
Chapter 16
On the Nonlinear Theory of Two-Phase Shells

Victor A. Eremeyev and Wojciech Pietraszkiewicz

Abstract We discuss the nonlinear theory of shells made of material undergoing
phase transitions (PT). The interest to such thin-walled structures is motivated by
applications of thin films made of martensitic materials and needs of modeling
biological membranes. Here we present the resultant, two-dimensional thermody-
namics of non-linear theory of shells undergoing PT. The global and local formu-
lations of the balances of momentum, moment of momentum, energy and entropy
are given. Two temperature fields on the shell base surface are introduced: the refer-
ential mean temperature and its deviation, as well as two corresponding dual fields:
the referential entropy and its deviation. Additional surface heat flux and the ex-
tra heat flux vector fields appear as a result of through-the-thickness integration
procedure. Within the framework of the resultant shell thermodynamics we derive
the continuity conditions along the curvilinear phase interface which separates two
material phases. These conditions allow us to formulate the kinetic equation de-
scribing the quasistatic motion of the interface relative to the shell base surface. The
kinetic equation is expressed by the jump of the Eshelby tensor across the phase
interface. In the case of thermodynamic equilibrium the variational statement of the
static problem of two-phase shell is presented.
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16.1 Introduction

The interest in thin-walled structures undergoing PT grows recently from their per-
spective applications in engineering. As examples of such structures martensitic
films and biological membranes can be considered. The stress- and temperature-
induced PT are widely observed in thin structures made of superelastic shape mem-
ory alloys (SMA) and shape memory polymers, such as NiTi, NiMnGa, AgCd,
AuCd, CuAlNi, polyurethane, etc, which are used in various microelectromechani-
cal systems (MEMS). Thin plates, strips, and tubes made of SMA are used as work-
ing elements of such MEMS as micropumps, sensors, actuators, microengines etc.,
see e.g. [8, 48, 53] and books [5, 32, 38].

Experiments on shape memory alloys and other materials undergoing PT are
often performed with thin-walled samples such as thin strips, rectangular plates or
thin tubes, see [25–28, 33, 41, 52, 56] among others. Other examples of PT in thin-
walled structures are tents and tunnels appearing in martensitic thin films during PT,
which were discovered and investigated in [6, 8, 24, 29, 47, 48].

The major known theories of PT in deformable solids are related to three-dimen-
sional (3D) thermoelasticity, see the books [1,4,5,22] and references given therein.
The first two-dimensional (2D) mechanical model of PT in thin films was proposed
in [7, 30, 47], see also [5, 38]. The model consists of the Cosserat membrane with
one director, but without taking into account the bending stiffness of the membrane.
Alternative membrane models of PT with applications to biomembrane modelling
were proposed in [2, 10, 12].

The non-linear resultant equilibrium conditions of elastic shells undergoing PT
of martensitic type were formulated by Eremeyev and Pietraszkiewicz [13] within
the resultant dynamically exact and kinematically unique theory of shells presented
in [11, 18, 34]. These conditions were extended in [44] taking into account the line
tension energy of the interface. By analogy to the 3D case, the two-phase shell was
regarded in [13,44] as the Cosserat surface consisting of two material phases divided
by a sufficiently smooth surface singular curve (phase interface). Existence of such a
curve was confirmed by several experiments on thin-walled plates, strips, and tubes,
see e.g. [25–28,33,41,52,56]. These experiments demonstrate how the macroscopic
domain of the new phase forms, show its further evolution during loading and anni-
hilation after unloading. In the case of plates and strips the new phase forms often
as a few bands across the strip. In the case of tubes the new phase may appear as
helical or cylindrical bands which width and shape depend on acting loads. The
phase boundary between “old” and “new” phases in many cases can be interpreted
as a curvilinear, coherent, sharp phase interface. The quasistatic behaviour of two-
phase shells has recently been analyzed in [15–17].

In this paper we discuss the resultant, two-dimensional thermomechanics of
shells undergoing diffusionless, displacive phase transitions of martensitic type of
the shell material. In particular, we formulate the corresponding boundary-value
problem (BVP). The main attention is paid to formulation of the compatibility con-
ditions across the phase interface and to derivation of the kinetic equation describing
propagation of the phase interface during loading and unloading.
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16.2 Kinematics of 6-Parametric Theory of Shells

The kinematics of general resultant theory of shells coincides with the kinematics
of 2D Cosserat continuum, see [11,18,34] for details. In the undeformed placement
the shell is represented by the base surface M with the position vector x(θα) and
the unit normal vector n(θα), where {θα}, α = 1,2, are the surface curvilinear coordi-
nates. In the deformed placement the shell is represented by the surface N = χ(M)
with the position vector y = χ(x) and with the attached three directors (dα,d). The
deformation of the shell is described by the relations

y(x, t) = χ(x) = x+u(x, t), dα(x, t) = Q(x, t)x,α, d(x, t) = Q(x, t)n(x), (16.1)

where t is a time-like scalar parameter, χ the deformation function, u ∈ E the transla-
tion vector of M, and Q ∈ S O(3) the proper orthogonal tensor representing the work-
averaged gross rotation of the shell cross sections from their undeformed shapes
described by (x,α,n), where (. . .),α denotes partial differentiation with respect to θα.
Then υυυ ≡ u̇ is the translation velocity and ωωω ≡ ax(Q̇QT ) the angular velocity vec-
tors, where ax(. . .) is the axial vector associated with the skew tensor (. . .), and ˙(. . .)
denotes the derivative with respect to t.

Within the framework of 6-parametric theory of shells considered here, the fol-
lowing two strain measures corresponding to the deformations (16.1) are introduced,
see [11, 13, 14, 43]:

E = εεεα⊗aα, K = κκκα⊗aα, εεεα = y,α−dα, κκκα =
1
2

di ×Q,αQQQT dddi, (16.2)

where (aα, n) and (di), i = 1,2,3, are bases reciprocal to the base (x,α,n) and the
base (dα,d), respectively.

We assume that in the deformed placement the shell consists of different material
phases occupying different complementary subregions separated by the curvilinear
phase interface D ∈ N . For a piecewise differentiable mapping χ we can introduce
on M a singular image curve C = χ−1(D) with the position vector xC. We call a
priori unknown curves D and C the phase interfaces in the deformed and reference
placements, respectively. Let us note that xC and yD are kinematically independent
on u and Q. This means that D and C are non-material curves, in general. For the
description of motion of the surface curve C on M we introduce the phase interface
velocity V ≡ ẋC · ννν, where ννν ∈ TxM is the unit external normal vector to C, and
ννν ·n = 0.

Hence, y (or u), Q, and xC constitute the basic kinematic unknown variables in
the theory of shells undergoing PT.
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16.3 Integral Balance Equations

The resultant 2D equations of the general non-linear theory of shells can be derived
exactly by direct through-the-thickness integration of 3D balance laws of linear and
angular momentum as well as of the energy balance and the entropy inequality of
continuum mechanics, see [11, 13, 17, 34]. In quasi-static problems discussed here
the global equilibrium conditions require the total force and total torque of all loads
acting upon any part P ⊂ M\C to vanish

FFF = 0, MMM = 0, (16.3)

where

FFF ≡
�

P
f da+

∫
∂P\∂M f

nν ds+
∫

∂P∩∂M f

n∗ ds,

MMM ≡
�

P
(c+ y× f ) da+

∫
∂P\∂M f

(mν+ y×nν) ds+
∫

∂P∩∂M f

(
m∗+ y×n∗) ds.

Here f and c are the resultant surface force and couple vector fields acting on N\D,
but measured per unit area of M\C. Similarly, nν and mν are the internal contact
stress and couple resultant vectors defined at an arbitrary edge ∂R of R= χ(P), while
n∗ and m∗ are the external boundary resultant force and couple vectors applied along
the part ∂N f of N = χ(M), respectively. The latter four vectors are measured per
unit length of the corresponding undeformed edges ∂P and ∂M f , respectively.

According to the Cauchy postulate, the contact vectors nν and mν can be repre-
sented through the respective internal surface stress and couple resultant tensors N
and M by

nν = Nννν, mν =Mννν. (16.4)

The tensors N, M ∈ E ⊗TxM defined on M\C are the resultant surface stress mea-
sures of the 1st Piola–Kirchhoff type, respectively.

In the literature various descriptions of shell thermodynamics are known, see
e.g. [15, 18, 20, 21, 35, 39, 40, 45, 46, 49–51, 57], where various sets of surface fields
responsible for temperature were used and several formulations of the first and
second laws of thermodynamics for shells were discussed.

The resultant local thermomechanic energy balance and the entropy inequal-
ity for the shell can also be derived by direct through-the-thickness integration of
the global 3D thermomechanic balance of energy and the entropy inequality, see
[35, 49–51].

However, in the construction of 2D thermodynamic relations for shells one can-
not simply transfer the notions of temperature, entropy and energy from the 3D case
to their averages defined on M. For example, in the 3D shell-like body it is quite
natural to associate different temperatures with its lower, upper and lateral boundary
surfaces. In the resultant shell model this leads to appearance of several 2D tempera-
ture fields defined in the same point of the base surface. Each such field may require
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its own heat conduction law. As a result, the 2D entropy inequality for shells should
also be appropriately modified.

Similarly, the 3D stress power density of the shell-like body takes into account
also a part of stress power not expressible in terms of 2D stress resultants and stress
couples, see [43], Sect. 7. In the 2D energy balance equation this may require to
introduce additional surface sources of energy with their own constitutive relations,
see discussion in [35, 42].

The referential form of energy balance (The 1st Law of thermomechanics) of an
arbitrary part P of the shell base surface M\C can be described in analogy to the
3D energy balance, see [54, 55], by the resultant quantities [35] as

K̇+ Ė = A+Q, (16.5)

where K is the resultant kinetic energy, E the resultant internal energy, A the resul-
tant mechanical power, and Q is the resultant heating. For the quasistatic process
discussed here K = 0, while E, A, and Q can be represented by

E ≡
�

P
ρε da, A ≡

�

P
(f ·υυυ+ c ·ωωω)da+

∫
∂P\∂M f

(nν ·υυυ+mν ·ωωω)ds

+

∫
∂P∩∂M f

(n∗ ·υυυ+m∗ ·ωωω)ds,

Q ≡
�

P
ρr da+

∫
∂P\∂Mh

qν ds+
∫

∂P∩∂Mh

q∗ ds,

where ρ is the resultant surface mass density in undeformed placement, ε the internal
resultant surface strain energy density per unit undeformed surface mass, and r the
internal surface heat supply minus heat fluxes through the upper and lower shell
faces, all per unit mass of M, qν and q∗ are the surface heat fluxes through ∂P and
∂Mh, respectively. The contact heat flux qν can be represented through the surface
heat flux vector q by the formula

qν = q · ννν.
The referential form of entropy inequality (The 2nd Law of thermomechanics) of

an arbitrary part P of the shell base surface M\C follows from the Clausius-Duhem
inequality [54, 55],

Ḣ ≥ J, (16.6)

where in our case H is the resultant shell entropy and J the resultant entropy supply.
For any part P ⊂ M\C these fields are defined as follows:

H ≡
�

P
ρηda, J ≡

�

P
ρ jda+

∫
∂P\∂Mh

jν ds+
∫

∂P∩∂Mh

j∗ ds,
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where η is the resultant internal entropy density, j the resultant entropy supply minus
entropy fluxes through the upper and lower shell faces, both per unit undeformed
surface mass, and jν and j∗ are the resultant entropy fluxes through the internal ∂P
and external ∂Mh boundary contours, respectively. The field jν can be expressed
through the referential entropy flux vector j ∈ TxM according to

jν = j · ννν.
The relations between the resultant quantities and their 3D counterparts can be

derived by use of the through-the-thickness integration procedure applied to the 3D
balance equations [17]. After [39] we introduce the mean referential temperature
θ(x, t) > 0 and the temperature deviation ϕ(x, t) by

1
θ
=

1
2

(
1
Θ+
+

1
Θ−

)
, ϕ =

1
h

(
1
Θ−

− 1
Θ+

)
, (16.7)

where Θ± > 0 are temperatures of the upper and lower shell faces M± taken to be
equal to those prevailing in the adjoining external media, and h is the shell thickness.

Unlike in the 3D entropy balance [54, 55], the resultant entropy supply j and the
resultant entropy flux j take now the extended form [17],

j =
1
θ

r−ϕs, j =
1
θ

q−ϕs, (16.8)

where s is the resultant extra heat supply and s is the resultant extra heat flux vector.

16.4 Local Shell Equations and Constitutive Relations

From the integral equilibrium equations (16.3), the energy balance equation (16.5)
and the entropy inequality (16.6), after appropriate transformations follow the local
Lagrangian equilibrium equations and the static boundary conditions

DivN+ f = 0, DivM+ ax
(
NFT −FNT

)
+ c = 0 in M\C, (16.9)

Nννν−n∗ = 0, Mννν−m∗ = 0 along ∂M f ,

the local resultant thermomechanic balances of energy in the referential description

ρε̇ = ρr−Divq+N •E◦+M •K◦ in M\C, (16.10)

q · ννν−q∗ = 0 along ∂Mh,
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and the local resultant entropy inequalities

ρη̇−ρ
( r
θ
−ϕs

)
+

1
θ

Div q−ϕDivs+h · s− 1

θ2
q ·g ≥ 0 in M\C, (16.11)

q∗

θ∗
−ϕ∗s∗ −

(qν
θ

−ϕsν
)
≥ 0 along ∂Mh,

g = Gradθ, h = Gradϕ, g,h ∈ TxM,

of the non-linear theory of shells. Here F ≡ Grady = y,α ⊗ aα is the surface defor-
mation gradient, F ∈ E ⊗TxM, DivN ≡ N,α ·aα means the surface divergence of N,
(·)◦ ≡ Q d

dt [Q
T (·)] is the co-rotational time derivative, and the scalar product of two

tensors A,B ∈ E ⊗TxM is defined by A•B ≡ tr (AT B).
The fields u,Q, θ,ϕ constitute the basic thermo-kinematic independent variables

of the shell boundary value problem in M\C, while the fields N,M, ε,η,χ,q, and s
have to be specified by the constitutive equations.

Here, as an example we discuss the constitutive equations for thermoelastic shells
which take the form [17],

ψ ≡ ε− θη−ϕχ = ψ(E,K, θ,ϕ),

N = ρψ,E, M = ρψ,K , η = −ψ,θ, χ = −ψ,ϕ,
q = q(E,K, θ,g,ϕ,h), s = s(E,K, θ,g,ϕ,h),

(16.12)

where we have introduced the surface free energy density ψ.
For thermoelastic shells the local energy balance equation (16.10) reduces to the

form
ρ(θη̇+ϕχ̇) = ρr−Divq, (16.13)

while the local entropy inequality (16.11) results in the equation

−ρχ̇+ρθs− θDivs = cϕ, c ≥ 0, (16.14)

where the new constitutive function c is introduced, and the reduced dissipation
inequality becomes

− 1
θ

g ·q− θh · s ≥ 0. (16.15)

Both relations (16.13) and (16.14) play the role of thermoconductivity equations
in the theory of thermoelastic shells. The two equations are necessary to determine
two fields: the surface mean temperature θ and the surface temperature deviation
ϕ. When s = 0, the equation (16.14) contains as the special case the equation for
temperature deviation established for thermoelastic beams in [50].

The simplest cases of the constitutive equations for q and s satisfying (16.15)
may be taken similar to the referential Fourier law in 3D continuum mechanics:

q = −c‖g, s = −c⊥h, (16.16)
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where c‖ is the positive heat conductivity of the shell in tangential direction and c⊥
is the positive heat conductivity of the shell in the transverse normal direction.

16.5 Continuity Conditions Along Phase Interface and Kinetic
Equation

Since all fields defined on M can be discontinuous across C, the phase interface C
can be considered as a surface non-material singular curve. In particular, the curvi-
linear phase interfaces in shells can be either coherent or incoherent in rotations,
see [13]. For the coherent interface both fields y (or u) and Q are supposed to be
continuous at C and the kinematic compatibility conditions along C become

[[υυυ]]+V[[Fννν]] = 0, (16.17)

[[ωωω]]+V[[ Kννν]] = 0, (16.18)

where the expression [[. . .]] = (. . .)B − (. . .)A means the jump at C.
The phase interface is called incoherent in rotations if only y (or u) is continuous

at C but Q may be discontinous. In this case the condition (16.17) is still satisfied,
but (16.18) may be violated, see [13].

Assuming [[y]] = 0 along C, from (16.3) we obtain the local Lagrangian dynamic
compatibility conditions [11],

[[Nννν]] = 0, [[Mννν]] = 0, (16.19)

which are just the local balances of forces and couples at C in the case of quasistatic
deformations.

Additionally, we assume that the surface temperature field θ and its deviation ϕ
are continuous on the whole M, that is

[[θ]] = 0, [[ϕ]] = 0 along C. (16.20)

The local energy balance and the entropy inequality along C corresponding to
(16.5) and (16.6) are [17],

V[[ρε]]+ [[Nννν ·υυυ]]+ [[Mννν ·ωωω]]− [[q · ννν]] = 0, (16.21)

V[[ρη]]−
[[

1
θ

q · ννν
]]
+

[[
ϕs · ννν]] ≡ δ2

C ≥ 0 , (16.22)

where δ2
C ≥ 0 denotes the surface entropy production along C.

The second thermoconductivity equation (16.14) leads to the relation along C,

V
1
θ

[[ρχ]]− [[s · ννν]] = 0 . (16.23)
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From (16.17)–(16.23) we obtain the compatibility condition in the form

θδ2
C = −V

{
[[ρψ]]− ννν ·NT [[Fννν]]− ννν ·MT [[Kννν]]

}
along C (16.24)

for the coherent phase interface, and

θδ2
C = −V

{
[[ρψ]]− ννν ·NT [[Fννν]]

}
along C (16.25)

for the phase interface incoherent in rotations.
The entropy production δ2

C remains always non-negative for all thermomechani-
cal processes. This allows us to postulate the kinetic equation, describing motion of
the phase interface for all quasistatic processes, in the form

V = −F (ννν · [[C]]ννν) , (16.26)

where F is the non-negative definite kinetic function depending on the jump of C at
C, i.e. F(ς) ≥ 0 for ς > 0, where

C = Cc ≡ ρψA−NT F−MT K

for the coherent interface and

C = Ci ≡ ρψA−NT F

for the one incoherent in rotations, A = 1−n⊗n, and 1 is the 3D unit tensor.
In the nonlinear shell theory the tensors Cc and Ci play the role of the Eshelby

tensors or the energy-momentum tensors. In 3D continuum mechanics Eshelby-type
tensors have various applications in the configurational mechanics [4,23,31,36]. In
particular, in the linear theory of plates and shells the Eshelby tensor was used to
formulate the 2D conservation laws and the path-independent integrals, see [31].

Following [1, 4, 16] we take the kinetic function F(ς) in the form

F(ς) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
k(ς− ς0)

1+ ξ(ς− ς0)
ς ≥ ς0,

0 −ς0 < ς < ς0,
k(ς+ ς0)

1− ξ(ς+ ς0)
ς ≤ −ς0.

(16.27)

Here ς0 describes the effects associated with nucleation of the new phase and
action of the surface tension, see [1], ξ is a parameter describing limit value of
the phase transition velocity [4], and k is a positive kinetic factor. Equation (16.26)
with (16.27) can be considered as the special constitutive equation describing the
motion of phase interfaces in shells.
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16.6 Variational Statement of Thermodynamic Equilibrium of
Two-Phase Shell

Since the contributions of Gibbs [19], the variational formulation is widely used for
description of phase transitions in solids, see e.g. [3, 5, 9, 22, 37]. The weak state-
ment of quasistatic problems of non-linear shells undergoing PT was considered by
Eremeyev and Pietraskiewicz [13], where the thermodynamic continuity condition
was derived and relations for the Eshelby tensor C in shells were obtained. Let us
note that the variational approach requires the thermodynamic equilibrium of two-
phase shell to be the minimizer or the stationary point of the functional of total
energy. It does not describe the evolution of C as the external loads or the tempera-
ture are changing. The evolution of phase interface can be analyzed using the kinetic
equation (16.26) and the BVP presented in previous Sections.

Let us consider the isothermal process, i.e. we assume that θ is constant and
ϕ= 0 during loading. In this case the thermodynamic equilibrium corresponds to the
local or global extremum of the functional of free energy [19, 22]. Hence, the free
energy ψ plays the role of the strain energy used in [13], and we have the variational
principle in the form

δU = A, U =

�

M
ρψda, (16.28)

where we use the same relation for A as in Sect. 16.3, but here υυυ = δu is the virtual
translation vector and ωωω = ax(δQQT ) the virtual rotation vector.

Using (16.17) and (16.18), from (16.28) follow the equilibrium equations (16.9)
and the static compatibility conditions (16.19). Additionally, we obtain the thermo-
dynamic compatibility condition

[[ννν ·Cννν]] = 0, (16.29)

where C = Cc for the coherent interface and C = Ci for the interface incoherent in
rotations. Equation (16.29) can be used to find position of the phase interface C in
the thermodynamic equilibrium state. It corresponds to the stationary solution of the
kinetic equation (16.26).

Assuming adiabatic behaviour, i.e. when η is constant and χ = 0, we use the
variational principle (16.28) with the functional of internal energy [19, 22],

U =

�

M
ρεda.

The continuity condition (16.29) was extended in [44] taking into account the
phase interface energy and other line fields defined along C.
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16.7 Conclusions

We have presented the resultant, two-dimensional thermomechanics of shells
undergoing diffusionless, displacive phase transitions of martensitic type of the shell
material. We have used the extended thermodynamics of shells with two temperature
fields, i.e. the referential surface mean temperature and the temperature deviation,
as well as two dual surface entropy related fields. We have discussed the thermo-
dynamic continuity conditions along the curvilinear phase interface for quasistatic
motion and for thermodynamic equilibrium.

Summarising, in the case of finite deformations the thermomechanic BVP for
thermoelastic shells undergoing phase transition consists of:

• the equilibrium equations (16.9)1,2 supplemented by appropriate static and
kinematic boundary conditions for N, M, u, and Q,

• the thermoconductivity equations (16.13) and (16.14) with appropriate
boundary conditions for θ and ϕ,

• the compatibility conditions (16.19), (16.20), and (16.23) along the inter-
face C,

• the kinetic equation (16.26) or the thermodynamic equilibrium condition
(16.29) along C,

all supplemented with the proper constitutive equations for N, M, ε, η, χ, q,
and s, see [17]. The kinetic equation (16.26) is used to find position of the
curvilinear interface C in its quasistatic motion, while (16.29) is used to find
the equilibrium position of C.

The BVP summarized above was illustrated in [17] by the 1D analytically solved
example of stretching and bending of the two-phase circular plate. The somewhat
simpler version of the thermomechanic shell model undergoing PT with only one
surface mean temperature field was earlier developed in [15] and illustrated by the
1D analytic solution of tension and bending of two-phase tube in membrane [15]
and bending [16] approximations. However, realistic 2D experimental observations
on thin-walled samples presented in papers cited in Introduction can only be veri-
fied numerically by two-dimensional solutions of the BVP developed here. For this
purpose one still needs to develop 2D computer codes based on the extended finite
element method (XFEM) for shells with moving singular curves.
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