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Abstract: Some equivalent exact expressions of the bending tensor in the 
nonlinear theory of thin shells are reviewed. It is noted that the bending tensor, 
proposed by X.Q. Shen, K.T. Li, Y. Ming “The modified model of Koiter’s type 
for the nonlinearly elastic shells”, Appl. Math. Mod. 34 (2010) 3527-3535 as a 
third-degree polynomial of displacements, is an approximate expression, not the 
exact one. Then integrability of the fourth kinematic boundary condition, 
associated with two different but equivalent exact expressions of the bending 
tensor, is briefly discussed. Finally, a few modified definitions of the bending 
tensor proposed in the literature are reminded. Within the first-approximation 
theory they all lead to energetically equivalent models of elastic shells. 
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1.   Introduction 

Discussing a modified nonlinear model of thin elastic shells, Shen et al. [1] proposed 
exact invariant expressions for the surface strain tensor and the tensor of change of surface 
curvature, the latter briefly called the bending tensor here. The bending tensor of [1] was then 
claimed to be “more exact than Ciarlet’s expression” defined in the Theorem 10.3-2 of Ciarlet 
[2]. 

In this note I first review several equivalent exact expressions of the surface strain 
measures derived in many earlier papers and books, which were not referred to in [1]. By 
comparing the results with those proposed in [1] it is seen that the bending tensor, derived in 
[1] as a third degree polynomial of displacements, is still an approximate expression, not the 
exact one. Then, I briefly discuss the formulation of the fourth kinematic boundary condition 
compatible with the two-dimensional principle of virtual work for the shell. It is indicated that 
the second expression (4)2 is more convenient for the formulation of the fourth kinematic 
boundary condition. Finally, I remind that the strain energy density of the first-approximation 
theory of thin elastic shells is itself approximate. Within its error margin several modified 
definitions of the bending tensor proposed in the literature lead to energetically equivalent 
nonlinear shell models. 
 
2.   Exact expressions of the surface strain measures 

Let ( )αθr  and ( )αθr  be the position vectors of the undeformed and deformed base 
surface M  and M  of the shell, respectively, where , are convected curvilinear 
surface coordinates. At each point of 

, 1,2αθ α =
M  we have the natural base vectors / ,α

α αθ= ∂ ∂ ≡a r r , 
the metric tensor aαβ α β= ⋅a a  with the determinant det (a )aαβ= , the unit normal vector 

 orienting 1 2( )a 1/ |= ×n a a 2 |×a M , the curvature tensor b , ,β α βαβ α= − ⋅a n = ⋅a n , and the 

permutation tensor (αβ α )βε = ×a a ⋅n . The reciprocal base vectors αa  and the corresponding 
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metric tensor aαβ  are then found from α α
β βδ⋅ =a a  and aαβ α β= ⋅a a , respectively, where α

βδ  
is the Kronecker symbol. 

Let  be the displacement vector of the surface deformation u α
α=u a w+ n M M→  such 

that = +r r u . Then on M  we can define geometric quantities , , , , ,a a bα αβ αβ αβεa n  by similar 
formulas as above. Each barred quantity can then be expressed through the same unbarred 
quantity and components of  by explicit formulas presented, for example, in [3-6]. In 
particular, we have 

u

1, ,
2

l α+ =n n ,n nλ αβ λ
α α α λα α β λφ ε= + = × = +a a u a a a a n  (1) 

where  

|
1, , , , ,λ μ

2
a al a b w w b u n l n l l
a a

λ αβ λ αβuαβ αβ α β α α α λ μ λμ α β λμ α βφ ε ε φ ε⋅ ⋅ ⋅= + = + = =β α− ε  (2) 

and |(.)α  means the covariant surface derivative in the undeformed metric aαβ . 
With (1) and (2) the surface strain measures are defined by the following exact 

expressions in terms of displacements: 

 ( ) (1 1 ,
2 2

a a l l aλ
αβ αβ αβ α λβ α β αβγ ⋅= − = + − )φ φ  (3) 

 
( ) ( ) ( )

( ) ( )
| |

| , .

b b n b l n l b b

l n b n n b n b

λ λ λ
αβ αβ αβ α β β λα λ α β β α

λ λ λ
λα β β α β β λ αβ

κ φ

φ

⋅= − − = − + − − +

= − + + +

αβφ
 (4) 

In (4) the minus sign in front of (b b )αβ αβ−  is just conventional here and may differ in 
different papers. The first formula of (4) has been calculated using the definition 

, ,bαβ α= − ⋅a n β , while the second one of (4) applying the equivalent definition ,bαβ α β= ⋅a n . 
As indicated in my survey article [6], the exact invariant formula (3) and the first one of  

(4) for the surface strain measures were originally proposed in different but equivalent forms 
by Mushtari [7] and then used in many Russian papers partly summarized by Galimov [8-10]. 
In the English literature different exact expressions equivalent to (3) and (4)1 were proposed 
by Leonard [11], Sanders [12], and Koiter [3], which were then used in a number of later 
publications, for example [13-15,4,5]. 

The quadratic polynomial of displacements given by (3) for the strain tensor αβγ  is 
equivalent to that proposed in (3.1) of [1]. The exact formula (4)1 for the bending tensor is 
expressed through the fields  which, according to ,n nμ (2), contain the square-root invariant 

/a a , where 

 (1 1 2 2 .
2

a a a
a

αλ βκ α α β β α
αβ λκ α α β α β )ε ε γ γ γ= = + + −γ γ  (5) 

Thus, with (3) it follows that /a a  is the forth-degree polynomial of displacements which 
cannot, in general, be exactly represented as a quadratic polynomial taken to the second 
power. As a result, /a a  is a non-rational function of displacements, in general, and so is 
the formula (4)1 for αβκ . The bending tensor Rαβ , derived in (3.28) of [1] as the third degree 
polynomial of displacements, cannot be equivalent to (4)1 and must be approximate, not exact 
one. It seems that the error in [1] was made already in the Lemma 1, where /a a  was found to 
be the second degree polynomial of displacements, which is obviously incorrect. 
 

 2



Published in Applied Mathematical Modelling 36(2012), 4, 1821-1824 

3.   Formulation of the fourth kinematic boundary condition 
In the nonlinear theory of thin shells the surface strain measures are usually introduced 

into the two-dimensional principle of virtual work formulated on M  to generate three 
equilibrium equations as well as four work-conjugate natural static and kinematic boundary 
conditions. When the exact formulas (3) and (4)1 are used for this purpose, from detailed 
transformations performed for example by Galimov [16] and Pietraszkiewicz [13,5] it follows 
that along the shell boundary contour M∂  some boundary couple should perform the virtual 
work on a virtual rotation about tangent to the deformed shell boundary contour. This virtual 
rotation was found to be δ⋅ nν  in [16], ( ),νδ⋅n u  in [13], and tδ′⋅r Ω  in [5], where ν  and ν  
are the outward unit normal vectors to the deformed and undeformed boundaries M∂  and 

M∂ , respectively, (.), (.), ,α
ν αν=  α αν = ⋅aν , /d ds′ =r r ,  is the length parameter along s

M∂ , and tδΩ  is the virtual rotation vector of the shell boundary contour.  
At that time it was not apparent what type of a scalar function should be prescribed along 

M∂  in order to satisfy the virtual rotational boundary constraint 0δ⋅ =nν , or ( ),ν 0δ⋅ =n u , 
or 0tδ′⋅ =r Ω . Only some years later we treated in [17] the virtual rotation expressions 
discussed above as differential one-forms on a suitably defined six-dimensional manifold of 
displacement derivatives , ,ν′u u . It was found in [17] that all these expressions and some other 
ones available in the literature are not integrable. This means that neither of them, even 
multiplied by an integrating factor ( , , )νμ ′u u , can be represented in the form ( , , )νδϕ ′u u . This 
property of all such virtual rotations does not allow to directly formulate the fourth kinematic 
boundary condition for the so constructed nonlinear shell models. Additional nontrivial 
transformations along the shell boundary M∂  suggested in [17] had to be performed in order 
to overcome this difficulty and to formulate the correct fourth kinematic boundary condition 
of the nonlinear shell BVP. 

In order to avoid the above problem following directly from the first exact expression (4)
1, Pietraszkiewicz and Szwabowicz [18] proposed to apply the alternative exact formula (4)2. 
When (4)2 is introduced into the principle of virtual work on M , it generates the virtual 
rotation ( )δ ⋅n ν  along M∂ , see [19], eq. (2.26). If treated as the differential one-form of 

, ,ν′u u  along M∂ this virtual rotation is obviously integrable, ( ) nδ δ⋅ ν≡n ν , where nν = ⋅n ν . 
Hence, the virtual boundary constraint 0nνδ =  allows one to formulate the fourth kinematic 
boundary condition in the form *n nν ν= , where *nν  is an assumed value of nν  along M∂ . The 
exact formula (4)2 for αβκ  was then used in a number of papers, for example [19-26].  

The above discussion indicates that, although both exact expressions (4) of the bending 
tensor are algebraically equivalent, the second one (4)2 is more convenient in deriving directly 
the complete set of work-conjugate static and kinematic boundary conditions of the nonlinear 
theory of thin shells. Analyzing the expressions (3.22) and (3.23) of [1] it is apparent that the 
bending tensor of [1] is some approximate form of our first expression (4)1 , not of the second 
one (4)2. Thus, the approximate bending tensor of [1] will not allow the authors to directly 
formulate the fourth kinematic boundary condition compatible with the principle of virtual 
work of the nonlinear thin shell theory. 

The problem of integrability of the virtual rotational constraint along M∂  is avoided 
when the shell boundary is simply supported (where the boundary couple is zero) or entirely 
clamped (where the virtual rotation is zero). Exactly such boundary conditions are assumed in 
almost all theoretical and numerical analyses of the nonlinear thin shell structures, also in the 
numerical example discussed in [1]. Among a few exceptions I mention here two papers by 
Opoka and Pietraszkiewicz [27,28], where the kinematic boundary conditions were carefully 
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discussed. Another example of a careful construction of the kinematic boundary conditions 
following from the bending tensor Kαβ  of [29] is provided by Libai and Simmonds [30]. 
 
4.   Energetic equivalence of the first-approximation shell models 

When small strains are assumed in the shell space, the constitutive equations follow by 
differentiating the strain energy density ( , )αβ αβγ κΣ = Σ . To within the first approximation the 
density becomes the sum of two quadratic functions describing the stretching and bending 
energies of the shell base surface. The accuracy of such an approximation was discussed in a 
number of papers reviewed in section 3.4 of [6]. According to Koiter [2], this density can be 
presented in the form 

 (
2

2 2 ,
2 12
h hH αβ )O Ehλμ αβ λμκ κ η θ

⎛ ⎞
Σ = + +⎜ ⎟

⎝ ⎠
λμ

αβγ γ  (6) 

where  is the undeformed shell thickness, h H αβλμ  are components of the modified elasticity 
tensor,  is the Young modulus, E η  is the largest strain in the shell space, and θ  is the small 
parameter defined in [31] as the maximal value of five different small parameters appearing in 
thin shell theory. 

Within the error of (6), alternative definitions of the surface bending tensor, which differ 
from (4) by small terms such as λbαβ λγ  or bλ

α λβγ , may be regarded to be energetically 
equivalent to that given in (4), for example 

 

( ) ( )

( )#*

1 , ,
2

1 1, , .
2

ab b b b b b b
a

a ab b R K b b b b b
a aa

λ λ λ
αβ αβ αβ α λβ β αλ αβ αβ αβ αβ λ

λ λ λ
αβ αβ αβ αβ αβ αβ αβ αβ αβ λ α λβ β αλ

ρ γ γ χ γ

ρ γ γ γ

⎛ ⎞
= − − + = − − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= − = − = − − + + +⎜ ⎟
⎝ ⎠

b bαβ

  (7) 

With the displacemental expression (4)1 the tensor αβρ  was used in [3,13], *
αβρ  was 

proposed in [3], while Kαβ  was proposed and used in [29]. With the displacemental 
expression (4)2

  the tensor αβχ  was proposed in [18] and used in [21,32,25], while αβρ  was 

applied in [33]. Within the error of (6) the tensor #Rαβ  proposed by Ciarlet [2] may also be 
regarded as energetically equivalent to (4)1. Each of the energetically equivalent definitions of 
the bending tensor has some distinctive features. For example, αβρ  and Kαβ , when linearised, 
reduce to the “best“ bending measure of the linear shell theory according to [34], αβχ , Kαβ , 

and *
αβρ  are the third degree polynomials of displacements, while #Rαβ  are well defined for all 

smooth fields ( )αθu  irrespective of whether or not the vectors αa  are linearly dependent. 
In light of the above arguments, the statement by Shen et al. [1] that the modified shell 

model based on their bending tensor Rαβ  is better than Ciarlet’s model is not justified. 
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