assumed 

that the weak solution mu  at the value m  is known, and the solution 1mu  at the next value 1m   is 

to be found from the known i-th approximation ( )
1

i
mu  which may not belong to the equilibrium path. 

To find the correction ( 1)
1

i
m

u  allowing one to calculate the next approximation 

( 1) ( ) ( 1)
1 1 1

i i i
m m m
 
   u u u  to 1mu , one can linearise  ; 0G  u u  at the approximation ( )

1
i

mu  which 

leads to the following equation for ( 1)
1

i
m

u  (see [13,24,18]): 

    ( ) ( ) ( 1)
1 1 1; ; , 0.i i i

m m mG G 
    u u u u u  (7)  

The first term in (7) represents the value of G  at the approximation ( )
1

i
mu . Since this approximation 

may not belong to the equilibrium path, the first term in (7) does not vanish, in general, and allows 

one to calculate the unbalanced force vector at the configuration corresponding to ( )
1

i
mu . The second 

term in (7) linear with regard to ( 1)
1

i
m

u  allows one to calculate the tangent stiffness matrix at ( )

1
i

mu  

of the non-linear BVP. If 1mu  corresponds to the regular solution point then the successive 

approximations ( 1)
1

i
m

u  established by this method converge to 1mu  with velocity of geometrical 

progression, provided that the initial approximation (0)
1mu  is sufficiently close to 1mu . Thus, 

efficiency of the Newton-Kantorovich method primarily depends on the choice of appropriate initial 

approximation (0)
1mu . 

 The incremental shell relations following from (7) are valid for unrestricted translations, 

rotations, strains and/or bendings of the shell irregular base surface, arbitrary configuration-

dependent external static loading, an arbitrary combination of work-conjugate boundary conditions, 

and arbitrary incremental constitutive relations of the shell and the junctions. 

 

4 Constitutive elasto-plastic modelling in thin shells 
 

Analysis in the elasto-plastic range of deformation of thin irregular shells with deformable junctions 

can be performed by the finite element method first proposed in [18], which has been extended here 

to account of deformability of the shell junctions. The shell is first divided into n  layers and the 

plane stress state is assumed within each layer. The 3D incremental  constitutive equations of each 

layer are described by the generalized elasto-plastic law of Prandtl-Reuss for small strains, with the 

associated flow rule and plasticity condition of Huber-Mises Hencky (HMH) with linear 

combination of isotropic and kinematic hardening.  
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In particular, in our constitutive shell model we apply the following relations (compare for 

example [34]): 

1. Additive decomposition of differential increment of the Green strain tensor e  into elastic 

and plastic parts, 

 .E Pd d d e e e  (8) 

2. The overstress tensor, 

 1
3

, , tr( ) ,       Σ s α Σ s α Σ Σ Σ I  (9) 

where s  is the 2
nd

 Piola-Kirchhoff stress tensor, 1
3
tr ( )  s s s I  is its deviatoric part, α  is 

the corresponding back stress tensor, and I  is the identity tensor of the 3D vector space. 

3. The Huber-Mises-Hencky (HMH) yield condition, 

 3
2

( , ) ( ) 0 , : , ,P P

Y

f
f     


     


Σ Σ Σ r

Σ
 (10) 

where   is the HMH effective stress and Y  is the yield stress in uniaxial tension. 

4. The associated plastic flow rule and evolution equation,  

 

2
3

: :
, , : ,

: :

(1 ) , ,

E
P P P P

E

P P

Y

d
d d d d d d

H

d H d d H d

  

   

  


   

r C e
e r e e

r C r

α e

 (11) 

where E
C  is the 4

th
-order tensor of elastic moduli, P  is the accumulated effective plastic 

strain, H   is the strain hardening parameter, and [0,1]   is the material parameter 

determining proportion between isotropic and kinematic hardening. 

5. The incremental constitutive relation of the elasto-plastic continuum, 

 : ,EPd ds C e  (12) 

where EP
C  is the instantaneous tangent 4

th
-order tensor of the elasto-plastic material 

behaviour given by 

 
( : ) ( : )

.
: :

E E
EP E

EH


 



C r r C
C C

r C r
 (13) 

In this approach, as the hardening function we can also take the multi-segment approximation 

of experimental curves following from material tests in tension, if necessary. The stress increments 

corresponding to the strain increments are calculated from velocity relations using the Euler method 

of forward integration with correction following from the plasticity condition. Then the incremental 

constitutive equations for the shell stress resultants and stress couples are established by direct 

through-the-thickness integration throughout all layers of 3D relations mentioned above. All matrix 

relations for the finite element are calculated numerically using 3-point Gauss integration within the 

element, and up to 10n   integration points across the shell thickness are applied. 

 

5 Example: Axisymmetric casing with deformable junctions undergoing 

elasto-plastic deformation 

 

The axisymmetric casing of measuring device being a part of a pressure installation consists of three 

regular thin shells of revolution: the circular cylindrical part of thickness ch , length H  and diameter 

D , and two toroidal parts of thickness sh , inner boundary diameter zd  and radius r . These 

dimensions are related by 2zD d r  , see Fig. 1.  
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Figure 1. The axisymmetric casing: geometry 

 

The toroidal parts are connected with the cylindrical one by welding, while at the upper and 

lower ends the toroidal parts are connected with rigid parts by welding or screw joints. Thus, in this 

example we have different technological inaccuracies at the junctions associated with welding (or 

screw joints) and with change of thickness. 

 The force ( )aP  acting at the inner and lower toroidal boundaries, see Fig. 2, comes from 

pressure difference applied to rigid parts of the casing and is calculated according to  

  2 2
( )

1
.

4
a z wP q d d   (14) 

 

 
Figure 2. The axisymmetric casing: scheme of analysis 
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 In the numerical analysis of this example we use the program MINIMOD [7] with the 

axisymmetric two-node RING element based on the theory of thin shells with finite rotations 

proposed in [21,23]. In this element two translation components ,u w  are approximated using the 

Hermite interpolation with 1C  interelement continuity of the form 

 
2

0 1

1

,
,

,

k sk

k sk

k skk

u uu
H H

w ww 

     
       

      
  (15) 

where 0
kH  and 1

skH  are shape functions in the Hermite interpolation. 

 In the analysis the following numerical data have been used: 2mmch  , 1mmsh  ,  

50mmH  , 100mmD  , 10mmzd  , 5mmwd  , 45mmr  . Within the elastic range of 

deformation we take 210GPaE   and 0,3  . The plastic range of deformation is characterized by 

the initial plasticity limit 0 (0) 450MPaY   , the mixed isotropic-kinematic hardening is 

described by parameter 1/ 2   and the tangent modulus is taken as 0,001TE E  . The linear 

constitutive relation ([ ])h c    governs deformability of the junctions. In the analysis we discuss 

only two extreme cases 0c   and c   to better read off the results. 

 The numerical results are presented in Fig. 3-5. 
 

 

 
 

Figure 3. The angle of rotation along the casing for 8 MPaq   
 

 

 In Fig. 3 we show how the angle of rotation   changes along the dimensionless parameter 

/s L . The length L  on the vertical axis of Fig. 3 is defined as 1/ 2( )L H r  , so that / (0,1)s L . 

Due to small values of translations ( )w s  and ( )u s  the quantity , ,s sw u    approximately 

describes the through-the-thickness average infinitesimal angle of rotation of material elements 

during the elasto-plastic deformation indeed. Notice that when both junctions at points ( )a  and ( )b  

are stiff, i.e. ( ) ( )a bc c   (the continuous curve), the values of   at the end points ( )a  and ( )c  

become zero and the curve has no jumps. For both simply supported junctions, i.e. ( ) ( ) 0a bc c   

(the dashed curve), the values of   at these points exhibit jumps confirming discontinuities of the 

rotation at the junctions. In the mixed cases, when either ( ) 0ac  , ( )bc   (the curve with squares) 

or ( )ac  , ( ) 0bc   (the curve with circles), both curves have only one jump at the simply 

supported junction, and this effect is pronounced only locally. 
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Figure 4. Vertical translation of the point (a) as function of pressure 
 

 

Fig. 4 indicates how the vertical translation ( )aw  depends on the external pressure applied to 

the casing. With grooving q  the ( )aw  grows initially almost linearly up to about 6 MPa. Above that 

value the plastic material behaviour makes the measurements of pressure less and less accurate up to 

about 8 MPa. Above the latter value the graphs ( ) ( )aw f q  become non-linear with clearly 

pronounced limit points for q  above which the devise becomes damaged. The maximal value of the 

limit point corresponds to ( )ac  , and its minimum value to ( ) 0ac  . The stiffness of ( )bc  has no 

influence on these results. 

Finally, on Fig. 5 the distribution of the bending couple 1M  along the casing for 8 MPaq   is 

presented. It is seen that for ( ) ( ) 0a bc c   there are zero values of the couple at both junctions, and 

the stiff characteristic of either junction has only local effect on the overall distribution of couples.  

Other intermediate values of the junction stiffness  ( ) ( )0 ,a bc c   would lead to similar 

graphs lying between those indicated in Fig. 3-5. 
 

 

 
 

Figure 5. Bending couple along the casing for 8 MPaq   
 

 

6 Conclusions 
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For the irregular thin shell structures we have proposed a modified form of the principle of virtual 

work in which stiffness characteristics of deformable junctions are explicitly taken into account. 

The PVW has then been discretized by 1C  finite elements and the usual incremental-iterative 

procedure has been applied to find the solution of the non-linear BVP. Numerical results of 

axisymmetric behaviour of the casing under external pressure in the elasto-plastic range of 

deformation indicates, among others, that deformability characteristics of the junctions influence the 

results only locally. 
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