
Chapter 28
On Elasto-Plastic Analysis of Thin Shells
with Deformable Junctions

Jacek Chróścielewski, Violetta Konopińska and Wojciech Pietraszkiewicz

Abstract The non-linear equilibrium conditions for irregular thin shells are formu-
lated from the appropriate form of the principle of virtual displacements. 2D consti-
tutive relations of elasto-plastic behaviour of thin shells are established by dividing
the shell into n layers and then integrating the corresponding 3D constitutive rela-
tions throughout all layers at each step of non-linear incremental solution by FEM.
As example, deformation and stress states in the casing of pressure measuring devise
are calculated taking into account deformability of the junctions.
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28.1 Introduction

In the recent paper by Chróścielewski et al. [1] we have proposed a methodology
of the non-linear elasto-plastic analysis of thin shells with deformable junctions.
The regular parts of the shell have been modelled by dividing the shell into n lay-
ers assumed to be in the plane stress state. The 3D incremental constitutive equa-
tions of each layer are described by the generalized elasto-plastic law of Prandtl-
Reuss for small strains, with the associated flow rule and plasticity condition of
Huber-Mises-Hencky with linear combination of isotropic and kinematic hardening.
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The 2D incremental constitutive equations for the shell stress resultants and stress
couples are established by direct through-the-thickness integration throughout all
layers of 3D relations mentioned above. The irregular shell with junctions are mod-
elled according to Makowski et al. [2, 3] by a union of regular surface
elements joined together along curvilinear surface edges, along which appropriate
forms of 1D strain energy densities have been proposed. The methodology has been
illustrated by numerical results of deformation and stress states in the casing of pres-
sure measuring devise having two circular junctions between axisymmetric parts of
different thickness. Only the limit cases of stiff and simply supported junctions have
been analysed in [1].

In this report we first briefly remind basic non-linear relations of thin irregular
shells with deformable junctions analysed within the elasto-plastic range of defor-
mation. Then we present supplementary to [1] numerical results of deformation
and stress states in the casing, where some intermediate cases of elastic junction
behaviour defined by prescribed stiffness parameters are discussed.

28.2 Notation and Basic Relations

According to [2, 3], the consistent field equations and jump conditions of thin
irregular shell structures can be derived using two postulates. In the kinematic one,
the deformation of the irregular shell is assumed to be determined by stretching and
bending of the irregular surface-like material continuum being a union of regular
smooth surface elements M(k), k = 1,2, ...,K, joined together along spatial curvilin-
ear surface edges ∂M(k), which in the reference configuration are together denoted as
M and Γ, respectively. Then the equilibrium conditions are required to be derivable
from the principle of virtual displacements (PVD) involving only dynamic fields
associated with the assumed kinematics of M. Such PVD is postulated in the form

G ≡ Gi −Ge −GΓ = 0 , (28.1)

where Gi means the internal virtual work, Ge is the external virtual work, and GΓ

accounts for an additional virtual work of forces and couples acting only along all
singular curves modelling the shell junctions.

Let u denote symbolically the translation field u inside all M(k) ∈ M, the transla-
tion and rotation-like fields (u,ϕ) and (uΓ,ϕΓ) along regular parts of ∂M(k) and Γ,
respectively, the translation ui at each corner Pi ∈ Γ, and the translation ub at each
corner Pb ∈ ∂M. Then after complex transformations given in detail in [3] we obtain
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G(u;δu) = −
∫ ∫

M\Γ
(DivsT+ l) · δuda

+

∫
∂Mf

{
(pν −p∗ +k) · δu+ (h−h∗)δϕ

}
ds

+
∑

Pb∈∂M̄ f

{
[f · δu]b − f∗

b · δub

}
+

∫
∂Md

{
(pν+k) · δu+hδϕ

}
ds+

∑
Pb∈∂M̄d

[f · δu]b

+

∫
Γ

{
([pν+k]− fΓ) · δuΓ + ([h]−hΓ)δϕΓ

}
ds

+
∑
Pi∈Γ̄

{
[f ]i − f i

} · δui = 0 .

(28.2)

In (28.2), the compound tensor field T is defined in [3] through the surface symmet-
ric stress resultant and stress couple tensors N,M, the compound vector l,pν,p

∗,k
and scalar h,h∗ fields are defined in [3] through the external surface force p and
moment h resultant vectors, acting on each deformed surface M̄(k) but measured per
unit area of M(k), as well as through the external boundary force t∗ and moment
resultant h∗ vectors, prescribed along regular parts of the deformed boundary ∂M̄ f

but measured per unit length of ∂Mf . Additionally, f ∗
b are the external concentrated

forces prescribed at each singular point Pb ∈ ∂M̄ f , [...] means the jump of (...) along
each regular part of Γ, [...]i is the jump of (...) at each singular point of Γ, [...]b means
the jump of (...) at each singular point of ∂M, while δ is the symbol of variation and
Divs is the surface divergence operator.

For any kinematically admissible virtual displacement δu the fields δu and δϕ
identically vanish along ∂Md, so that the fourth row of (28.2) identically vanishes
as well. Then the transformed PVD requires the equilibrium equations, the static
boundary and corner conditions as well as the corresponding jump conditions along
Γ to be satisfied. In such formulation the kinematic relations, the material and junc-
tion characterisation by the constitutive relations as well as the kinematic boundary
conditions should additionally be specified.

The whole set of shell relations constitute the highly non-linear boundary value
problem (BVP) in terms of translations and their surface gradients as the only inde-
pendent field variables. This complex BVP can effectively be solved only by numeri-
cal methods applying some incremental-iterative solution procedure. The procedure
is usually based on approximation of the non-linear BVP by series of linearised
BVPs. For the Lagrangian non-linear theory of thin, regular elastic shells (without
junctions) such solution procedure was worked out in [4], where the general struc-
ture of incremental shell equations and corresponding buckling shell equations were
explicitly derived. However, in case of highly non-linear irregular elasto-plastic
shell problems it is more efficient to apply the numerical incremental-iterative pro-
cedure directly to the incremental variational functional (28.2), not to the field
equations following from it.
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Let us briefly recall some statements of [4] and extend them to elasto-plastic shell
problems with deformable junctions. Notice that components of the external loads
in M, along ∂Mf and along Γ may be specified entirely independently, in general, by
now 18 dimensionless parameters λp ∈ Λ ⊂ R18. Then the non-linear BVP for a thin
irregular shell generated by (28.2) can be presented symbolically as F(u,λp) = 0,
where the non-linear continuously differentiable operator F is defined on the prod-
uct space C(M,E3)×R18 with values in the Banach space, where C(M,E3) is a set
of all components of u and its surface gradients up to the 4th order. In engineering
applications all external loads are usually specified by a single common parameter
λ ∈ Λ ⊂ R. In this case the solution u(λ) of the BVP form a one-dimensional sub-
manifold in C(M,E3) usually called the equilibrium path. u(λ) is called the weak
solution if G (u(λ); δu(λ)) = 0 for all kinematically admissible δu(λ).

For finding the weak solution u(λ) one usually applies the Newton-Kantorovich
method [5] based on successive approximations to the exact solution at some
λm+1 through solving a series of linearised BVPs following from linearisation of
G (u(λ); δu(λ)) = 0 about a λm close to λm+1,

G
(
u(i)

m+1; δu
)
+ΔG

(
u(i)

m+1;Δu(i+1)
m+1 , δu

)
= 0 . (28.3)

The first term in (28.3) represents the value of G at the approximation u(i)
m+1. Since

this approximation may not belong to the equilibrium path, the first term in (28.3)
does not vanish, in general, and allows one to calculate the unbalanced force vector
at the configuration corresponding to u(i)

m+1. The second term in (28.3) linear with

regard to Δu(i+1)
m+1 allows one to calculate the tangent stiffness matrix at u(i)

m+1 of the
non-linear BVP. If um+1 corresponds to the regular solution point then the successive
approximations u(i+1)

m+1 established by this method converge to um+1 with velocity of

geometrical progression, provided that the initial approximation u(0)
m+1 is sufficiently

close to um+1.
The incremental shell relations following from (28.3) are valid for unrestricted

translations, rotations, strains and/or bendings of the shell irregular base surface,
arbitrary configuration-dependent external static loading, an arbitrary combination
of work-conjugate boundary conditions, and arbitrary incremental constitutive rela-
tions of the shell and the junctions.

28.3 Constitutive Elasto-Plastic Modelling in Thin Shells

Analysis in the elasto-plastic range of deformation of thin irregular shells with
deformable junctions can be performed by the finite element method with C1 el-
ements worked out by Nolte and Chroscielewski [6], which has been extended here
to account deformability of the shell junctions. The shell is first divided into n layers
and the plane stress state is assumed within each layer. The 3D incremental consti-
tutive equations of each layer are described by the generalized elasto-plastic law of
Prandtl-Reuss for small strains, with the associated flow rule and plasticity condition
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of Huber-Mises-Hencky (HMH) with linear combination of isotropic and kinematic
hardening.

In particular, in our constitutive shell model we apply the following relations:

1. Additive decomposition of differential increment of the Green strain tensor e into
elastic and plastic parts,

de = deE +deP . (28.4)

2. The overstress tensor,

ΣΣΣ = s−ααα , ΣΣΣ′ = s′ −ααα , ΣΣΣ′ = ΣΣΣ− 1
3 tr(ΣΣΣ)I , (28.5)

where s is the 2nd Piola-Kirchhoff stress tensor, s′ = s− 1
3 tr (s)I is its deviatoric

part, ααα is the corresponding back stress tensor, and I is the identity tensor of the
3D vector space.

3. The Huber-Mises-Hencky (HMH) yield condition,

f (ΣΣΣ, ε̄P) = σ̄−σY (ε̄P) = 0 , σ̄ =

√
3
2 ΣΣΣ

′ : ΣΣΣ′ ,
∂ f
∂ΣΣΣ

≡ r , (28.6)

where σ̄ is the HMH effective stress and σY is the yield stress in uniaxial tension.
4. The associated plastic flow rule and evolution equation,

deP = (dλ)r , dλ =
r : CE : de

H′+ r : CE : r
, dε̄P =

√
2
3 deP : deP ,

dααα = (1−β)H′deP, dσY = βH′dε̄P ,

(28.7)

where CE is the 4th-order tensor of elastic moduli, ε̄P is the accumulated effective
plastic strain, H′ is the strain hardening parameter, and β ∈ [0, 1] is the material
parameter determining proportion between isotropic and kinematic hardening.

5. The incremental constitutive relation of the elasto-plastic continuum,

ds = CEP : de , (28.8)

where CEP is the instantaneous tangent 4th-order tensor of the elasto-plastic ma-
terial behaviour given by

CEP = CE − (CE : r) ⊗ (r : CE)
H′+ r : CE : r

. (28.9)

In this approach, as the hardening function we can also take the multi-segment
approximation of experimental curves following from material tests in tension, if
necessary. The stress increments corresponding to the strain increments are calcu-
lated from velocity relations using the Euler method of forward integration with
correction following from the plasticity condition. Then the incremental constitu-
tive equations for the shell stress resultants and stress couples are established by
direct through-the-thickness integration throughout all layers of 3D relations men-
tioned above. All matrix relations for the finite element are calculated numerically



446 J. Chróścielewski et al.

using 3-point Gauss integration within the element, and up to n = 10 integration
points across the shell thickness are applied.

28.4 Deformation and Stress States in Axisymmetric Casing

The axisymmetric casing of measuring device being a part of a pressure installation
consists of three regular thin shells of revolution: the circular cylindrical part of
thickness hc, length H and diameter D, and two toroidal parts of thickness hs, inner
boundary diameter dz and radius r. These dimensions are related by D = dz+2r, see
Fig. 28.1.

D
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Fig. 28.1 The axisymmetric casing: geometry

The toroidal parts are connected with the cylindrical one by welding, while at the
upper and lower ends the toroidal parts are connected with rigid parts by welding or
screw joints. Thus, in this example we have different technological inaccuracies at
the junctions associated with welding (or screw joints) and with change of thickness.

The force P(a) acting at the inner and lower toroidal boundaries, see Fig. 28.2,
comes from pressure difference applied to rigid parts of the casing and is calculated
according to

P(a) =
1
4

qπ
(
d2

z −d2
w

)
. (28.10)



28 On Elasto-Plastic Analysis of Thin Shells with Deformable Junctions 447

r r

w s( )s

u s( )

X

Y

( )a

( )b

( )c

P( )a

[���b)]

[���a)]

�

sym.

sym.

sym.

s
y
m

.
s
y
m

.

s
y
m

.

H/2 H/2

dw/2

dz/2
dz/2

hs
hs

hs

hc

Fig. 28.2 The axisymmetric casing: scheme of analysis

In the numerical analysis of this example we use the program MINIMOD [6, 7]
with the axisymmetric two-node RING element based on the theory of thin shells
with finite rotations proposed in [8]. In this element two translation components u, w
are approximated using the Hermite interpolation with C1 interelement continuity
of the form ⎧⎪⎪⎨⎪⎪⎩ ũ

w̃

⎫⎪⎪⎬⎪⎪⎭ = 2∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝H0
k

⎧⎪⎪⎨⎪⎪⎩ uk

wk

⎫⎪⎪⎬⎪⎪⎭+H1
sk

⎧⎪⎪⎨⎪⎪⎩ u,sk

w,sk

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ , (28.11)

where H0
k and H1

sk are shape functions in the Hermite interpolation.
In the analysis the following numerical data have been used: hs = 1mm, H =

50mm, D = 100mm, dz = 10mm, dw = 5mm, r = 45mm. Within the elastic range
of deformation we take E = 210GPa and ν = 0,3. The plastic range of deforma-
tion is characterized by the initial plasticity limit σ0 = σY (0) = 450MPa, the mixed
isotropic-kinematic hardening is described by the parameter β= 1/2 and the tangent
modulus is taken as ET = 0,001× E. The linear constitutive relation

hΓ = c [ϕΓ] , c = cre f ·γ , cre f = M0Γ ·2πrΓ ,

M0Γ =
1
4
σ0hΓ , γ ∈ [0,+∞)

(28.12)

governs deformability of the junctions.
Two values of the cylinder thickness hc have been analysed with different values

of the stiffness parameter c prescribed at the junctions.
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1) hc = 2mm

The numerical results for two extreme cases c = 0 and c = ∞ of the junctions (a)
and (b) have been given in [1].

Fig. 28.3 Vertical translation of the point (a) as function of pressure and the junction stiffness

In Fig. 28.3 we present how the vertical translation w(a) depends on the exter-
nal pressure q. With growing q the w(a) grows initially almost linearly up to about
6 MPa. Then for q ∈ (6−8)MPa the plastic material behaviour makes the measure-
ments of pressure less and less accurate. Above q= 8MPa the graphs w(a) = f (q) be-
come non-linear with clearly pronounced limit points for q above which the devise
becomes damaged. The maximum value of the limit point corresponds to c(a) =∞,
and its minimum value to c(a) = 0. The values of c(b) have no noticeable influence
on these results.

In Fig. 28.4 we show how the angle of rotation ϕ changes along s/L ∈ [0, 1] , L =
1/4(H+πr). When both junctions at (a) and (b) are stiff, i.e. c(a) = c(b) = ∞, the
relative rotation at these points becomes zero and the graph has no jumps, see [1].
For both simply supported junctions, i.e. c(a) = c(b) = 0, as well as for the finite
stiffness of c(a) and c(b) there are two jumps of the graph at the junctions, but this
effect is pronounced only locally.

In Fig. 28.5 it is shown how the bending couple M1 along the casing meridian
for q = 8 MPa is distributed. It is seen that for c(a) = c(b) = 0 there are zero values
of the couple at both junctions. The stiffness parameters of either junction has only
local effect, and for all non-zero stiffness values the couple between the toroidal and
cylindrical parts of the casing is very mall.
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Fig. 28.4 Angle of rotation along the casing meridian for q = 8MPa

Fig. 28.5 Bending couple along the casing meridian for q = 8MPa

2) hc = 1mm

Similar numerical simulations as above performed for the cylindrical thickness
hc = 1mm are given in Figs 28.6–28.8. Although the cylinder thickness here is only
half of that discussed in the case 1), the overall deformability of the casing is almost
the same as above.
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Fig. 28.6 Vertical translation of the point (a) as function of pressure and the junction stiffness

Fig. 28.7 Angle of rotation along the casing meridian for q = 8MPa

From the results of 1) and 2) the following behaviour of the casing can be
observed:

• The overall axisymmetric carrying capacity of the casing depends primarily on
plastification of its toroidal part near the junction (a).

• Disturbances of deformation and stress states due to the junctions (a) and (b) are
local without noticeable influence on each other.

• In case 2), the shell rotations on both sides of (b) are almost the same and prac-
tically independent on the junction stiffness. However, for different thicknesses
discussed in case 1), these rotations become distinct and their difference depends
on the junction stiffness.
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Fig. 28.8 Bending couple along the casing for q = 8 MPa

28.5 Conclusions

We have presented a refined formulation of the principle of virtual displacements for
modelling of thin irregular elasto-plastic shells with elastic junctions. The 2D con-
stitutive relation in the interior shell domain have been established by dividing the
shell into n layers and then integrating the corresponding 3D constitutive relations
throughout all layers at each step of non-linear incremental solution by the FEM.
We have applied the C1 axisymmetric finite element of [6] and calculated numer-
ically the deformation and stress states in the casing of pressure measuring devise
with two circular junctions. As compared with [1], several additional values of the
junction stiffness and two values of thickness of the cylindrical part have been taken
into account. The influence of junction stiffness on the results have been analysed.
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