
Thermomechanics of shells undergoing phase transition

V. A. Eremeyeva,b, W. Pietraszkiewiczc,∗

aMartin Luther Universiy Halle-Wittenberg, Halle (Saale), Germany
bSouth Scientific Center, RASci & South Federal University, Rostov on Don, Russia

cInstitute of Fluid-Flow Machinery, PASci, Gdańsk, Poland

Abstract

The resultant, two-dimensional thermomechanics of shells undergoing dif-
fusionless, displacive phase transitions of martensitic type of the shell ma-
terial is developed. In particular, we extend the resultant surface entropy
inequality by introducing two temperature fields on the shell base surface:
the referential mean temperature and its deviation, with corresponding dual
fields: the referential entropy and its deviation. Additionally, several extra
surface fields related to the deviation fields are introduced to assure that
the resultant surface entropy inequality be direct implication of the entropy
inequality of continuum thermomechanics. The corresponding constitutive
equations for thermoelastic and thermoviscoelastic shells of differential type
are worked out. Within this formulation of shell thermomechanics, we also
derive the thermodynamic continuity condition along the curvilinear phase
interface and propose the kinetic equation allowing one to determine po-
sition and quasistatic motion of the interface relative to the base surface.
The theoretical model is illustrated by two axisymmetric numerical examples
of stretching and bending of the circular plate undergoing phase transition
within the range of small deformations.
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1. Introduction

Phase transition (PT) phenomenon in continuous media originally de-
scribed by Gibbs (1928) was developed in a number of papers summarised in
several recent books for example by Grinfeld (1991), Gurtin (1993, 2000), Ro-
mano (1993), Sun (2002), Bhattacharya (2003), Fischer (2004), Abeyaratne
and Knowles (2006), Lagoudas (2008), and Berezovski et al. (2008). In this
approach one assumes existence of the sharp phase interface being a suffi-
ciently regular surface dividing different material phases. The position and
motion of the phase interface itself is among the most discussed issues in
the field. In the literature many model one-dimensional (1D) problems were
analysed theoretically, numerically and experimentally which adequately de-
scribed behaviour of bars, rods, and beams made of martensitic materials.

Experiments on shape memory alloys and other materials undergoing PT
are often performed with thin-walled samples such as thin strips, rectangular
plates or thin tubes, see Li and Sun (2002), He and Sun (2009a,b, 2010b,a)
and Sun (2002) among others. One would expect that two-dimensional (2D)
thermomechanics describing the behaviour of thin-walled structural elements
made of materials undergoing PT which is based on the theory of shells was
developed long ago. But this is not the case. To our best knowledge a sim-
ple 2D mechanical model of PT in thin films was proposed by Bhattacharya
and James (1999), James and Rizzoni (2000), and Shu (2000), see also Bhat-
tacharya (2003), Miyazaki et al. (2009). The model consists of the Cosserat
membrane with one director, but without taking into account bending rigid-
ity of the membrane. Alternative simple models of PT in biomembranes were
proposed by Boulbitch (1999), Agrawal and Steigmann (2008), and Elliott
and Stinner (2010).

The non-linear equilibrium conditions of elastic shells undergoing PT of
martensitic type were formulated by Eremeyev and Pietraszkiewicz (2004)
and Pietraszkiewicz et al. (2007) within the dynamically exact and kinemat-
ically unique theory of shells developed by Chróścielewski et al. (2004) and
Libai and Simmonds (1983, 1998). This version of the non-linear theory of
shells has the structure of the classical Cosserat surface with the transla-
tion vector u and rotation tensor Q fields as the only independent variables.
By analogy to the 3D case, the two-phase shell was regarded in Eremeyev
and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) as the Cosserat
surface consisting of two material phases divided by a sufficiently smooth
surface curve. Existence of such a curve was confirmed by several experi-

2



ments on thin-walled samples. For such a general shell model the first 2D
thermomechanical model of PT has recently been worked out by Eremeyev
and Pietraszkiewicz (2009).

In this paper we develop the general non-linear thermomechanics of the
Cosserat-type shells undergoing the diffusionless (displacive) phase transi-
tions of martensitic type. In particular, we discuss the thermodynamic con-
dition allowing one to determine position and quasistatic motion of the phase
interface on the deformed shell base surface. Here we use extended thermo-
dynamics of shells based on the introduction of two temperature fields. The
theoretical model is illustrated by example of a stretching and bending of the
circular plate undergoing phase transition in the case of small deformations.

2. Kinematics

In the undeformed placement the shell-like body is represented by the
base surface M described by the position vector x(θα), and orientation of M
is defined by the unit normal vector η(θα), with {θα}, α = 1, 2, the surface
curvilinear coordinates.

Within the dynamically exact and kinematically unique theory of shells
summarised in Libai and Simmonds (1998), Chróścielewski et al. (2004),
Eremeyev and Zubov (2008), in the deformed placement the shell is repre-
sented by the position vector y = χ(x) of the deformed material base surface
N = χ(M) with attached three directors (dα,d) such that

y = x+ u, dα = Qx,α, d = Qη, (1)

where χ is the surface deformation function, u ∈ E the translation vector of
M , and Q ∈ SO(3) the proper orthogonal tensor, QT = Q−1, detQ = +1,
representing the work-averaged gross rotation of the shell cross sections from
their undeformed shapes described by (x,α,η).

In the shell undergoing phase transition it is assumed that above some
level of deformation different material phasesA andB may appear in different
complementary subregions NA and NB separated by the curvilinear phase
interface D ∈ N . For a piecewise differentiable mapping χ we can introduce
onM a singular image curve C = χ−1(D) separating the corresponding image
regions MA = χ−1(NA) and MB = χ−1(NB). The position vectors of C and
D are related by xC(s) = χ−1(yC(s)), where s is the arc length parameter
along C.
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Let us consider a one-parameter family of shell deformations

y(x, t) = x+u(x, t), dα(x, t) = Q(x, t)x,α, d(x, t) = Q(x, t)η(x), (2)

where t is a time-like scalar parameter such that t = 0 corresponds to the
undeformed placement and t to the deformed one. Then v = u̇ is the virtual
translation vector, and ω = ax (Q̇QT ) the virtual rotation vector, where

ax(. . .) is the axial vector associated with the skew tensor (. . .), ˙(. . .) =
d
dt
(. . .), while V = ẋC ·ν is the virtual translation component in the exterior

normal direction of the phase curve C, ν ∈ TxM is the unit external normal
vector to C, and ν · η = 0.

In the general resultant theory of shells considered here the following two
strain measures are introduced, see Chróścielewski et al. (2004), Eremeyev
and Pietraszkiewicz (2004, 2006), and Pietraszkiewicz et al. (2005):

E = εα⊗aα, K = κα⊗aα, εα = y,α−dα, κα =
1

2
di×Q,αQ

Tdi, (3)

where (aα,η) and (di) are bases reciprocal to the base (x,α,η) and the base
(dα,d), respectively.

The curvilinear phase interfaces in shells can be either coherent or in-
coherent in rotations, see Eremeyev and Pietraszkiewicz (2004). For the
coherent interface both fields y (or u) and Q are supposed to be continu-
ous at C and the kinematic compatibility conditions along C become, see
Eremeyev and Pietraszkiewicz (2004), Eqs. (31) and (34),

[[v]] + V [[Fν]] = 0, [[ω]] + V [[Kν]] = 0, (4)

where the expression [[. . .]] = (. . .)B − (. . .)A means the jump at C.
The phase interface is called incoherent in rotations if only y (or u) is

continuous at C but the continuity of Q may be violated. In this case the
condition (4)1 is still satisfied, but (4)2 may be violated, see Eremeyev and
Pietraszkiewicz (2004).

3. Equilibrium equations

The balance equations and corresponding dynamic boundary conditions
of the general non-linear theory of shells can be derived exactly by direct
through-the-thickness integration of 3D balance laws of linear and angu-
lar momentum of continuum mechanics, see Libai and Simmonds (1998);
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Chróścielewski et al. (2004); Eremeyev and Pietraszkiewicz (2004). In quasi-
static problems discussed here the global equilibrium conditions lead to the
local Lagrangian equilibrium equations and the static boundary conditions

DivN + f = 0, DivM + ax
(
NF T − FNT

)
+ c = 0 in M, (5)

Nν − n∗ = 0, Mν −m∗ = 0 along ∂Mf ,

where the tensors N , M ∈ E⊗TxM defined on M are the resultant surface
stress measures of the 1st Piola–Kirchhoff type, f , c are the resultant surface
force and couple vector fields acting on N\D, but measured per unit area of
M\C, while n∗ and m∗ are the external boundary resultant force and couple
vectors applied along the part ∂Nf of N = χ(M), respectively. Additionally,
F = Grady = y,α ⊗ aα is the surface deformation gradient, F ∈ E ⊗ TxM ,
DivN = N ,α ·aα means the surface divergence of N , while axT is the axial
vector of the skew tensor T T = −T .

At the curvilinear phase interface C, which is the singular surface curve
with regard to the surface stress measures, we obtain the local Lagrangian
dynamic compatibility conditions (Chróścielewski et al., 2004),

[[Nν]] = 0, [[Mν]] + [[y ×Nν]] = 0. (6)

Equations (6) are just the local balances of forces and couples at C in the
quasistatic deformation process of the interface.

Further we assume that the position vector y is the continuous vector
function, i.e. we assume that the following relation holds:

[[y]] = 0 at C. (7)

This means that we consider the phase interfaces which are coherent in trans-
lations, but still incoherent in rotations. Under the condition (7) with (6)1
we obtain [[y ×Nν]] = 0 and (6)2 becomes [[Mν]] = 0.

4. Energy balance equation

According to Simmonds (1984) and Eremeyev and Pietraszkiewicz (2009),
the local resultant 2D thermomechanic balances of energy in the referential
description read

ρε̇ = ρr −Div q +N •E◦ +M •K◦ in M\C, (8)
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q · ν − q∗ = 0 along ∂Mh,

where ε is the internal surface energy (density), r is the internal surface heat
supply minus fluxes through the upper and lower shell faces, all per unit mass
of M , q ∈ TxM is referential surface heat flux vector, (·)◦ = Q d

dt
[QT (·)]

is the co-rotational time derivative, and the scalar product of two tensors
A,B ∈ E ⊗ TxM is defined by A •B = tr (ATB).

The corresponding local energy balance along C is

V [[ρε]] + [[nν · v]] + [[mν · ω]]− [[q · ν]] = 0, (9)

while nν = Nν and mν = Mν are the internal contact stress resultant and
couple vectors at the arbitrary edge ∂R of R = χ(Π).

5. The entropy inequality

The referential resultant entropy inequality for the shell can also be de-
rived by direct through-the-thickness integration of the global 3D entropy
inequality (The 2nd Law). In the literature there is no agreement which
form should take The 2nd Law, see for example the reviews by Muschik
et al. (2001) and Muschik (2008). Besides, in various formulations of The
2nd Law different ways of introducing the temperature field are proposed.

Thermodynamics of shells from various points of view was presented
for example in Green and Naghdi (1970, 1979), Murdoch (1976b,a), Zhilin
(1976), Simmonds (1984, 2005, 2011), Rubin (2004, 2006), Makowski and
Pietraszkiewicz (2002), Eremeyev and Zubov (2008) and
Eremeyev and Pietraszkiewicz (2009). In the papers various sets of sur-
face fields responsible for temperature were used and several formulations of
the first and second laws of thermodynamics for shells were discussed.

The simplest version of 2D second law of shell thermodynamics was pro-
posed in Murdoch (1976b,a), where the shell base surface was equipped with
one temperature field θ and one corresponding work-conjugate entropy field
η. At the same time, two different temperatures Θ± of the surrounding
media are admitted above and below the base surface. The simplified ver-
sion of Murdoch (1976b,a) with Θ+ = θ = Θ− was used in Eremeyev and
Pietraszkiewicz (2009) to formulate the resultant 2D Law along the curvi-
linear phase interface in the two-phase shell. In Green and Naghdi (1970,
1979), Simmonds (1984, 2005, 2011), and Rubin (2004, 2006) the through-
the-thickness averaged temperature and its averaged derivative in the thick-
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ness direction were used as the independent field variables. Various hypothe-
ses for definition of the surface temperature on the material base surface
were discussed in Steinmann and Häsner (2005). In Zhilin (1976) and Ere-
meyev and Zubov (2008) two temperature fields Θ+ and Θ− were used as
two independent field variables. In Zhilin (1976) two 2D entropy inequalities
were introduced to represent one entropy inequality used in 3D continuum
mechanics. Even more general version of 2D shell thermodynamics was dis-
cussed in Makowski and Pietraszkiewicz (2002).

In the present paper we use on the 3D level the rational thermomechanics
proposed by Truesdell and Toupin (1960), in which The 3D 2nd Law is given
in the form

Ḣ ≥ J (10)

where the entropy H and the entropy production J are given in the Clasius-
Duhem form

H =

∫∫∫
P

4Rη da, J =

∫∫∫
P

4R
r

Θ
dv −

∫∫
∂P

q · n
Θ

da. (11)

In (11), P is the 3D region with boundary ∂P occupied by the shell in the
reference placement, 4R(x, t) is the referential mass (density) per unit volume
of P , η(x, t) and r(x, t) are the 3D entropy and heat supply per unit mass
of P , Θ(x, t) > 0 is the absolute temperature, q(x, t) is the heat flux vector
through ∂P with n as the external unit normal, and x is the position vector
of the place in P and on ∂P .

In shell theory we usually parameterise points in P by x = x + ξη,
where ξ ∈ [−h−(x), h+(x)] is the distance along η from M to x ∈ P , and
h = h− + h+ is the initial shell thickness.

In this paper we introduce after Murdoch (1976a) the mean referential
temperature θ(x, t) > 0 and the temperature deviation φ(x, t) by

1

θ
=

1

2

(
1

Θ+

+
1

Θ−

)
, φ =

1

h

(
1

Θ−
− 1

Θ+

)
,

1

Θ+

=
1

θ
− φ

h

2
,

1

Θ−
=

1

θ
+ φ

h

2
, Θ(ξ) =

θ

1− θφξ
,

(12)

where Θ± are the temperatures of the upper and lower shell faces M± taken
to be equal to those prevailing in the adjoining external media. Then the
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direct through-the-thickness integration in (10) with (11) and (12) allows one
to represent (10) in the form∫∫

Π

{
ρη̇ − ρ

(r
θ
− φs

)}
da+

∫
∂Π

(qν
θ
− φsν

)
ds

+

∫
∂Π∩∂Mh

{
q∗

θ∗
− φ∗s∗ −

(qν
θ
− φsν

)}
ds ≥ 0,

(13)

where

ρη =

+∫
−

4Rηµ dξ,

+∫
−

(·) ≡
h+∫

−h−

(·),

ρr =

+∫
−

4Rrµ dξ −
(
q+ · n+α+ + q− · n−α−) ,

ρs =

+∫
−

4Rrξµ dξ −
h

2

(
q+ · n+α+ − q− · n−α−) ,

qν =

+∫
−

q · n∗µ dξ , sν =

+∫
−

q · n∗ξµ dξ ,

q∗ =

+∫
−

q∗ · n∗µ dξ , s∗ =

+∫
−

q∗ · n∗ξµ dξ ,

(14)

q− = q(x − h−η(x)), q+ = q(x + h+η(x)), q∗(x) is the given heat flux
vector through the lateral shell boundary surface ∂P∗, θ∗ and φ∗ are given
functions along ∂Mh, and the geometric parameters µ, α±, n±, n∗ are given
by Konopińska and Pietraszkiewicz (2007), Appendix (A.15)–(A.17).

In (14) we have introduced the referential resultant surface quantities: the
internal entropy supply η, the heat supply r and the extra heat supply s, all
per unit surface mass ofM , the heat fluxes qν and q

∗ as well as the extra heat
fluxes sν and s

∗ trough the internal ∂Π and external ∂Mh edges, respectively.
The fields qν and sν can be represented as qν = q · ν and sν = s · ν, where q
and s are the referential resultant heat flux and extra heat flux vectors.

Introducing (14) into (13) and applying the surface divergence theorem
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we obtain ∫∫
Π\C

ρη̇ da+

∫∫
Π∩C

V [[ρη]] da−
∫∫
Π

ρ
(r
θ
− φs

)
da

+

∫∫
Π\C

(
1

θ
Div q − 1

θ2
q ·Grad θ − φDiv s+ s ·Gradφ

)
da

−
∫∫
Π∩C

[[q · ν
θ

]]
da+

∫∫
Π∩C

[[φs · ν]] da

+

∫
∂Π∩∂Mh

{
q∗

θ∗
− φ∗s∗ −

(qν
θ
− φsν

)}
ds ≥ 0.

(15)

From (15) follows the local resultant 2D entropy inequalities for the non-
linear theory of shells

ρη̇ − ρ
(r
θ
− φs

)
+

1

θ
Div q − φDiv s+ h · s− 1

θ2
q · g ≥ 0

in M\C,

V [[ρη]]−
[[
1

θ
q · ν

]]
+ [[φs · ν]] ≥ 0 along C,

q∗

θ∗
− φ∗s∗ −

(qν
θ
− φsν

)
≥ 0 along ∂Mh,

g = Grad θ, h = Gradφ, g,h ∈ TxM.

(16)

Two surface fields θ and φ used here require two respective dual fields,
which are the resultant surface entropy η and the surface entropy deviation χ
(please do not identify this field with the deformation function used earlier).
These fields appear naturally as multipliers of θ and φ after the through-
the-thickness integration of the 3D entropy distribution η in which the 3D
temperature distribution Θ(ξ) = θ(1 − φθξ)−1 is used. We can think of χ
and φ as of the dual field variables in analogy to η and θ.

But from The 1st Law (8) we have

ρr −Div q = ρε̇−N • Ė−M • K̇, (17)

where the referential shell stress and strain measures are defined by

N = QTN , M = QTM , E = QTE, K = QTK. (18)
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Introducing the surface free energy density defined by

ψ = ε− θη − φχ (19)

we can transform (16)1 into

ρδ ≡ −ρ(ψ̇ + θ̇η + φχ̇+ φ̇χ) +N • Ė+M • K̇− 1

θ
q · g

+ρθφs− θφDiv s− θh · s ≥ 0.
(20)

In the balance laws (5)1, (8) and in the inequality (20) valid in M\C,
the fields ρ,f , c, r, s are supposed to be given, the fields u,Q, θ, φ consti-
tute the basic thermo-kinematic independent variables of the shell boundary
value problem, while the fields N,M, ψ, η, χ, q, s have to be specified by the
constitutive equations. In what follows we discuss the constitutive equations
for thermoelastic and thermoviscoelastic shells with the help of procedure
worked out by Coleman and Noll (1963) in the 3D continuum thermody-
namics.

5.1. Thermoelastic shells
The thermoelastic shell behaviour can be defined by the following consti-

tutive equations:

ψ = ψ(E,K, θ, g, φ,h),
η = η(E,K, θ, g, φ,h), χ = χ(E,K, θ, g, φ,h),

N = N(E,K, θ, g, φ,h), M = M(E,K, θ, g, φ,h),
q = q(E,K, θ, g, φ,h), s = s(E,K, θ, g, φ,h),

(21)

where the constitutive functions and their values are denoted by the same
symbols.

Then the local 2nd Law (20) yields

ρδ ≡ (N− ρψ,E) • Ė+ (M− ρψ,K) • K̇− ρ(η + ψ,θ)θ̇ − ρ(χ+ ψ,φ)φ̇

−ρψ,g · ġ − ρψ
,h · ḣ

−ρφχ̇+ ρθφs− θφDiv s− θh · s− 1

θ
g · q ≥ 0.

(22)
From (22) it follows the inequality

ρδ ≡ [N− ρ(ψ + φχ),E] • Ė+ [M− ρ(ψ + φχ),K] • K̇
−ρ [η + (ψ + φχ),θ] θ̇ − ρ(ψ + φχ),φφ̇

−ρ(ψ + φχ),g · ġ − ρ(ψ + φχ)
,h · ḣ

+ρθφs− θφDiv s− θh · s− 1

θ
g · q ≥ 0.

(23)
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Let us recall the procedure of Coleman and Noll (1963) by which the en-
tropy inequality could be used to deduce constitutive restrictions on a variety
of materials. In this procedure it is assumed that time rates of arguments in
the constitutive equations (21), i.e. Ė, K̇, etc., are all independent of each
other. Hence, the inequality (23) should be satisfied for any constitutive
equations (21) and any admissible values of the state variables E, K, θ, φ
and their rates at any regular point of M\C.

Let us consider the following family of deformations

E = E0 + (t− t0)E1, K = K0 + (t− t0)K1,
θ = θ0 + (t− t0)θ1 + g0 · (x− x0) + g1 · (x− x0)(t− t0),
φ = φ0 + (t− t0)φ1 + h0 · (x− x0) + h1 · (x− x0)(t− t0),

(24)

where E0, E1, K0, K1, θ0, θ1, g0, g1, φ0, φ1, h0, and h1 are any constants,
while t0 and x0 are any time instant and any point at the shell surface.
Substituting (24) into (23) and taking into account that at t = t0, x = x0

E = E0, K = K0, θ = θ0, φ = φ0, g = g0, h = h0,

Ė = E1, K̇ = K1, θ̇ = θ1, φ̇ = φ1, ġ = g1, ḣ = h1,
(25)

we obtain the inequality

ρδ ≡ [N− ρ(ψ + φχ),E] • E1 + [M− ρ(ψ + φχ),K] •K1

−ρ [η + (ψ + φχ),θ] θ1 − ρ(ψ + φχ),φφ1

−ρ(ψ + φχ),g · g1 − ρ(ψ + φχ)
,h · h1

+ρθφs− θφDiv s− θh · s− 1

θ
g · q ≥ 0.

(26)

Note that in (26), δ is the linear function with respect to E1, K1, θ1, φ1, g1,
and h1. Hence, to satisfy (26) we should have the relations

N = ρψ̃,E, M = ρψ̃,K, η = −ψ̃,θ, ψ̃,φ = 0, ψ̃,g = 0, ψ̃
,h = 0,

(27)

where ψ̃ = ψ̃(E,K, θ) ≡ ψ + φχ does not depend on φ, g and h, and the
local 2nd Law reduces to

θφ [ρs−Div s]− θh · s− 1

θ
g · q ≥ 0. (28)

Assuming g = 0 and h = 0 we find that the first group of terms in (28)
has to be non-negative. Hence, to satisfy (28) we should have

θφ [ρs−Div s] ≥ 0. (29)
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Note that the sign and value of φ as well as the sign and value of Div s can
be positive or negative, while s is given function with a priory unknown sign
and value. Hence, to satisfy (29) with θ > 0 we should have

ρs−Div s ≡ cφ, (30)

with c ≥ 0. The quantity c is functionally dependent on the state variables
E,K, θ, g, φ,h, in general. The simplest case is when c = const is assumed.

Let us note that for the entropy deviation χ we cannot find any restriction
similar to that for η in (27). Indeed, the relation

(ψ + φχ),φ = 0

following from (27)4 yields

χ = (χ0 − ψ)/φ,

where χ0 = χ0(E,K, θ, g,h) is an arbitrary function. Because ψ = ψ(E,K, θ),
χ depends linearly on φ−1 and has a singularity when φ→ 0. Moreover, be-
cause χ0 is arbitrary, the constitutive relation for χ should be determined
independently of ψ taking into account the linear dependence of χ on φ−1

alone. This dependence χ on φ seems unwanted because the thermodynamic
state with φ = 0 is physically reasonable but corresponds to the infinite value
of the entropy deviation.

From (27) it also follows that M does not depend on φ. But from the
elementary knowledge of beam and plate theories one knows that the case of
non-zero temperature gradient leads to the bending of a beam or a plate, see
for example Timoshenko and Woinowsky-Krieger (1985). This means that
M ̸= 0 if φ ̸= 0, in general. Hence, the latter property of the constitutive
equations (27) seems to be unsatisfactory as well. This unwanted conse-
quence of the standard Coleman–Noll procedure was noted by Simmonds
(1984) who proposed to treat φ̇ as an internal variable.

Here we propose another solution how to avoid contradictions. The unsat-
isfactory behavior of the above constitutive equations allows us to conclude
that the independence of Ė, K̇, θ̇, and φ̇ used above may not hold in the
resultant 2D thermodynamics of shells. Thus, in the present paper we as-
sume that Ė, K̇, θ̇, and φ̇ are not independent. In other words, we don’t
consider all processes but restrict ourselves to such processes which are con-
sistent with the 2D entropy inequality (16)1. We can call such processes
thermodynamically admissible.
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Let us derive the governing equations of thermoelastic shells taking ac-
count these constraints. Assuming that only Ė, K̇, and θ̇ are independent
and considering the family

E = E0 + (t− t0)E1, K = K0 + (t− t0)K1,
θ = θ0 + (t− t0)θ1 + g0 · (x− x0) + g1 · (x− x0)(t− t0),

(31)

we obtain from (22) that

ψ = ψ(E,K, θ, φ,h), N = ρψ,E, M = ρψ,K, η = −ψ,θ, (32)

and (22) results in

ρδ ≡ −ρ(χ+ ψ,φ)φ̇− ρψ
,h · ḣ− ρφχ̇+ ρθφs− θφDiv s

−θh · s− 1

θ
g · q ≥ 0.

(33)

Thus, φ and χ should satisfy the inequality (33).
Let us take the relation

χ = −ψ,φ (34)

as the constitutive equation for χ, which is analogous to (32)4, and assume
the relation

ψ
,h = 0. (35)

Note that with (35) the surface free energy density ψ does not depend on g
and h, but depends on φ, and now M depends on φ, in general.

With (34) and (35) The local 2nd Law (33) reduces to

−ρφχ̇+ ρθφs− θφDiv s− θh · s− 1

θ
g · q ≥ 0. (36)

To satisfy (36) instead of (30), we should have the following relation

−ρχ̇+ θρs− θDiv s = cφ, c ≥ 0. (37)

The reduced dissipation inequality (37), with c = 0 or when φ = 0 is
assumed for a moment, becomes

−θh · s− 1

θ
g · q ≥ 0, (38)

so that the sum of two last terms in (36) together have to be non-negative
as well.
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The simplest cases of the constitutive equations for q and s satisfying the
reduced inequality (38) may be taken similar to the referential Fourier law
in 3D continuum mechanics. These equations are

q = −c∥g, s = −c⊥h, (39)

where c∥ is the positive heat conductivity of the shell in tangential direction
and c⊥ is the positive heat conductivity of the shell in the transverse normal
direction.

For the thermoelastic shells the local energy balance equation (8) reduces
to the form

ρ(θη̇ + φχ̇) = ρr −Div q. (40)

Both relations (40) and (37) play the role of the thermoconductivity equa-
tions in the theory of thermoelastic shells. The two equations are necessary
to determine two fields: the surface temperature θ and the surface temper-
ature deviation φ. When s = 0, the equation (37) contains as the special
case the equation for temperature deviation established for the thermoelastic
beams by Simmonds (2005).

5.2. Thermoviscoelastic shells of differential type

The discussion given in Section 5.1 above may be extended to the case of
inelastic shell behaviour. Let us consider the more general case of thermovis-
coelastic shells of the differential type defined by the following constitutive
equations:

{ψ, η, χ,N,M, q, s} = {ψ, η, χ,N,M, q, s}(E,K, Ė, K̇, θ, g, θ̇, ġ, φ,h, φ̇, ḣ).
(41)

Here we additionally take into account dependence of the constitutive equa-
tions on the first derivatives with respect to time-like parameter of thermo-
kinematic variables and their spatial gradients. Equations (41) are analo-
gous to the 3D constitutive equations of the differential type of the complex-
ity 1 (the Kelvin-Voigt type model), which were discussed in Truesdell (1984,
1991).

Let the equilibrium and dissipative parts of the surface stress measures
N and M be additionally decomposed according to

N = NE +ND, M = ME +MD,
NE = NE(E,K, θ, g, φ,h), ME = ME(E,K, θ, g, φ,h),

ND(E,K,0,0, θ, g, 0,0, φ,h, 0,0) = 0, MD(E,K,0,0, θ, g, 0,0, φ,h, 0,0) = 0.
(42)
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Substituting (41) and (42) into (20) we obtain

ρδ = (NE − ρψ,E) • Ė+ (ME − ρψ,K) • K̇− ρ(η + ψ,θ) · θ̇

−ρψ,Ė • Ë− ρψ,K̇ • K̈

−ρψ,g · ġ − ρψ,ġ · g̈ − ρ(χ+ ψ,φ)φ̇− ρψ
,h · ḣ− ρψ,φ̇φ̈− ρψ

,
˙h
· ḧ

+ND • Ė+MD • K̇− 1

θ
g · q − θh · s

−ρφχ̇+ ρθφs− φθDiv s ≥ 0.

(43)

The analysis of (43) similar to that in Section 5.1 leads to the relations

ψ = ψ(E,K, θ, φ),

NE = ρψ,E, ME = ρψ,K, η = −ψ,θ, χ = −ψ,φ,

−ρχ̇+ ρθs− θDiv s = cφ, c ≥ 0,

ND • Ė+MD • K̇− 1

θ
g · q − θh · s ≥ 0.

(44)

Let us note that here the surface free energy density ψ and the equilibrium
surface stress measures NE, ME are the same as in the case of thermoelastic
shells, while ND, MD, q, and s may depend on the full list of arguments
including the temperature deviation φ, its surface gradient and their time-like
derivatives.

6. Thermodynamic continuity condition

Let us discuss the relations (4), (6), (9) and (16)2 for jumps of various
fields at C. We remind that these relations should be satisfied for arbitrary
shells, also elastic, thermoelastic and thermoviscoelastic. This is so because
these relations either represent continuity as (4), or the balance equations
of some fields at the singular curve C quasistatically moving on the base
surface M . Additionally, we assume that the surface temperature field θ and
its deviation φ are continuous on the whole M , that is also

[[θ]] = 0, [[φ]] = 0 along C. (45)

The second thermoconductivity equation (29) leads to the relation

V
1

θ
[[ρχ]]− [[s · ν]] = 0 along C. (46)
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In the derivation of this relation one uses the classical technique of the theory
of partial differential equations, see for example Courant and Hilbert (1989),
Truesdell (1966) or Maugin (1998) in the case of PT. Formally, the deriva-
tion procedure reduces to exchange of the differential operators Div(· · · ) and
(· · · )· by the algebraic operators (· · · ) · ν and −V (· · · ), respectively.

Eliminating [[q · ν]] from (9) and (16)2, we have

V [[ρ(θη − ϵ)]]− [[nν · v]]− [[mν · ω]] + [[θφs · ν]] ≥ 0.

Substituting (19) into this inequality, we derive that

−V [[ρψ]]− [[nν · v]]− [[mν · ω]]− V [[ρφχ]] + [[θφs · ν]] ≥ 0.

Using (45) and (46), the following relation holds along C:

−V [[ρψ]]− [[nν · v]]− [[mν · ω]] ≡ θδ2C ≥ 0, (47)

where δ2C ≥ 0 denotes the surface entropy production at C.
Using the identities

[[nν · v]] = ⟨nν⟩ · [[v]] + [[nν ]] · ⟨v⟩, [[mν · ω]] = ⟨mν⟩ · [[ω]] + [[mν ]] · ⟨ω⟩,

where ⟨. . .⟩ = 1
2
[(. . .)A + (. . .)B] is the mean value at C, and taking into

account the static balance equations (6) we obtain the relation

−V [[ρψ]]− ⟨nν⟩ · [[v]]− ⟨mν⟩ · [[ω]] = θδ2C along C,

or
−V [[ρψ]]− ν ·NT [[v]]− ν ·MT [[ω]] = θδ2C along C.

For the coherent phase interface

θδ2C = −V
{
[[ρψ]]− ν ·NT [[Fν]]− ν ·MT [[Kν]]

}
along C, (48)

while for the phase interface incoherent in rotations

θδ2C = −V
{
[[ρψ]]− ν ·NT [[Fν]]

}
along C. (49)

The entropy production θδ2C remains always non-negative for all ther-
momechanical processes. This allows us to postulate the kinetic equation,
describing motion of the phase interface for all quasistatic processes, in the
form

V = −F (ν · [[C]]ν) , (50)
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where F is the non-negative definite kinetic function depending on the jump
of C at C, i.e. F(ς) ≥ 0 for ς > 0, where

C = Cc ≡ ρψA−NTF −MTK

for the coherent interface and

C = Ci ≡ ρψA−NTF

for the one incoherent in rotations, A = 1 − η ⊗ η, and 1 is the 3D unit
tensor.

Tensors Cc and Ci in the nonlinear shell theory play the role of the
Eshelby tensors or the energy-momentum tensors known in 3D continuum
mechanics. Let us note that these tensors have various applications not only
in the theory of PT but also in the configurational mechanics (Berezovski
et al., 2008; Gurtin, 2000; Maugin, 1993; Kienzler and Herrman, 2000). In
particular, in Kienzler and Herrman (2000) properties of the Eshelby ten-
sor were used to formulate the conservation laws and the path-independent
integrals in the linear theory of plates and shells.

After Abeyaratne and Knowles (2006), Berezovski et al. (2008), and Ere-
meyev and Pietraszkiewicz (2010) we assume F(ς) in the form

F(ς) =


k(ς − ς0)

1 + ξ(ς − ς0)
ς ≥ ς0,

0 −ς0 < ς < ς0,
k(ς + ς0)

1− ξ(ς + ς0)
ς ≤ −ς0.

(51)

Here ς0 describes the effects associated with nucleation of the new phase
and action of the surface tension, see Abeyaratne and Knowles (2006), ξ
is a parameter describing the limit value of the phase transition velocity
(Berezovski et al., 2008), and k is a positive kinetic factor.

Summarising, in the case of finite deformations the thermomechanic BVP
for the shell undergoing phase transition consists of the equilibrium equations
(5)1 supplemented by appropriate static and kinematic boundary conditions
for N , M , u, and Q, the energy transfer equation (8) with appropriate
boundary conditions for θ and φ, the surface entropy inequality (16)2, as
well as the balance equations (4), (6), (45) and (50) along the interface C,
all supplemented with the constitutive equations derived in Sections 5.1 or
5.2. The equation (50) is used to find position of the curvilinear interface C
in its quasistatic motion.
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7. Stretching and bending of the circular plate undergoing PT

Let us consider the axisymmetric quasistatic deformation of thermoelas-
tic circular plate with simply supported external boundary under the action
of tensile forces F and distributed transverse loads q, see Fig. 1. We assume
that strains are small everywhere and that the deformation process is isother-
mal with constant surface temperature θ and constant surface temperature
deviation φ. When deformation is small one can essentially simplify expres-
sions for the strain measures (3). In such a case εα and κα are given by, see
Chróścielewski et al. (2004),

εα = u,α − ϑ× x,α, κα = ϑ,α, (52)

where ϑ is the infinitesimal rotation vector such that Q ≈ 1 − ϑ × 1 if
∥ϑ∥ ≪ 1. Hence, in the case of small strains the strain measures are given
by

E = Gradu− ϑ× 1, K = Gradϑ. (53)

Note that in such a case we approximately have N ∼= N, M ∼= M, E ∼= E,
K ∼= K.

We assume that the plate consists of two phases, say A and B. All quanti-
ties related to these phases we denote by using indices A and B, respectively.

Let us consider the following constitutive equations for the phases A,B:

2ρψA,B = αA,B
1 tr 2Ẽ∥ + αA,B

2 tr Ẽ2
∥ + αA,B

3 tr
(
ẼT

∥ Ẽ∥

)
+ αA,B

4 η · EETη

+βA,B
1 tr 2K̃∥ + βA,B

2 tr K̃2
∥ + βA,B

3 tr
(
K̃T

∥ K̃∥

)
+ βA,B

4 η ·KKTη

+α(θ − θ0)trE+ βφtr (η ×K) + 2ρψA,B
0 (θ, φ).

(54)
Here αk, βk are the tangential stiffness and bending stiffness parameters,
k = 1, 2, 3, 4, α and β are the coefficients describing the coupling between
temperature and stress measures, Ẽ = E−EA,B

p , K̃ = K−KA,B
p , where EA,B

p

and KA,B
p are phase transformation strains, E∥ = AE ∈ TxM ⊗ TxM , K∥ =

AK ∈ TxM⊗TxM , θ0 is the reference mid-surface temperature, and ψ0 is the
surface free energy density when strains are zero. We assume that EA,B

p =
ϵA,B
p A, KA,B

p = κA,B
p η ×A with ϵBp = 0, κBp = 0. Such phase transformation

strain measures correspond to an isotropic extension and bending of the
material surface under the phase transition. The function (54) generates the
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following constitutive equations for the isotropic thermoelastic shell:

N = α1A tr Ẽ∥ + α2Ẽ
T
∥ + α3Ẽ∥ + α4η ⊗ ETη + α(θ − θ0)A,

M = β1A tr K̃∥ + β2K̃
T
∥ + β3K̃∥ + β4η ⊗KTη + βφη ×A,

ρη = −αtrE− ρψ0, θ, ρχ = −βtr (η ×K)− ρψ0, φ.

(55)

In Chróścielewski et al. (2004) the following relations for the elastic mod-
uli appearing in (54) and (55) were used:

α1 = Cν, α2 = 0, α3 = C(1− ν), α4 = αsC(1− ν),
β1 = Dν, β2 = 0, β3 = D(1− ν), β4 = αtD(1− ν),

C =
Eh

1− ν2
, D =

Eh3

12(1− ν2)
,

(56)

where E and ν are the Young modulus and the Poisson ratio of the bulk
material, respectively, αs and αt are dimensionless shear correction factors,
while h is the shell thickness.

Let us consider the axisymmetric deformation of the plate described by

u = u(r)er + w(r)ez, ϑ = ϑ(r)eϕ, (57)

where r, ϕ are cylindrical coordinates, and er, eϕ, ez are the mid-surface
base vectors. We initially assume existence of one phase interface C to be a
circle with an unknown radius a. Thus, the plate consists of two phases, say
A and B, separated by the circle C.

C
a

ν

er

eϕ

r ϕ F F
η = ez q

b

Figure 1: Bending and tension of a two-phase circular plate.

Using (53) and (57) we obtain

E = u′er⊗er+
u

r
eϕ⊗eϕ+(w′−ϑ)ez⊗er, K = ϑ′eϕ⊗er−

ϑ

r
er⊗eϕ, (58)
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where (. . .)′ denotes the derivative with respect to r. The stress measures
take the form

N = Nrrer⊗er+Nϕϕeϕ⊗eϕ+Nzrez⊗er, M =Mϕreϕ⊗er+Mrϕer⊗eϕ.
(59)

From (55) and (58) it follows that

Nrr = α1

(
u′ +

u

r

)
+ α3u

′ − (2α1 + α3)ϵp + α(θ − θ0),

Nϕϕ = α1

(
u′ +

u

r

)
+ α3

u

r
− (2α1 + α3)ϵp + α(θ − θ0),

Nzr = α4(w
′ − ϑ), Mϕr = β3ϑ

′ + β3κp − βφ,

Mrϕ = −β3
ϑ

r
+ β3κp + βφ.

(60)

The equilibrium equations (5) reduce here to three ordinary differential
equations

N ′
rr +

1

r
(Nrr −Nϕϕ) + f = 0, N ′

zr +
1

r
Nzr + q = 0,

M ′
ϕr +

1

r
(Mϕr +Mrϕ) + cϕ = 0,

(61)

where f = f · er, q = f · ez, cϕ = c · eϕ. Nzr can be found immediately
under the assumption of constant values of the function q and is given by
the relation

Nzr = − q

2r
+
c1
r
,

where c1 is an integration constant.
Substituting (60) into (61) we obtain three 2nd-order ODE for u, w, and

ϑ. In the case of constant values of the functions f , q, and cϕ, the general
solution of this system is given by

w = w0 +
c1r

2

2
+ c2 ln r −

cϕr
3

9β3
− qr4

64β3
− qr

2α4

,

u = d1r +
d2
r

− fr2

3(α1 + α3)
,

ϑ = c1r +
c2
r
− cϕr

2

3β3
− qr3

16β3
,

(62)

where c1, c2, d1, d2, and w0 are integration constants. Note that the assumed
constant values of θ and φ as well as dependence of N and M on ϵp and κp
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do not influence the form of solution (62), but have to be taken into account
when one determines the integration constants from boundary conditions.

The boundary conditions for the plate are given by the relations

Nrr = F, w = 0, Mϕr = 0 (63)

at the external boundary r = b of the plate, and

[[Nrr]] = [[Nzr]] = 0, [[Mϕr]] = 0, [[u]] = [[w]] = 0, [[ϑ]] = 0 (64)

at the coherent phase interface r = a, or

[[Nrr]] = [[Nzr]] = 0, Mϕr = 0, [[u]] = [[w]] = 0, (65)

at the phase interface r = a incoherent in rotations.
For the assumed loading we have f = 0 and cϕ = 0.
The kinetic equation (50) takes the form

da

dt
= −F(ς) at r = a, (66)

where ς is given by

ς = [[ρψ −Nrru
′ −Nzrw

′ −Mϕrϑ
′]]

for the coherent phase interface, and

ς = [[ρψ −Nrru
′ −Nzrw

′]]

for the interface incoherent in rotations.
After calculating the integration constants from the boundary conditions

(63), (64) or (65), Eq. (66) becomes the ODE with respect to a,

da

dt
= −F̂(a;F, q, . . .), (67)

where F̂(a;F, q, . . .) is the value of F(ς) after substitution of the integration
constants into ς.
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7.1. Stretching

Let us consider the simplest case when θ = θ0, φ = 0, q = 0, and κp = 0.
In this case one has the plane stress state with

w = 0, ϑ = 0, u = d1r +
d2
r
, Nzr = 0, Mrϕ =Mϕr = 0.

There is no difference between the coherent phase interface and the one
incoherent in rotations, and ς = [[ρψ −Nrru

′]].
For the sake of simplicity let us assume that both phases have the same

elastic moduli, i.e. EA = EB, νA = νB, and differ only by the phase trans-
formation strain ϵA and values of the surface free energy densities at zero
strains, so that δ ≡ ρψB

0 − ρψA
0 ̸= 0.

Let us begin with the thermodynamic equilibrium. There are at least two
solutions with one phase interface. Note that non-uniqueness of solutions of
the boundary-value problems for elastic bodies undergoing phase transforma-
tions is a standard situation, see e.g. Eremeyev and Zubov (1991), Freidin
et al. (2006), and Yeremeyev et al. (2007) for the 3D case.

We assume that at the initial moment the plate consists of one phase,
say the phase A. The first solution describes the case when the new phase
B nucleates in the center of the plate, i.e. at the point r = a. At the initial
moment F = 0, and the plate consists of one phase A and a = 0. When
F = F ∗

1 the new phase nucleates in the center of the plate, and the interface
radius a increases from 0 to b when F attains the value F ∗

2 . If F > F ∗
2 then

the plate consists entirely of the phase B. Dependence of a on F is given in
Fig. 2 as the solid curve.

The second solution describes the case when the phase B appears at the
plate boundary. If F = F ∗

1 and the new phase appears at r = b, then a
decreases from b to 0 when F ∗

1 < F < F ∗
2 , see Fig. 2 (dashed curve), and

then the plate consists again entirely of the phase B. If the same elastic
moduli of material phases are assumed, these two-phase solutions exist on
the same interval of F and are symmetric under mirror reflection on the
line F = (F ∗

1 + F ∗
2 )/2. In the general case of different elastic moduli this

symmetry is violated. The loading diagram for the plate is presented in Fig. 3,
where U = u(b)/b is the dimensionless translation of the plate boundary.
The diagram consists of three parts. The line AB relates to the two-phase
state and corresponds the Maxwell line (Abeyaratne and Knowles, 2006).
In contrast to the solution given in Eremeyev and Pietraszkiewicz (2009),
where the two-phase state is described by the horizontal line, here we have
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the decreasing part of the diagram. This is analogous to the loading diagram
for the two-phase elastic sphere (Eremeyev and Zubov, 1991; Freidin et al.,
2006; Yeremeyev et al., 2007). The decreasing part of the loading diagram
indicates that there is an instability in the force-controlled loading. In Fig. 4
we present dependence of the total energy Ψ on F , where

Ψ =

b∫
0

ρψr dr.

F ∗
2 F

a

b
1

0
0 F ∗

1

Figure 2: Dependence of the phase interface radius a on the external loads F . The solid
curve describes the nucleation of the new phase B in the center of the plate, while the
dashed curve concerns the creation of the new phase at the plate boundary.

F ∗
2 A

B

U

F

0

F ∗
1

Figure 3: Equilibrium F − U diagram for the two-phase plate.

Now we consider the quasistatic deformation. In this case the kinetic
equation takes the form

da

dt
= −F̂(a;F ). (68)
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F ∗
2 F

Ψ

0 F ∗
1

Figure 4: Dependence of Ψ on the external loads F .

Following Eremeyev and Pietraszkiewicz (2009) we assume the constant load-
ing rate. This means that F = F0t for loading and F = −F0t for unloading.
Here F0 describes the constant loading velocity. Using substitution t = F/F0

or t = −F/F0 we can transform (68) to the form

da

dF
= ∓F̂(a;F ), (69)

where sign (−) is used for the loading process while (+) for unloading, and
the kinetic factor k is replaced by k̂ = k/F0.

Further we restrict ourselves to the solution when the new phase nucleates
in the center of the plate. In this case the initial data for (69) are a(F ∗

1 ) = 0
for loading and a(F ∗

2 ) = 1 for unloading. The loading diagrams are presented
in Fig. 5–7. In Fig. 5 we assume ξ = 0 and ς0 = 0. The shape and size of the
hysteresis loop depend on the parameter k̂ alone. The dashed segment AB
depicts the equilibrium part of the diagram. When k̂ increases the area of
hysteresis loop decreases. Examples of several deformation paths for different
values of k̂ are given in Fig. 5, see the loops AB′BA′, AB′′BA′′, AB′′′BA′′′,
etc. With the growing k̂ we obtain the narrowing loops. The limit k̂ → ∞
corresponds both to the infinitely large kinetic factor k and to the infinitely
small loading velocity F0. In the limit k̂ → ∞ the hysteresis loop reduces to
the equilibrium segment AB.

In Fig. 6 we use nonzero values of ς0 but again assume ξ = 0. In this
case the equilibrium segments of the loading diagram can be found from the
equations ς = ±ς0. The phase transformation begins when ς = ς0 for loading
and when ς = −ς0 for unloading. Hence, in the thermodynamic equilibrium
we have the parallelogram A′B′B′′A′′. The size of hysteresis loop increases
with increase of ς0 and, as in the previous case, depends on k̂.

In Fig. 7 we present the hysteresis loops in the general case of the kinetic
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A
B

A

A

A

B

B

B

F ∗
2

F ∗
1

F

0 U

Figure 5: F − U diagram for the two-phase plate, ξ = 0, ς0 = 0, and the kinetic function
F = kς.

A

B

A

B

F

0 U

Figure 6: F −U diagram for the two-phase plate, ξ = 0, and the kinetic function becomes
as in Eremeyev and Pietraszkiewicz (2009).

function, i.e. we use nonzero values of ς0 and ξ in (51). Since F(ς)
∣∣
ξ=0

>

F(ς)
∣∣
ξ ̸=0

, the phase interface velocity V = da/dt is lower in the case of ξ = 0.

Hence, the size of hysteresis loop is smaller in the case when ξ ̸= 0. In Fig. 7
the hysteresis loops are given at the same values of k̂ as in the previous
case, but with ξ ̸= 0. The gray region in Fig. 7 denotes the region of the
maximal hysteresis loop shown in Fig. 6. In the thermodynamic equilibrium
we have again the parallelogram A′B′B′′A′′ as a limit of the hysteresis loops.
Influence of the parameter ξ is more pronounced far from the thermodynamic
equilibrium and for dynamic processes.
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A

B

A

B

F

0 U

Figure 7: F −U diagram for the two-phase plate, F takes the form (51). The gray region
denotes the maximal hysteresis loop shown in Fig. 6.

7.2. Stretching and bending

Let us consider stretching and bending of the elastic plate given in Fig. 1
with one coherent interface. We assume again that φ = 0. In general, if
φ ̸= 0 then bending of a thermoelastic plate appears, but for thin plates this
influence is negligible for q ̸= 0. In the linear theory of plates the boundary-
value problems for the in-plane deformation and for the deflection can be
solved independently. But for the plate with a phase interface the kinetic
equation (50) is non-linear. Moreover, the characteristic feature of PT is the
transformation strain which creates in-plane strains and stresses. Hence, for
the plate undergoing PT bending and stretching problems are coupled, in
general. The translation and rotation fields are given by

w = w0 +
c1r

2

2
+ c2 ln r −

qr4

64β3
− qr

2α4

,

u = d1r +
d2
r
, ϑ = c1r +

c2
r
− qr3

16β3
.

Substituting these formulas into (63) and (64) we obtain values of the inte-
gration constants w0, c1, c2, d1, and d2 for both phases. It can be proved that
w(r) and w′(r) are continuous function, so ς becomes ς = [[ρψ − Nrru

′]] −
Mϕrκp.

As in the previous case, we begin from the thermodynamic equilibrium.
Now we have two loading parameters, F and q, and q influences the phase
transformation, in general. At the initial moment F = 0 and q = 0, and
the plate consists of one phase A. When F attains the value F ∗

1 (q) the new
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phase B nucleates in the center of the plate. Here the value F ∗
1 (q) decreases

linearly with increase of q, so that there exists the value q∗ such that the new
phase appears at F = 0, i.e. F ∗

1 (0) = F ∗
1 and F ∗

1 (q
∗) = 0. Dependence of the

phase interface radius a on F for different values of q is given in Fig. 8 a),
while dependence of a on q is shown in Fig. 8 b). When F attains the value
F ∗
2 the new phase occupies the whole plate so that for F > F ∗

2 the plate
consists entirely of the phase B. In our model F ∗

2 does not depend on q. On
the F − q diagram there is the region where the two-phase state of the plate
exists, see Fig. 9. It is clear that non-zero values of transverse loads q extend
the region where the phase transformation is possible. On the other hand,
the influence of F is more significant than the influence of q. For example,
F ∗
1 ≪ bq∗ for reasonable values of the material parameters, so one needs to

apply higher values of q to reach the two-phase state. Hence, we can say
that F is the primary loading parameter which is responsible for the phase
transformation. In Fig. 10 we present a as the function of two variables, F
and q.

a) b)

1234

F ∗
2 q∗ q

a/ba/b
1 1

FF ∗
1 00

F = 0
0 < F < F ∗

1

F = F ∗
1

F ∗
1 < F < F ∗

2

Figure 8: Dependence of the phase interface radius a on the external loads: a) a vs F for
different values of q, curves 1-4 relate to 0 = q1 < q2 < q3 < q4; b) a vs q for different
values of F .

Since q changes the value of F when the new phase nucleates, the loading
diagram changes as well. In Fig. 11 a), F−U diagrams are given for different
values of q. The segments AB, AB′, and AB′′ correspond to different values
of q and different two-phase states of the plate. The ordinate of the point
A is equal to F ∗

2 , and this value does not depend on q, while the ordinates

of the points B, B′, and B′′ are F ∗
1 = F ∗

1 (0), F
(1)∗
1 = F ∗

1 (q1), F
(2)∗
1 = F ∗

1 (q2)
with q1 < q2. Thus the increase of q leads to the increase of the angle of the
segment AB, AB′, etc.
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Figure 10: Dependence of the phase interface radius a on F and q.

For quasistatic processes the kinetic equation takes the form

da

dt
= −F̂(a;F, q). (70)

Since F is recognized as the primary parameter responsible for the phase
transformation, let us consider again the constant loading rate for F with
constant q. This means that we consider q as a parameter. Assuming F = F0t
for loading and F = −F0t for unloading we can transform (70) to the form

da

dF
= ∓F̂(a;F, q), (71)

where k is replaced by k̂ = k/F0.
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Figure 11: a) Equilibrium F − U diagrams for the two-phase plate, F
(1)∗
1 = F ∗

1 (q1),

F
(2)∗
1 = F ∗

1 (q2) with q1 < q2; b) F −U diagrams for the two-phase plate under quasistatic
loading with q ̸= 0 and ξ = 0.

The loading diagrams for q ̸= 0 are presented in Fig. 11 b). Here we
assume that ξ = 0 but ς ̸= 0. The dashed lines denote the equilibrium part
A′B′B′′A′′ of the loading diagram which are limits when k̂ → ∞. The gray
rectangle shows the equilibrium part if q = 0. For q ̸= 0 the size of the
hysteresis loop is greater than in the case q = 0, in general.

The simple examples considered above demonstrate that the boundary-
value problem for the two-phase plate can be solved within the framework of
the general theory of thermoelastic shells presented in the previous sections
and in Eremeyev and Pietraszkiewicz (2009). Let us note some features of
the solutions. As in 3D case, the 2D problem discussed here has non-unique
solutions, in general. Moreover, we have assumed that there exists only
one phase interface, although even in the axisymmetric deformation one can
consider two or more interfaces. In particular, the experimental data of He
and Sun (2010b,a) show that the number of interfaces depends on the loading
rate and thermal effects. We also note that the solution is sensitive to the
problem parameters, such as the elasticity moduli, transformation strains,
and the kinetic function.
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Discussion and Conclusions

As we have mentioned in Introduction, the literature on experimental
investigations of thin-walled structures made of materials undergoing PT is
very extensive. The stress-induced PT are widely observed in superelastic
shape memory alloys (SMA) and shape memory polymers, such as NiTi,
NiMnGa, AgCd, AuCd, CuAlNi, polyurethane, etc. Here we briefly discuss
some peculiarities of PT in thin-walled structures and their influence on the
problem statements within 2D thermomechanics of two-phase shells.

The standard shape of specimen used in experiments is similar to the
shape of plate, strip, band, or tube. Thin plates or strips made of SMA are
widely used in experimental mechanics. Tension of the SMA plate is stud-
ied in many works with various techniques, see e.g. Vivet and Lexcellent
(2001); Lexcellent et al. (2002); Pieczyska et al. (2005, 2006a,b); Daly et al.
(2007); Tobushi et al. (2009); Zhang et al. (2010); He and Sun (2010b,a);
Pieczyska (2010). In particular, optical and infrared techiques, the profilom-
etry, etc. are used. Tension and torsion of a thin SMA strip was investigated
by Tobushi et al. (2009). Tension and torsion of SMA micro-tubes are also
widely investigated to understand the behaviour of martensitic materials,
see Siddons and Moon (2001); Li and Sun (2002); Sun and Li (2002); Sit-
tner et al. (2003); Feng and Sun (2006, 2007); Ng and Sun (2006); Favier
et al. (2007); Schlosser et al. (2007); Wang et al. (2007); Buenconsejo et al.
(2008); Lagoudas (2008); He and Sun (2009a,b); Mao et al. (2010). These
experiments demonstrate the macroscopic domain of new phase formation,
its evolution during loading and annihilation after unloading. In the case of
strips new phase forms as few bands across the strip. In the case of tubes
new phase may appear as a helical band which width and shape depend on
acting loads. The cylindrical bands are also observed, see Li and Sun (2002);
Ng and Sun (2006). The cylindrical bands and their evolution during loading
were considered analytically by Eremeyev and Pietraszkiewicz (2009) apply-
ing the shell theory. The phase boundary between “old” and “new” phases,
for example, austenite–martensitic phases, in many cases can be interpreted
as a coherent sharp phase interface.

Another interesting example of PT in thin-walled structures are tents
and tunnels, discovered and investigated in detail in Bhattacharya et al.
(1999); Hane (1999); James and Hane (2000); Shu (2000, 2002); Bhattacharya
and James (2005). For example, tent- or dome-shaped structures appear in
martensitic thin films during PT; each tent consists of four triangles of a new
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phase with different crystal lattices separated by four edges. These edges can
be considered as the phase interface incoherent in rotations. It was shown
that these two-phase structures can be energetically preferable in comparison
with other one- and two-phase stressed states.

Summarising the peculiarities of PT in thin-walled structures described
in works mentioned above, we have found that:

• Thin-walled elements made of SMA demostrate the similar behaviour
as the 3D elements with PT, i.e. there exist hysteresis loops, the re-
versible pseudoelasticity, etc. On the other hand, the behaviour of
thin-walled structures may differ from the one of bulk bodies. In thin
structures some possible transformations related to 3D PT are forbid-
den due to geometric restrictions, see Bhattacharya (2003) for details.
Also differences in the microstructure influence PT; for example, de-
pending on method of production the columnar structures are observed
in thin films but not in bulk bodies, see Miyazaki et al. (2009).

• PT is highly sensitive to the value of loading and rate of the loading.
For example, the number of new phase strips in microtubes increases
with the rate of tension, see Zhang et al. (2010).

• The temperature evolution plays a significant role in the new phase
formations and the phase interface evolution. In particular, the non-
homogeneous temperature field due to PT are used by Pieczyska et al.
(2006a, 2009); Pieczyska (2010) for the visualisation of PT. Depen-
dence of number of bands in microtubes on the rate of loading can be
explained as the transition from the isothermal loading to adiabatic
one, see Zhang et al. (2010); He and Sun (2010b).

• Depending on the loading type there are two possibilities in PT: the
homogeneous deformations or nonhomogeneous ones with the forma-
tion of macroscopic phase interfaces and of bands consisting of the new
phase. For example, Sun and Li (2002) has shown that torsion leads to
the homogeneous deformation while tension results in the helical band
formation. In the general case the action of biaxial loadings (torsion
and tension) on PT depends on the values of torsional and tensional
forces.

• Although the microstructure near the phase interface can be very com-
plicated, see e.g. Bhattacharya (2003); Bhattacharya and James (2005),
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one can use the sharp interface model by introducing the effective
surface energy density as in Stupkiewicz (2007); Petryk and Stup-
kiewicz (2010). PT in shells with the line tension were considered
by Pietraszkiewicz et al. (2007).

• PT are sensitive to various imperfections, boundary conditions and
other parameters, in general.

• Such thin structures as tunnels, tents, and thin films demonstrate in
general large deflections (in comparison with thickness) and rotations
with possible wrinkling.

Thin plates, strips, and tubes made of SMA are used not only as speci-
mens, but also as working elements of microelectromechanical systems (MEMS),
see e.g. Shu (2002); Bhattacharya and James (2005); Tobushi et al. (2009),
and books by Bhattacharya (2003); Lagoudas (2008); Miyazaki et al. (2009).

In order to model to these peculiarities of behaviour of PT in thin-walled
structures, one needs to develop the general thermomechanical theory tak-
ing into account the non-linear deformations during PT, large translations
and rotations, and hence the geometrical nonlinearity, the temperature field
evolution, the anisotropy of phases., etc. We believe that to meet all require-
ments the consistent 2D thermomechanical model of PT should be formulated
in the most general form using the resultant 2D non-linear shell theory (Libai
and Simmonds, 1983, 1998; Chróścielewski et al., 2004) with appropriate re-
sultant 2D thermodynamics. Application of the thermodynamic driving force
and using kinetics of the interface, the new phase domain morphology and its
evolution can appropriately be modelled by the sharp interface model. Such
2D model has definite advantages with respect to 3D modelling, because this
allows one to avoid solving of the complicated 3D boundary-value problems
of thermomechanics with PT in thin regions.

In this paper we have developed the resultant, two-dimensional thermo-
mechanics of shells undergoing diffusionless, displacive phase transitions of
martensitic type of the shell material, which meets all the requirements men-
tioned above. In the formulation we have extended our previous (Eremeyev
and Pietraszkiewicz, 2009, 2010) resultant surface entropy inequality by com-
pleting it with the referential surface temperature deviation field and its dual
– the referential surface entropy deviation field – as well as with some extra
surface fields related to those deviation fields. We have also provided the

32



corresponding extended constitutive equations for thermoelastic and ther-
moviscoelastic shells of differential type.

Along the curvilinear phase interface we have derived appropriate thermo-
dynamic continuity condition and have proposed the corresponding kinetic
equation, which allow one to determine position and quasistatic motion of
the interface relative to the base surface.

The above resultant thermomechanic shell model with PT has been illus-
trated by two axisymmetric numerical examples of stretching and bending of
the circular plate undergoing phase transition. The numerical results indi-
cate that: a) as in the 3D theory of phase transformations in elastic bodies,
the solution is non-unique, in general; b) presence of decreasing branch of the
loading diagram indicates existence of instability during the force-controlled
loading; c) the quasistatic loading diagrams contain hysteresis loops which
shape and size depend on the material parameters, kinetic function and load-
ing rate; and d) the in-plane and out-of-plane deformations of the plate un-
dergoing PT are coupled due to the non-linear kinetic equation and the phase
transformation strains.

I order to apply our resultant 2D thermodynamical model of PT for veri-
fication of realistic 2D experimental observations on thin-walled samples pre-
sented in papers cited above, one still needs to develop 2D numerical codes
based on extended finite element method (XFEM) for shells with moving
singular curves.This pose a serious challenge for the next years.
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