
Material symmetry group of the non-linear polar-elastic

continuum

Victor A. Eremeyeva,b, Wojciech Pietraszkiewiczc,∗

aOtto-von-Guericke-University Magdeburg, Universitätplatz 2, 39106 Magdeburg,

Germany
bSouth Scientific Center, RASci & South Federal University, Rostov on Don, Russia
cInstitute of Fluid-Flow Machinery, PASci, ul. Gen. J. Fiszera 14, 80-952 Gdańsk,
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Abstract

We extend the material symmetry group of the non-linear polar-elastic con-

tinuum by taking into account microstructure curvature tensors as well as

different transformation properties of polar and axial tensors. The group

consists of an ordered triple of tensors which makes the strain energy density

of polar-elastic continuum invariant under change of reference placement.

An analogue of the Noll rule is established. Four simple specific cases of the

group with corresponding reduced forms of the strain energy density are dis-

cussed. Definitions of polar-elastic fluids, solids, liquid crystals and subfluids

are given in terms of members of the symmetry group. Within polar-elastic

solids we discuss in more detail isotropic, hemitropic, cubic-symmetric, trans-

versely isotropic, and orthotropic materials and give explicitly corresponding

reduced representations of the strain energy density. For physically linear

polar-elastic solids, when the density becomes a quadratic function of strain
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measures, reduced representations of the density are established for mono-

clinic, orthotropic, cubic-symmetric, hemitropic and isotropic materials in

terms of appropriate joint scalar invariants of stretch, wryness and unde-

formed structure curvature tensors.

Keywords: Material symmetry, Symmetry group, Polar-elastic continuum,

Cosserat continuum, Non-linear theory, Constitutive equations

1. Introduction

Material symmetry group of the non-linear micropolar continuum was

first characterized by Eringen and Kafadar (1976). They discussed all density-

preserving deformations and all microrotations of reference placement of the

continuum that cannot be experimentally detected. Simple micropolar solids

and simple micropolar fluids in the spatial description were defined in terms

of members of the group. After 35 years we are still not aware of any de-

tailed discussion of the material symmetry group of non-linear micropolar

continuum and of appropriate reduction of constitutive equations in terms

of members of the group.

In the present report we restrict ourselves to the non-linear polar-elastic

continuum, which material behaviour is described by the strain energy den-

sity W per unit reference volume. As compared with Eringen and Kafadar

(1976) we introduce three modifications:

1. At each material point our density W , satisfying the principle of ma-

terial frame-indifference, depends explicitly not only on natural Lagrangian

stretch E and wryness Γ tensors, but additionally upon the reference mi-

crostructure curvature tensor B as a parametric tensor. Eringen and Kafadar
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(1976) used similar strain measures in W , but introduced referential mass

density ρκ and microinertia tensor Jκ as parametric quantities.

2. In discussing invariance properties of W we take into account that,

while E is a polar tensor, Γ and B are axial tensors which change signs

under inversion transformation (mirror reflection) of 3D space. Eringen and

Kafadar (1976) did not take into account that their Γ was the axial tensor.

3. Our material symmetry group Gκ consists of ordered triple of tensors:

unimodular P, orthogonal R, and second-order L. These tensors appear

from transformation of E, Γ and B under an arbitrary change of reference

placement of the micropolar body. The transformation properties of B are

quite different from those of Jκ.

As a result of these modifications, our material symmetry group Gκ does

not coincide with the group introduced by Eringen and Kafadar (1976).

The tensor B appears naturally during description of the reference place-

ment, see Pietraszkiewicz and Eremeyev (2009). The case B 6= 0 indicates

non-uniform distribution of directors in the reference placement. From the

mathematical point of view the caseB 6= 0 relates to non-Euclidean geometry

of polar material because the directors can be considered as a nonholonomic

basis. From the physical point of view necessity of taking into account B in

constitutive equations corresponds to proper description of microstructure of

materials. B can be considered as an analogue of the curvature tensor in the

theory of shells or of material parameters describing helical substructures of

rods, see for example Eremeyev and Pietraszkiewicz (2006); Lauderdale and

O’Reilly (2007).

Within Cosserat-type theories of shells and rods various definitions of ma-
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terial symmetry groups were proposed for example by Murdoch and Cohen

(1979); Eremeyev and Pietraszkiewicz (2006); Luo and O’Reilly (2000); Laud-

erdale and O’Reilly (2007).The material symmetry group of the second-grade

elastic materials was considered for example by Huang and Smith (1967);

Elżanowski and Epstein (1992). Huang and Smith (1967) took into account

difference between axial and polar tensors in construction of the material

symmetry group. Let us note that the invariance of the strain energy den-

sity under transformations of the reference placement is similar but not the

same as the uniformity and homogeneity properties considered by Epstein

and de Leon (1996, 1998).

The paper is organized as follows. In Section 2 we recall after Pietraszkiewicz

and Eremeyev (2009) some basic relations of non-linear micropolar contin-

uum. In particular, we remind definitions of stretch E and wryness Γ tensors

of undeformed structure curvature tensor B, of strain energy density W sat-

isfying the principle of material fame-indifference, of referential S, K and

Eulerian T, M stress and couple-stress tensors, as well as appropriate forms

of equilibrium conditions.

Transformation properties of various fields under change of reference

placement are discussed in Section 3. Then in Section 4 invariance require-

ments for W under change of reference placement are analysed. This allows

one to derive the material symmetry group Gκ of the polar-elastic continuum.

The group Gκ consists of an ordered triple of tensors which make W invari-

ant under change of reference placement. For Gκ we establish an analogue of

Noll’s rule, see Noll (1958).

Four specific cases of Gκ with corresponding considerably simplified forms
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of W are discussed in Section 5. After introducing in Section 6 property

of isotropy of the polar-elastic material, polar-elastic fluids are defined by

requiring Gκ to be the maximal group. It is found that polar-elastic fluids

are always isotropic and their strain energy density W is the hemitropic

scalar-valued even function of the structure curvature tensor C of deformed

placement. By the representation theorem of Smith and Smith (1971) the

density W is reduced to the scalar-valued function of the deformed density

ρ and of six scalar invariants of C. The constitutive equations for T and M

are derived, which generalize the ones proposed earlier for polar-elastic fluids

for example by Aero et al. (1965); Eringen (1966, 1997); Allen et al. (1967).

In Section 8 we define the group Gκ of polar-elastic solids using an ad-

ditional hypothesis that elements of Gκ are described by orthogonal tensors

which are the same for the position vector and the directors. Polar-elastic liq-

uid crystals and subfluids are then defined in Section 9 by Gκ which contains

some elements not belonging to the orthogonal group. Examples of Kelvin’s

medium defined by Grekova and Zhilin (2001) and of Erikcsen’s liquid crystal

proposed by Eringen (1997, 2001) are briefly discussed.

Simplified representations of W for some forms of anisotropy of polar-

elastic solids are discussed in Section 10.

Applying representation theorems of the scalar-valued tensor functions

derived by Spencer (1965, 1971), we analyse possible reduction of W for

isotropic, hemitropic, cubic-symmetric, orthotropic, and transversely isotropic

non-linear polar-elastic solids. As in Section 6 we apply the theory of rep-

resentation of scalar-valued functions of several tensorial arguments sum-

marised in Spencer (1971); Boehler (1987); Smith (1994); Zheng (1994) where
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other references can be found. For polar-elastic solids the material symmetry

group is described by orthogonal transformations alone. This gives possibil-

ity to represent W in terms of joint invariants of the strain measures E and

Γ as well as of the structure curvature tensor B.

Finally, in Sections 11 and 12 physically linear polar-elastic solids are

analysed under mirror reflection as well as under monoclinic, orthotropic,

cubic, hemitropic, and isotropic symmetry conditions. For each case of sym-

metries reduced forms of W in terms of appropriate joint scalar invariants of

tensors E, Γ, and B are given. In Appendix we present table with invariants

for the isotropic symmetry.

2. Some relations of the non-linear micropolar elastic continuum

Let the body B consisting of material particles X, Y, . . . deform in three-

dimensional (3D) Euclidean physical space E which translation vector space

is E. According to Cosserat and Cosserat (1909); Truesdell and Toupin

(1960); Eringen and Kafadar (1976) for example, each material particle X ∈

B of the polar-elastic continuum has six degrees of freedom of rigid body.

In the reference (undeformed) placement κ(B) = Bκ ⊂ E position x ∈ E

of X ∈ B is given by the vector x ∈ E relative to origin o ∈ E of an inertial

frame (o, ia), where ia ∈ E, a = 1, 2, 3, is a right-handed triple of orthonormal

vectors. Orientation of X ∈ B in E is fixed by the right-handed triple of

orthonormal directors ha ∈ E, so that ha = Hia, where H = ha⊗ia ∈ Orth+

is the proper orthogonal structure tensor of Bκ, H
−1 = HT , detH = +1,

and ⊗ denotes the tensor product.

In the actual (deformed) placement γ(B) = Bγ = χ(Bκ) ∈ E , χ =
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γ◦κ−1, position y ∈ Bκ ofX ∈ B becomes defined by the vector y ∈ E taken

here relative to the same origin o ∈ E . Orientation of X becomes fixed by

the right-handed triple of orthonormal directors da ∈ E or by the structure

tensor D = da ⊗ ia ∈ Orth+ of Bγ . As a result, the finite displacement

of polar-elastic continuum can be described by two smooth mappings (see

Fig. 1):

y = χ(x) = x+ u(x), da = Q(x)ha, (1)

where u ∈ E is the translation vector and Q = DHT = da ⊗ ha ∈ Orth+

is the proper orthogonal microrotation tensor, Q−1 = QT , detQ = +1.

Two independent fields u(x) and Q(x) describe translational and rotational

degrees of freedom of polar-elastic continuum.

Natural Lagrangian relative stretch and wryness (or change of microstruc-

ture orientation) tensors E and Γ are defined according to Pietraszkiewicz

and Eremeyev (2009) as

E = QTF− I, Γ = −
1

2
E : (QTGradQ). (2)

Here F = Grady, detF > 0, is the classical deformation gradient tensor

taken relative to Bκ, I is the identity (metric) tensor of 3D space E, E =

−I× I is the 3rd-order skew permutation tensor with × the vector product,

while the double dot product : of two 3rd-order tensors A, B represented in

ha is defined as A : B = AamnBmnbha ⊗ hb. The strain measures defined in

(2) are not symmetric, in general, ET 6= E, ΓT 6= Γ.

Gradient of vector field v(x) ∈ E is a 2nd-order tensor field Gradv ∈

E⊗E and gradient of 2nd-order tensor field A ∈ E⊗E is a 3rd-order tensor
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Figure 1: Micropolar body deformation.

field GradA ∈ E ⊗E ⊗E defined by (see for example Ogden (1984))

[Gradv(x)]a =
d

dt
v(x+ ta)|t=0 ,

[GradA(x)]a =
d

dt
A(x+ ta)|t=0 , for any t ∈ R , a ∈ E .

(3)

In particular, gradient of product of 2nd-order tensor A(x) and vector

v(x) fields is calculated according to

Grad (Av) = vGradAT +AGradv . (4)

The wryness tensor Γ can also be expressed in several equivalent forms,

see Pietraszkiewicz and Eremeyev (2009), for example

Γ = −
1

2
ha × (haQ

TGradQ) = QTCF−B, (5)

where B and C are the respective microstructure curvature tensors of polar

continuum in the reference and actual placements defined by

B =
1

2
ha ×Gradha, C =

1

2
da × gradda, (6)
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with the operator grad being taken in the deformed placement Bγ .

In what follows B and C play an important role because they characterize

non-uniform distributions of directors ha and da in the reference and actual

placements, respectively. In particular, if ha are constant in space then

B = 0.

Material behaviour of the micropolar (hyper)elastic continuum is de-

scribed by the strain energy density Wκ per unit volume of undeformed

placement Bκ. The density Wκ satisfying the principle of material frame-

indifference takes the reduced form

Wκ = Ŵκ(E,Γ;x,B). (7)

We call the polar-elastic continuum homogeneous if there exists a reference

placement Bκ such that Wκ does not depend on x and materially uniform if

Wκ does not depend on B or B ≡ 0.

Constitutive equations for referential stress S and couple-stress K tensors

introduced in Pietraszkiewicz and Eremeyev (2009) are now defined as

S =
∂Wκ

∂E
, K =

∂Wκ

∂Γ
. (8)

It is apparent that S and K are not symmetric, in general, ST 6= S, KT 6= K.

The local Lagrangian equilibrium equations as well as kinematic and dy-

namic boundary conditions of the non-linear theory of micropolar continuum

are, see Pietraszkiewicz and Eremeyev (2009), Appendix,

DivTN + ρκf = 0, (9)

DivMN + ax(TT
NF

T − FTN ) + ρκc = 0 in Bκ, (10)
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x− x0 = 0, Q−Q0 = 0 along ∂Bκd. (11)

nTN − t0 = 0, nMN −m0 = 0 along ∂Bκf . (12)

In Eqs. (9) and (10), divergence operator Div in Bκ is defined as, for example,

in Billington (1986) by

[DivA(x)]a = Div [A(x)a], ∀ A ∈ E ⊗E, ∀ a ∈ E. (13)

In Eqs.(9)–(12), TN , MN ∈ E ⊗ E are nominal stress and couple-stress

tensors following from the generalised Cauchy theorem t(n) = nTN , m(n) =

nMN , in which t(n) andm(n) are surface traction and moment vectors applied

at any point of boundary ∂Pγ of Pγ ⊂ Bγ , but measured per unit area of

∂Pκ, respectively, with n being the unit vector externally normal to ∂Pκ.

The nominal tensors TN , MN are related to the referential tensors S and K

given in (8) by

TN = STQT , MN = KTQT . (14)

Additionally in (9)–(12), f , c ∈ E are the external force and couple vectors

applied at any point of Bγ but measured per unit mass of Bκ, ρκ is the

mass density in Bκ, while t0, m0 ∈ E are the external boundary force and

couple vectors applied on part of the deformed boundary ∂Bγf but measured

per unit area of ∂Bκf , respectively. The vector x0 and the tensor Q0 given

on ∂Bκd describe translation and rotation of particles prescribed on ∂Bκd,

respectively, where ∂Bκ = ∂Bκd ∪ ∂Bκf , ∂Bκd ∩ ∂Bκf = ∅.

Formally different than (9)–(12) but equivalent coordinate-free forms of

local equilibrium conditions follow by applying alternative definitions of gra-

dient and divergence operators as well as of the Cauchy theorem, see for
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example Maugin (1974, 1998); Scarpetta (1989); Lurie (1990); Zubov (1997);

Yeremeyev and Zubov (1999); Dai (2003).

The local Eulerian equilibrium equations and dynamic boundary condi-

tions in the actual placement Bγ corresponding to (9)–(12) are

divT+ ρf = 0, divM+ ax(TT −T) + ρc = 0 in Bγ, (15)

nT− t̄0 = 0, nM−m0 = 0 along ∂Bγf . (16)

In (15) and (16), T and M are Cauchy-type stress and couple-stress tensors

which are related to the referential stress measures by

T = (detF)−1FTN = (detF)−1FSTQT , (17)

M = (detF)−1FMN = (detF)−1FKTQT , (18)

ρ is the mass density in Bγ, div is the divergence operator in Bγ defined as

in (13), t
0
, m0 are measured per unit area of ∂Bγf , with n being the unit

vector externally normal to ∂Bγ .

3. Change of reference placement

Let us introduce another reference placement κ∗(B) = B∗ ∈ E of B,

in which position x∗ ∈ B∗ of X ∈ B is given by the vector x∗ relative to

the same origin o ∈ E and its orientation is fixed by three right-handed

orthonormal directors h∗a (Fig. 2). Let P, detP > 0, be the deformation

gradient transforming dx into dx∗, and R ∈ Orth+ be the rotation tensor

transforming ha into h∗a, so that

dx∗ = Pdx, h∗a = Rha. (19)
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Figure 2: Change of reference placement.

In what follows all fields associated with deformation relative to B∗ will be

marked by lower index ∗.

Let us analyse how transform the strain measures E and Γ under change

of reference placement Bκ → B∗.

Since dy = Fdx = F∗dx∗, where F∗ = Grad∗y(x∗), detF∗ > 0, is the

deformation gradient relative to B∗ and rotation h∗a into da is given by

Q∗ = da ⊗ h∗a ∈ Orth+, from (1) and (19) it follows that

F = F∗P, Q = Q∗R. (20)
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Thus, from (2)1 and (20) we immediately obtain

E∗ = QT
∗
F∗ − I = REP−1 +RP−1 − I = R(E+ I)P−1 − I. (21)

To find Γ∗ one needs first express B∗ through B. Using (4), (6)1, (19)

and applying the chain rule Grad∗h∗a = (Gradh∗a)P
−1, we obtain

B∗ =
1

2
h∗a ×Grad∗h∗a =

1

2
[(Rha)Grad (Rha)]P

−1

=R

[
1

2
ha ×RT (ha GradRT +RGradha)

]
P−1

=R

[
1

2
ha × (haR

T GradRT +Gradha)

]
P−1

=RBP−1 − L, (22)

L =−R

[
1

2
ha × (haRGradRT )

]
P−1 = −R

[
1

2
E : (RGradRT )

]
P−1

=RZP−1, Z = −
1

2
E : (RGradRT ). (23)

As a result,

Γ∗ =QT
∗
CF∗ −B∗ = RQTCFP−1 −RBP−1 + L = RΓP−1 + L. (24)

Let us note that the 2nd-order tensors B, C, Γ, MN and K are axial

tensors (pseudotensors), not usual (polar) ones. Axial tensors differ from

polar ones in that they change signs under inversion transformation −I of 3D

space E. Pseudoscalars, pseudovectors and pseudotensors are widely used in

modern physics, see for example Nye (1957); Korn and Korn (1968); Feynman

et al. (1977); Arfken and Weber (2000). An example of pseudovector is the

vector product a × b of two polar vectors a,b ∈ E. If O ∈ Orth is an

orthogonal tensor then (Oa) × (Ob) = (detO)O(a × b) and the vector
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product changes sign if O = −I. An example of axial 2nd-order tensor is the

skew tensor Ω = ω × I with the polar vector ω ∈ E. An example of axial

3rd-order tensor is the permutation tensor E.

Within classical (or Cauchy type) continuum discussed for example in

Truesdell and Noll (1965); Truesdell (1966, 1991) it is enough to consider

polar 2nd-order tensors when defining the material symmetry group of Green-

elastic body. However, for the micropolar (or Cosserat type) continuum one

has to take into account that Γ and B appearing in the density Wκ defined

in (7) are axial 2nd-order tensors, not the polar ones. Thus one has to

extend B∗ by allowing R in (7) to be an orthogonal tensor R ∈ Orth and

by requiring P to be non-singular tensor, detP 6= 0. Additional inversion of

space orientation does not correspond to any real deformation of the reference

placement. It simply reflects necessary invariance of constitutive equations

under mirror reflection of the reference placement or, equivalently, under

change of orientation of the base vectors ha from right-hand to left-hand

one. Then the refined transformations (22) and (24) become

B∗ = (detR)RBP−1 − L, Γ∗ = (detR)RΓP−1 + L. (25)

4. Definition of material symmetry group

The form of elastic strain energy density Wκ of the micropolar body at

any particle X ∈ B depends upon the choice of reference placement, in

general. Particularly important are sets of reference placements which leave

unchanged the form of energy density. Transformations of reference place-

ment under which the energy density remains unchanged are called here

invariant transformations. Knowledge of all invariant transformations allows
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one to precisely define fluid, solid, liquid crystal or subfluid as well as to in-

troduce notions of isotropic, hemitropic or orthotropic polar-elastic continua,

for example. Similar approach is used in classical continuum mechanics and

in non-linear elasticity by Truesdell (1964); Truesdell and Noll (1965); Wang

and Truesdell (1973); Truesdell (1991); Rivlin (1980), as well as in non-linear

theories of shells by Wang (1973); Murdoch and Cohen (1979); Eremeyev

and Pietraszkiewicz (2006).

The elastic strain energy density W∗ relative to B∗ depends in each point

x∗ ∈ B⋆ on the stretch tensor E∗, the wryness tensor Γ∗, and also upon

the structure curvature tensor B∗. This dependence may, in general, be

different than that of Wκ(E,Γ;x,B). However, the strain energy of any part

of continuum should be conserved, so that

∫∫∫

Pκ

Wκ dvκ =

∫∫∫

P∗

W∗ dv∗ (26)

for any part Pκ ⊂ Bκ corresponding to P∗ ⊂ B∗, because the functions

Wκ and W∗ describe strain energy densities of the same deformed state of

Pγ ⊂ Bγ = χ(Pκ) = χ∗(P∗), where χ∗ is deformation function from B∗ to Bγ .

Changing variables x∗ → x in the right-hand integral of (26), we obtain

∫∫∫

P∗

W∗[E∗(x∗),Γ∗(x∗);x∗,B∗(x∗)] dv∗

=

∫∫∫

Pκ

| detP|W∗[E∗(x),Γ∗(x);x,B∗(x)] dvκ.

Thus, from (26) it follows that W∗ and Wκ are related by

| detP|W∗(E∗,Γ∗;x,B∗) = Wκ(E,Γ;x,B).
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Here E∗, Γ∗, and B∗ are expressed as in (21) and (25).

From physical reasons invariant transformations of the reference place-

ment should preserve elementary volume of Bκ. Hence, the transformation

tensor P should belong to the unimodular group for which | detP| = 1.

The assumption that the constitutive relation be insensitive to the change

of reference placement means that explicit forms of Wκ and W∗ should coin-

cide, that is

Wκ(E,Γ;x,B) = Wκ(E∗,K∗;x,B∗).

In other words, one may use the same function for the strain energy density

independently upon the choice of Bκ or B∗, but with different expressions for

stretch and wryness tensors as well as for the microstructure curvature tensor.

In what follows we not always explicitly indicate that all functions depend

also on the position vector x and W is taken relative to the undeformed

placement Bκ.

Using (21) and (25) we obtain the following invariance requirement for

W under change of reference placement:

W (E,Γ;B)

= W
[
REP−1 +RP−1 − I, (detR)RΓP−1 + L; (detR)RBP−1 − L

]
.

(27)

The relation (27) holds locally, i.e. it should be satisfied at any x and

B, and tensors P, R, L are treated as independent here. As a result, local

invariance of W under change of reference placement is described by triple

of tensors (P,R,L).

In what follows we shall use the following nomenclature:

Orth = {O : O−1 = OT , detO = ±1} – the group of orthogonal tensors;
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Orth+ = {O : O ∈ Orth, detO = 1} – the group of rotation tensors;

Unim = {P : P ∈ E ⊗ E, detP = ±1} – the unimodular group;

Lin = {L ∈ E ⊗ E} – the linear group.

Here Orth and Unim are groups with regard to multiplication, and Lin

is the group with regard to addition.

Now we are able to introduce the following definition:

Definition 1. By the material symmetry group Gκ at x and B of the polar-

elastic continuum we call all sets of ordered triples of tensors

X = (P ∈ Unim,R ∈ Orth,L ∈ Lin), (28)

satisfying the relation

W (E,Γ;B)

= W
[
REP−1 +RP−1 − I, (detR)RΓP−1 + L; (detR)RBP−1 − L

]

(29)

for any tensors E, Γ, B in domain of definition of function W .

The set Gκ is group relative to the group operation ◦ defined by

(P1,R1,L1) ◦ (P2,R2,L2) =
[
P1P2, R1R2, L1 + (detR1)R1L2P

−1
1

]
.

Let us check that if X1 ≡ (P1,R1,L1) ∈ Gκ and X2 ≡ (P2,R2,L2) ∈ Gκ,

then also X1 ◦ X2 ∈ Gκ. Indeed, if X1 ∈ Gκ and X2 ∈ Gκ then

W (E,Γ;B)

= W
[
R1EP1

−1 +R1P
−1
1 − I, (detR1)R1KP1

−1 + L1; (detR1)R1BP−1
1 − L1

]

= W
[
R2EP2

−1 +R2P
−1
2 − I, (detR2)R2ΓP2

−1 + L2; (detR2)R2BP−1
2 − L2

]
.
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Taking these relations into account we have

W
[
R1R2EP2

−1P1
−1 +R1R2P2

−1P1
−1 − I,

(detR1)(detR2)R1R2ΓP2
−1P1

−1 + L1 + (detR1)R1L2P
−1
1 ;

(detR1)(detR2)R1R2BP2
−1P1

−1 − L1 − (detR1)R1L2P
−1
1

]

= W
{
R1

(
R2EP

−1
2 +R2P

−1
2 − I

)
P−1

1 +R1P
−1
1 − I,

(detR1)R1

[
(detR2)R2ΓP2

−1 + L2

]
P−1

1 + L1;

(detR1)R1

[
(detR2)R2BP2

−1 − L2

]
P−1

1 − L1

}

= W
[
R2EP2

−1 +R2P
−1
2 − I ,

(detR2)R2ΓP2
−1 + L2; (detR2)R2BP−1

2 − L2

]

= W (E,Γ;B) ,

which proves that X1 ◦ X2 belongs to the group Gκ indeed.

The unit element of Gκ is I = (I, I, 0), and the inverse element to X ∈ Gκ

is given by

X
−1 ≡ (P,R,L)−1 =

[
P−1,RT ,−(detR)RTLP

]
.

Indeed,

X ◦ X−1 ≡(P,R,L) ◦ (P,R,L)−1

=
[
PP−1, RRT , L− (detR)2RRTLPP−1

]
= (I, I, 0).

Our symmetry group Gκ differs from the one of micropolar elastic mate-

rials proposed by Eringen and Kafadar (1976). We take into account explicit

dependence ofW upon B as parametric tensor, while in Eringen and Kafadar

(1976) dependence of T, M and other quantities on the microinertia tensor

Jκ is assumed. In our notation, definition of Gκ by Eringen and Kafadar

(1976) is based on the formula

W (E,Γ;Jκ) = W
[
REP−1 +RP−1 − I, RΓP−1 + L; RJκR

T
]
. (30)
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The microinertia tensor Jκ appearing in (30) has another nature and trans-

forms by another rule thanB under change of reference placement. Moreover,

in what follows we take into account that Γ and B as arguments of W are

axial tensors. Eringen and Kafadar (1976) did not take into account that Γ

was the axial tensor. The mentioned differences in definitions of Gκ lead to

different restrictions of constitutive relations of polar-elastic continua.

Let us show that Definition 1 allows one to establish an analogue of Noll’s

rule given for classical simple material continuum by Noll (1958). Since the

material symmetry group depends not only on particle X ∈ B but also upon

choice of reference placement, let us analyse how symmetry groups corre-

sponding to different reference placements are related. Let B1 and B2 be two

different reference placements, and G1 and G2 be material symmetry groups

relative to these reference placements, respectively. In what follows quan-

tities described in the placements B1 and B2 are marked by the respective

lower indices 1 and 2.

Let now P be a non-singular deformation gradient, detP 6= 0, R be an or-

thogonal tensor associated with the transformation B1 → B2, as well as P
−1

and RT be an inverse deformation gradient and an inverse orthogonal ten-

sor associated with an inverse transformation B2 → B1, respectively. Cases

detP < 1 and detR = −1 correspond to change from right-handed frame in

B1 to left-handed one in B2. Then, by analogy to (21) and (25) we can relate

the strain measures E1 and E2, Γ1 and Γ2, as well as the structure curvature

tensors B1 and B2 defined relative to two different reference placements by

E2 = RE1P
−1 +RP−1 − I, Γ2 = (detR)RΓ1P

−1 + L. (31)

B2 = (detR)RB1P
−1 − L, L = (detR)RZP−1. (32)
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Let W1 and W2 be strain energy densities defined relative to the two

reference placements. From (26) it follows that W2 and W1 are related by

| detP|W2(E2,Γ2;B2) = W1(E1,Γ1;B1).

Taking into account (31) and (32) we have

| detP|W2

[
RE1P

−1 +RP−1 − I, (detR)RΓ1P
−1 + L; (detR)RB1P

−1 − L
]

= W1(E1,Γ1;B1).

(33)

Let the element X1 ≡ (P1,R1,L1) ∈ G1. Then using (33) we obtain

| detP|W2(E2,Γ2;B2)

= W1(E1,Γ1;B1)

= W1

[
R1E1P

−1
1 +R1IP

−1
1 − I, (detR1)R1Γ1P

−1
1 + L1;

(detR1)R1B1P
−1
1 − L1

]

= | detP|W2

[
RR1E1P

−1
1 P−1 +RR1IP

−1
1 P−1 − I,

(detR)(detR1)RR1K1P
−1
1 P−1

+ (detR)RL1P
−1 + L;

(detR)(detR1)RR1B1P
−1
1 P−1

−(detR)RL1P
−1 − L

]

= | detP|W2

[
RR1R

TE2PP−1
1 P−1 +RR1R

T IPP−1
1 P−1 − I,

(detR1)RR1R
TK2PP−1

1 P−1

− (detR1)RR1R
TLPP−1

1 P−1

+ (detR1)RL1P
−1 + L;

(detR1)RR1R
TB2PP−1

1 P−1

+ (detR1)RR1R
TLPP−1

1 P−1

−(detR1)RL1P
−1 − L

]
.

(34)
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From (34) it follows that the element X2 ≡ (P2,R2,L2) ∈ G2, where

P2 =PP1P
−1, R2 = RR1R

T ,

L2 =L + (detR1)RL1P
−1 − (detR1)RR1R

TLPP−1
1 P−1.

It is easy to show that X2 = P ◦ X1 ◦ P
−1, where P ≡ (P,R,L). Indeed,

P ◦ X1 ≡(P,R,L) ◦ (P1,R1,L1)

=
[
PP1, RR1, L+ (detR)RTLP

]
.

Taking into account that P−1 =
[
P−1,RT ,−(detR)RTLP

]
, we obtain

P ◦ X1 ◦ P
−1 =

[
PP1P

−1, RR1R
T , L+ (detR)2(detR1)RL1P

−1

−(detR)2(detR1)RR1R
TLPP−1

1 P−1
]
,

from which follows the sought result.

Thus the material symmetry group under change of reference placement

transforms according to

G2 = P ◦ G1 ◦ P
−1. (35)

The transformation (35) is a counterpart in non-linear micropolar elasticity of

the well known Noll rule for symmetry groups of simple materials in classical

continuum mechanics, see Noll (1958); Truesdell and Noll (1965); Wang and

Truesdell (1973).

5. Material symmetry and reduced forms of strain energy density

The structure of Gκ puts some constraints on the form of W which allow

us to considerably simplify this form.
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In this Section we consider some simple specific cases of Gκ.

Case 1. Let us discuss the trivial symmetry group Gκ consisting of two

elements: I and −I = (−I,−I, 0). Applying −I, from definition of Gκ it

follows that W should be an even function of Γ and B, that is

W (E,Γ;B) = W (E,−Γ;−B). (36)

The condition (36) means, in particular, that explicit expression ofW (E,Γ;B)

cannot have terms linear in Γ alone such as tr (ETΓ). Only when explicit

dependence of W on B is taken into account, terms linear in Γ of the type

tr (BTΓ) or tr (BTΓE) are allowed.

Case 2. If Gκ consists of tensor triples containing two identities and

an arbitrary tensor L ∈ Lin, then the number of arguments in W can be

reduced.

Indeed, let X = (I, I,L) ∈ Gκ. Then

W (E,Γ;B) = W (E,Γ+ L;B− L) , ∀L ∈ Lin. (37)

Introducing one-parameter family of transformations

W (E,Γ;B) = W (E,Γ+ tL;B− tL) , ∀L ∈ Lin, ∀ t ∈ R,

and differentiating the latter equation with regard to t at t = 0, we find that

0 =
∂Wκ

∂Γ
: L−

∂Wκ

∂B
: L , ∀L ∈ Lin.

This equation is satisfied if and only if

W = W (E,Γ+B) = W̃ (E,Π),
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where Π = Γ + B. Here : denotes the double-dot (scalar) product of two

2nd-order tensors, A : B = tr (ATB) = AmnBmn.

Alternatively, since (37) should be satisfied by any L let us take L to be

equal B. Then from (37) it directly follows that

W (E,Γ;B) = W (E,Γ+B; 0) = W̃ (E,Π).

Case 3. Let us consider the reduced form W = W (E,Γ), i. e. let us

neglect its explicit dependence on B. This form is widely used in the lit-

erature, see for example Maugin (1998); Nikitin and Zubov (1998); Erin-

gen (1999); Ramezani and Naghdabadi (2007); Ramezani et al. (2009). If

Gκ = {X : X = (I, I,L)} contains an arbitrary tensor L ∈ Lin, we have

W (E,Γ) = W (E,Γ+ L). Then we can again introduce one-parameter fam-

ily of transformations

W (E,Γ) = W (E,Γ+ tL) , ∀L ∈ Lin, ∀ t ∈ R.

Differentiating this equation with regard to t at t = 0, we obtain

∂W

∂Γ
: L = 0, ∀L ∈ Lin,

from which it follows that
∂W

∂Γ
= 0. Thus in this case W takes the reduced

form

W = W (E). (38)

Such a significant reduction of W = W (E,Γ) follows directly from assump-

tion that the material symmetry group contains an arbitrary tensor L. To

keep the second argument Γ in W it is necessary to avoid using material

symmetry groups containing an arbitrary tensor L.
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The form (38) ofW corresponds to so-called reduced elastic Cosserat con-

tinuum in which the couple-stress tensor K vanishes while the stress tensor

S still remains non-symmetric, in general. The couple equilibrium equations

(10) and (15)2 reduce to

ax(TT
NF

T − FTN) + ρκc = 0 in Bκ, (39)

ax(TT −T) + ρc = 0 in Bγ . (40)

These equations become non-trivial here and can be used to find the field

of rotation Q. However, since (39) and (40) constitute the system of non-

linear algebraic equations with respect to Q, it is not possible to assume any

rotation Q at the boundary ∂Bκd.

The linear version of reduced Cosserat elastic continuum was used to

describe wave propagation in soils and rocks, see for example Grekova et al.

(2009).

Case 4. Let the material symmetry group of reduced Cosserat continuum

(Case 3) be wider: Gκ = {X : X = (I,R ∈ Orth+,L ∈ Lin)}. Then it

describes the classical non-linear Green-elastic material (Truesdell and Noll,

1965; Ogden, 1984) for which W = W (U), where U = (FTF)1/2.

Within the reduced Cosserat continuum tensors P, R and L belong to

Gκ if

W (E) = W (REP−1 +RP−1 − I) = W (RQTFP−1 − I).

Let us substitute here P = I and R = ATQ, where A is the proper orthog-

onal tensor following from the polar decomposition F = AU of deformation

gradient F and Q ∈ Orth+. Then we obtain

W (E) = W
(
ATQQTF− I

)
= W

(
ATF− I

)
= W (U− I) = W×(U).
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In this case the corresponding Cauchy stress tensor T becomes symmetric,

T = TT . The proof is based on straightforward calculation of S using W =

W×(U) which gives us the formula

T = (detF)−1AUS×AT ,

where S× = dW×/dU, and S×T = S×.

Since K = 0, the couple equilibrium equations (10) or (15)2 are iden-

tically satisfied for vanishing couple vector c. Material symmetry groups

and representations of constitutive equations of non-linear elastic continuum

were discussed for example in Truesdell and Noll (1965); Wang and Truesdell

(1973); Ogden (1984).

Four simple specific cases discussed above demonstrate that knowledge of

elements of the material symmetry group allows one to substantially simplify

the form of W . In next sections we consider some cases of Gκ which lead to

definitions of polar-elastic solids, fluids, liquid crystals, or subfluids, and to

their reduced constitutive equations.

6. Polar-elastic isotropic material

As in case of non-polar elastic materials, property of isotropy of the polar-

elastic material is expressed in terms of orthogonal group.

Definition 2. The micropolar elastic continuum is called isotropic at x and

B if there exists a reference placement Bκ, called undistorted, such that the

material symmetry group relative to Bκ contains the group Sκ,

Sκ ⊂ Gκ, Sκ ≡ {(P = O,O, 0) : O ∈ Orth} . (41)
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From physical point of view this definition means that uniform rotations

and mirror reflections of the undistorted reference placement Bκ cannot be

recognized by any experiment.

7. Polar-elastic fluids

To strain energy density of micropolar elastic fluids w should be insensi-

tive to any change of reference placement, i.e. the equation (27) should be

satisfied by any triple of tensors P ∈ Unim, R ∈ Orth, L ∈ Lin.

Definition 3. The micropolar elastic continuum is called the polar-elastic

fluid at x and B if there exists a reference placement Bκ, called undistorted,

such that the material symmetry group relative to Bκ is given by

Gκ = Uκ ≡ {(P ∈ Unim,R ∈ Orth,L ∈ Lin)}. (42)

Hence, the strain energy density of the polar-elastic fluid satisfies the

relation

Wκ(E,Γ;B)

= Wκ

[
REP−1 +RP−1 − I, (detR)RΓP−1 + L; (detR)RBP−1 − L

]
,

∀P ∈ Unim, ∀R ∈ Orth, ∀L ∈ Lin.

(43)

From Noll’s rule (35) it is easy to verify that any reference placement of

the polar-elastic fluid becomes undistorted, similarly as it is for the non-polar

elastic fluid, because the symmetry group becomes here maximal. Obviously,

any polar-elastic fluid is also isotropic.

Strain energy density of polar-elastic fluid satisfying (43) takes the form

W = W (E,Π) = W×(detF,C), (44)
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where C is the structure curvature tensor of the deformed placement Bγ de-

fined in (6)2. Since C does not depend on the choice of reference placements,

it is easy to check that (44) satisfies the requirement (43).

The strain energy density (44) describes polar-elastic continuum which

is insensitive to arbitrary deformations preserving an elementary volume el-

ement. However, it is still sensitive to change of orientation of particles.

By the principle of material frame-indifference (invariance under super-

posed rigid-body deformation) the function W× satisfies the condition

W (detF,C) = W×[det(QTF),OTCO], ∀O ∈ Orth+,

i.e. W× is the hemitropic function with regard to C.

Using general representations of isotropic and hemitropic scalar-valued

functions of one non-symmetric tensor C given by Spencer and Rivlin (1962);

Smith (1965, 1994); Spencer (1965, 1971); Smith and Smith (1971) with

the help of algebraic theory of the invariants, W× can be constructed as a

function of six invariants jn, n = 1, . . . , 6,

W = W×(detF, j1, j2, . . . , j6) (45)

where

j1 = trC, j2 = trC2, j3 = trC3, j4 = tr (CCT ), (46)

j5 = tr (C2CT ), j6 = tr (C2CT2)

as was used for example in Kafadar and Eringen (1971).

Since detF = ρκ/ρ, the strain energy density of the polar-elastic fluid

may be given in another form more convenient in hydrodynamics,

W = W (ρ,C) = W (ρ, j1, j2, . . . , j6). (47)
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Because C is the axial tensor, it changes sign under change of frame orienta-

tion. Thus, W should be an even function of C, W (ρ,C) = W (ρ,−C), and

its invariant expression should have the property

W (ρ, j1, j2, j3, j4, j5, j6) = W (ρ,−j1, j2,−j3, j4,−j5, j6).

As a simple example of the polynomial strain energy density we can pro-

pose the following quadratic function:

W (ρ,C) = α0(ρ) + α1j
2
1 + α2j2 + α3j4, (48)

where αa, a = 1, 2, 3, are assumed to be constants.

Constitutive equations for T and M corresponding to (47) are

T = −pI−MC, M =
ρ

ρκ

∂W

∂CT
, p =

ρ2

ρκ

∂W

∂ρ
. (49)

For example, with the strain energy density (48) the couple-stress tensor M

is given by the constitutive equation

M = 2
ρ

ρκ

(
α1j1I+ α2C

T + α3C
)
.

Basic equations of viscous micropolar fluids were proposed by Aero et al.

(1965); Eringen (1966). Similar theory of fluids with three rigid directors

as primary quantities was introduced by Allen et al. (1967). Within the

framework of these models the strain energy density had the formW = W (ρ),

which is the particular case of (47). Strain energy density (44) of the polar-

elastic fluids was established by Zubov and Eremeev (1996); Yeremeyev and

Zubov (1999) without introduction of material symmetry group.
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8. Polar-elastic solids

Material symmetry group of non-polar non-linear elastic solids is con-

structed with the help of orthogonal transformations describing rotations and

reflections of reference placement, see Truesdell and Noll (1965); Wang and

Truesdell (1973); Ogden (1984). But for polar-elastic continua material sym-

metry group consists of ordered triple of independent tensors, Gκ = (P,R,L).

In Definition 3 of the polar-elastic fluid tensors P and R are entirely

independent from each other. Considering directors ha as unit orthogonal

vectors rigidly attached to rigid particles (e.g. molecules) of the fluid, it is

apparent that P need not coincide withR. This is also true in the mechanical

modelling of sand, powder, etc.

In polar-elastic solids both P and R describing change of the reference

placement should be orthogonal. Then corresponding constitutive equations

might be sensitive to differences of both orthogonal tensors P and R, which

would be difficult to accept. Hence, we assume here that P = R ∈ Orth.

The case L 6= 0 corresponds to a non-homogeneous field of R, see (23).

It can be shown that the material symmetry group with L 6= 0 would lead

to constitutive equations describing polar-elastic liquid crystals and subflu-

ids. Hence, for the polar-elastic solids the following hypothesis seems to be

physically justified:

Hypothesis. The material symmetry group of the polar-elastic solids

consists of all transformations of reference placement performed by the same

orthogonal transformations of position vector and directors. Additionally we

assume that L = 0.

The hypothesis requires that P = R and values of R should belong to a
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subgroup of Orth.

Accepting the hypothesis we can propose the following definition:

Definition 4. The micropolar elastic continuum is called the polar-elastic

solid at x and B if there exists a reference placement Bκ, called undistorted,

such that the material symmetry group relative to Bκ is given by

Gκ = Rκ ≡ {(P = O,O, 0) : O ∈ Oκ ⊂ Orth} . (50)

The group Rκ is fully described by a subgroup Oκ of orthogonal group

Orth. Invariance requirement of W leads here to finding the subgroup Oκ

such that

W (E,Γ;B) = W
[
OEOT , (detO)OΓOT ; (detO)OBOT

]
, ∀O ∈ Oκ.

(51)

Both our definitions of fluids (43) and solids (51) differ from definitions

proposed by Eringen and Kafadar (1976) by factors detR and detO, which

take into account that our Γ and B are axial tensors. Additionally, the tensor

B appears instead of Jκ in the list of arguments of our W .

9. Polar-elastic liquid crystals and subfluids

The strain energy density of polar-elastic continuum may also admit other

material symmetry groups, in general. For example, it is possible to construct

material symmetry groups of W in analogy to symmetry groups used to

model liquid crystals or subfluids in continuum mechanics of simple materials,

see Coleman (1965); Wang (1965); Truesdell and Noll (1965); Wang and

Truesdell (1973). However, those mathematical models differ from physical
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models of liquid crystals used for nematics, smectics and other materials,

which are usually based on introducing one rigid director, c.f. Truesdell and

Noll (1965); de Gennes and Prost (1993); Ericksen (1998).

Definition 5. The micropolar elastic continuum is called the polar-elastic

liquid crystal at x and B if the material symmetry group Gκ does not coincide

with Uκ, but there exist elements X ∈ Gκ, which are not members of any

group constructed using only orthogonal tensors.

Definition 5 means that a polar-elastic liquid crystal is neither a polar-

elastic fluid nor a polar-elastic solid.

Within micropolar elastic continuum the number of material symmetry

groups corresponding to polar-elastic liquid crystals is larger than in case of

non-polar elastic liquid crystals, because the structure of Gκ of the former is

more complex. The Cases 2–4 considered above belong to polar-elastic liquid

crystals by their definitions. Below we give other examples of polar-elastic

liquid crystals.

Grekova and Zhilin (2001) defined the Kelvin medium as a special case of

polar-elastic solids, which strain energy density W = W (E,Γ) is insensitive

to rotation by any angle ϕ about a fixed axis with unit vector e. It is

possible to prove that the Kelvin medium should in fact be considered as

a polar-elastic liquid crystal, because its material symmetry group contains

non-orthogonal tensors.

Within non-polar elastic materials C.-C. Wang developed constitutive

equations of 14 classes of the simple subfluids being special cases of non-

polar liquid crystals, see Wang (1965); Truesdell and Noll (1965); Wang and
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Truesdell (1973); Cohen and Wang (1983). The material symmetry group

of simple subfluids contained only elements of the dilatation group, that is

the group of all unimodular tensors having three fixed linearly independent

vectors as their proper vectors. The dilatation group consists of tensors

Dκ = {P : P ∈ Unim, P = p1e1⊗e1+p2e2⊗e2+p3e3⊗e3, p1p2p3 = ±1.}

Here e1, e2, e3 are three orthogonal unit vectors called the preferred basis.

In analogy to Wang (1965) we can define polar-elastic subfluids as follows:

Definition 6. The micropolar elastic continuum is called the polar-elastic

subfluid at x and B if its material symmetry group Gκ contains elements of

the dilatation group, that is

Gκ = {(P,R,L) : P ∈ Dκ, R ∈ Orth, L ∈ Lin}.

Discussing application of micropolar elastic continuum for modelling liq-

uid crystals, Eringen (1997) developed constitutive equations based on the

strain energy density

W = W (ρ, γ; j), (52)

where j = QJκQ
T , γ = QΓF−1 in our notation. The relative Eulerian

wryness measure γ determines relative changes of orientation of the polar-

elastic continuum, see Pietraszkiewicz and Eremeyev (2009). From (5) it

follows that

γ = C−QBF−1.

Hence, γ = C if and only if B = 0. In case of B 6= 0 the strain energy density

W in (52) corresponds to a special type of polar-elastic continuum, neither a
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fluid nor a solid, because W depends on the relative wryness measure γ which

is sensitive to change of orientation of continuum particles with respect to the

reference placement. Under change of the reference placement γ transforms

according to

γ∗ = γ+QZF−1,

where γ∗ = C−Q∗B∗F
−1
∗
.

Using j as the structural tensor, Eringen derived various types of con-

stitutive equations. Since in our model B is used as the parametric tensor

instead of j, Eringen’s model may be incomparable with ours in sense of the

material symmetry group.

Brief discussion stretched above and in Section 5 indicates that polar-

elastic liquid crystals and subfluids deserve detailed presentation in a separate

paper.

10. Some material symmetry groups for polar-elastic solids

Let us discuss simplified forms ofW for some particular cases of anisotropy.

Definition 7. Isotropic material. The polar-elastic solid is called isotropic

at x and B if there exists a reference placement Bκ, called undistorted, such

that the material symmetry group relative to Bκ takes the form

Gκ = Sκ ≡ {(P = O,O, 0) : O ∈ Orth} . (53)

This definition means that the strain energy density of the polar-elastic

isotropic solid satisfies the relation

W (E,Γ;B) = W
[
OEOT , (detO)OΓOT ; (detO)OBOT

]
, ∀O ∈ Orth.
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Scalar-valued isotropic functions of a few 2nd-order tensors can be ex-

pressed by so-called representation theorems in terms of joint invariants of

the tensorial arguments. To construct representation for W (E,Γ;B) as an

isotropic function of joint invariants of E, Γ, and B, we recall first the results

of Spencer (1965, 1971) on isotropic scalar-valued functions which are invari-

ant with respect to proper orthogonal tensors O ∈ Orth+. Then, we apply

additional restriction on the representations by requiring also invariance with

respect to mirror reflection, i.e. additionally considering O = −I.

Decomposing non-symmetric tensors E, Γ, and B into symmetric and

skew parts,

E = ES + EA, ES =
1

2
(E+ ET ), EA =

1

2
(E− ET ),

Γ = ΓS + ΓA, ΓS =
1

2
(Γ+ ΓT ), ΓA =

1

2
(Γ− ΓT ),

B = BS +BA, BS =
1

2
(B+BT ), BA =

1

2
(B−BT ),

we represent W as scalar-valued function of three symmetric and three skew

tensors,

W = W (ES,EA,ΓS,ΓA;BS,BA). (54)

Integrity basis for the proper orthogonal group is given by Spencer, see

Table 1 in Spencer (1965) or Table II in Spencer (1971). These tables are

too lengthy to be presented here. Number of members of integrity basis of

ES,EA,ΓS,ΓA,BS,BA is much larger than number of components of these

tensors. However, there are some polynomial dependencies between elements

of the integrity basis of three symmetric and three skew tensors. Hence the

number of functionally independent invariants can be reduced, but it is still

very large, see Zheng (1994).
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For proper orthogonal group there is no difference in transformations of

the axial and polar tensors. It is not the case if one considers transformations

using the full orthogonal group. Since ΓS,ΓA,BS,BA are axial tensors, not

all invariants listed in Spencer (1965, 1971) are absolute invariants under

orthogonal transformations, because some of them change sign under non-

proper orthogonal transformations. Following Spencer (1971), we call such

invariants relative invariants. Examples of relative invariants are trΓS, trΓ
3
S ,

trESΓS, trESBS, etc. This gives us the following property of W :

W (ES,EA,ΓS,ΓA;BS,BA) = W (ES,EA,−ΓS ,−ΓA;−BS,−BA). (55)

There are 119 invariants of non-symmetric tensors E, Γ, B presented in Ta-

ble A.1, see Appendix A. The strain energy density of polar-elastic isotropic

solids can be any scalar-valued function of these invariants which satisfy (55).

If we neglect explicit dependence of W on B, or assume that B = 0, then

W = W (E,Γ). Integrity basis of two non-symmentric tensors under the or-

thogonal group contains 39 members. Following Zheng (1994), Ramezani

et al. (2009) listed these invariants for the non-linear polar-elastic solids

and proposed corresponding constitutive equations. Let us note, however,

that not all 39 elements of this integrity basis are functionnally independent.

Kafadar and Eringen (1971) constructed the functional basis for two non-

symmetric tensors taking into account these functional dependencies. Ta-

ble A.1 contains the invariants of Ramezani et al. (2009) and of Kafadar and

Eringen (1971) as well as aditional joint invariants of E, Γ, and B. According

to Kafadar and Eringen (1971), as the isotropic scalar-valued function of two
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non-symmetric tensors E and Γ, W is expressible in terms of 15 invariants,

W = W (I1, I2, . . . , I15), (56)

where Ik are given by

I1 = trE, I2 = trE2, I3 = trE3,

I4 = trEET , I5 = trE2ET , I6 = trE2ET2,

I7 = trEΓ, I8 = trE2Γ, I9 = trEΓ2,

I10 = trΓ, I11 = trΓ2, I12 = trΓ3,

I13 = trΓΓT , I14 = trΓ2ΓT , I15 = trΓ2ΓT2.

Taking into account that W = W (E,Γ) is an even function with respect to

Γ, because in our case the group Sκ contains the reflection −I, W becomes

also an even function with respect to some invariants,

W (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15) (57)

= W (I1, I2, I3, I4, I5, I6,−I7,−I8, I9,−I10, I11,−I12, I13,−I14, I15).

Expanding W into the Taylor series relative to E and Γ, and keeping up

to quadratic terms, we obtain the approximate polynomial representation of

(57),

W =w0 + a1I1 + a2I10

+ b1I
2
1 + b2I1I10 + b3I

2
10 + b4I4 + b5I2 + b6I7 + b7I11 + b8I13

+O(max(‖E‖3, ‖Γ‖3)),

where w0, a1, a2, b1, . . . , b8 are material constants. Applying to the latter

expression the property (57), we finally obtain the following polynomial rep-

resentation of W up to quadratic terms of E and Γ:

W = w0 + a1I1 + b1I
2
1 + b3I

2
10 + b4I4 + b5I2 + b7I11 + b8I13. (58)
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We may also consider the representation of W as a sum of two scalar

functions each depending on one strain measure,

W = W1(E) +W2(Γ). (59)

The form (59) was used for example by Ramezani et al. (2009) in order to

generalize classical neo-Hookean and Moony-Rivlin models to polar-elastic

solids. As in Section 7, one can use here the representation theorem for

isotropic scalar-valued function of one non-symmetric tensor given by Smith

and Smith (1971). This leads to the following representation of W :

W = W̃1(I1, . . . , I6) + W̃2(I10, . . . , I15), (60)

where W̃2 is such that

W̃2(I10, I11, I12, I13, I14, I15) = W̃2(−I10, I11,−I12, I13,−I14, I15). (61)

Expanding (60) with (61) into the Taylor series and keeping up to quadratic

terms in E and Γ, W takes the form (59) with

W1 = w0 + a1I1 + b1I
2
1 + b4I4 + b5I2, W2 = b3I

2
10 + b7I11 + b8I13.

Definition 8. Hemitropic material. The polar-elastic solid is called

hemitropic at x and B if there exists a reference placement Bκ, called undis-

torted, such that the material symmetry group relative to Bκ takes the form

Gκ = S
+
κ ≡

{
(P = O,O, 0) : O ∈ Orth+

}
. (62)

37



The strain energy density of the hemitropic polar-elastic solid satisfies

the relation

W (E,Γ;B) = W
(
OEOT ,OΓOT ;OBOT

)
, ∀O ∈ Orth+. (63)

The hemitropic polar-elastic solid is insensitive to change of orientation

of the space. In case of reduced strain energy density W = W (E,Γ) the

representation of W is given by (56), but the property (57) does not hold, in

general. Obviously, the polar-elastic isotropic solid is also hemitropic.

Definitions (53) and (63) are somewhat similar to the corresponding def-

inition of the isotropic polar-elastic solid proposed by Eringen and Kafadar

(1976), who required

W (E,Γ;Jκ) = W
(
OEOT ,OΓOT ;OJκO

T
)
, ∀O ∈ Orth. (64)

However, properties (57) or (61) do not follow from (64) and additionally

dependence of W upon Jκ is disregarded here.

Definition 9. Orthotropic material. The polar-elastic solid is called

orthotropic at x and B if the material symmetry group for some reference

placement Bκ takes the form

Gκ = {(P = O,O, 0)} :

O = {I, −I, 2e1 ⊗ e1 − I, 2e2 ⊗ e2 − I, 2e3 ⊗ e3 − I},
(65)

where O are orthogonal tensors performing mirror reflections and rotations

of 180◦ about three orthonormal vectors ek.

Obviously, the polar-elastic isotropic solid is also orthotropic. Thus, all

invariants in Tables A.1 can be used for representation of the strain energy
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density of the polar-elastic orthotropic solid. There are 60 additional absolute

and relative invariants responsible for orthotropic properties of polar-elastic

solids, so that the total number of invariants becomes 179.

Definition 10. Cubic symmetry. The polar-elastic solid is called cubic-

symmetric at x and B if the material symmetry group for some reference

placement Bκ takes the form

Gκ = {(P = O,O, 0)} :

O = {I, −I, e1 ⊗ e1 ∓ e1 × I, e2 ⊗ e2 ∓ e2 × I, e3 ⊗ e3 ∓ e3 × I},

(66)

where O are orthogonal tensors performing mirror reflections and rotations

of 90◦ about three orthonormal vectors ek.

Definition 11. Transversely isotropic material. The polar-elastic

solid is called transversely isotropic at x and B with respect to a direction

described by e if the material symmetry group for some reference placement

Bκ takes the form

Gκ = {(P = O,O, 0)} : O = {I, −I, O(ϕe), ∀ ϕ}, (67)

where O(ϕe) = (I − e ⊗ e) cosϕ + e ⊗ e + e × I sinϕ is the rotation tensor

with the rotation angle ϕ about the unit vector e.

There are 167 absolute and relative invariants for polar-elastic trans-

versely isotropic solids.
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11. Physically linear polar-elastic solids

Let us consider the polar-elastic strain energy density as a quadratic func-

tion of E and Γ,

W =
1

2
E : CCC : E+ E : BBB : Γ+

1

2
Γ : DDD : Γ, (68)

where CCC, BBB, and DDD are 4th-order tensors of elastic moduli of the polar-elastic

solid. Components of tensors CCC and DDD have symmetry properties

Cijmn = Cmnij, Dijmn = Dmnij.

With (68) corresponding referential stress measures S and K follow from (8)

to be

S = CCC : E+BBB : Γ, K = E : BBB+DDD : Γ.

The model based on (68) can be called the physically linear polar-elastic

solid. In this case tensorsCCC, BBB, and DDD coincide with the tangent stiffness ten-

sors introduced by Ramezani et al. (2009). Since E and Γ are non-symmetric

tensors, W contains 2 ·45+81 = 171 independent material constants, in gen-

eral. In what follows we find restrictions for CCC, BBB, and DDD corresponding to

some particular material symmetry groups.

1. Mirror reflection. Let Sκ contain two elements, Sκ = {I,−I}.

Substituting −I into (51) we obtain

1

2
E : CCC : E+ E : BBB : Γ +

1

2
Γ : DDD : Γ =

1

2
E : CCC : E−E : BBB : Γ +

1

2
Γ : DDD : Γ,

from which it follows that either BBB = OOO, where OOO is the 4th-order zeroth

tensor, or as has been shown above (Case 1 in Section 5), W is an even
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function of E and Γ. In this case one has 90 independent scalar elastic

moduli.

In what follows we always assume that Sκ contains −I with only one

exception for the hemitropic solid. Hence, W , S, and K take the reduced

form

W =
1

2
E : CCC : E+

1

2
Γ : DDD : Γ, S = CCC : E, K = DDD : Γ. (69)

In the tensor base comprised of directors ha the tensors CCC and DDD can be

expressed as symmetric 9× 9 matrices. For example, the matrix of CCC is

[CCC] =




C1111 C1122 C1133 C1123 C1131 C1112 C1132 C1113 C1121

C2222 C2233 C2223 C2231 C2212 C2232 C2213 C2221

C3333 C3323 C3331 C3312 C3332 C3313 C3321

C2323 C2331 C2312 C2332 C2313 C2321

C3131 C3112 C3132 C3113 C3121

C1212 C1232 C1213 C1221

SYM C3232 C3213 C3221

C1313 C1321

C2121




,

Since [DDD] has the same structure as [CCC], in what follows we restrict ourselves

to representation of [CCC].

2. Monoclinic symmetry. The corresponding material symmetry

group Sκ consists of mirror reflection and rotations of 180◦ about unit vector

e: O = {I,−I, 2e⊗ e− I}. Using e as coordinate vector of the 3rd axis, we

obtain that matrices [CCC] and [DDD] should have some zero elements, so that [CCC]
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takes the form

[CCC] =




C1111 C1122 C1133 0 0 C1112 0 0 C1121

C2222 C2233 0 0 C2212 0 0 C2221

C3333 0 0 C3312 0 0 C3321

C2323 C2331 0 C2332 C2313 0

C3131 0 C3132 C3113 0

C1212 0 0 C1221

SYM C3232 C3213 0

C1313 0

C2121




.

The polar-elastic physically linear monoclinic solid is described by 50 inde-

pendent elastic moduli.

3. Orthotropic symmetry. In this case we have 30 independent elastic

moduli. The corresponding matrix [CCC] is given by

[CCC] =




C1111 C1122 C1133 0 0 0 0 0 0

C2222 C2233 0 0 0 0 0 0

C3333 0 0 0 0 0 0

C2323 0 0 C2332 0 0

C3131 0 0 C3113 0

C1212 0 0 C1221

SYM C3232 0 0

C1313 0

C2121




.

4. Rotations by 90◦. Additionally to the previous case, let us require

invariance of W under rotations of 90◦ about the unit vector e3: O = {e3 ⊗

42



e3 ∓ e3 × I}. As a result, the solid is described by 18 independent elastic

moduli and [CCC] is given by

[CCC] =




C1111 C1122 C1133 0 0 0 0 0 0

C1111 C1133 0 0 0 0 0 0

C3333 0 0 0 0 0 0

C2323 0 0 C2332 0 0

C3131 0 0 C2332 0

C1212 0 0 C1221

SYM C3131 0 0

C2323 0

C1212




.

5. Cubic symmetry. The material symmetry group Gκ related to

cubic symmetry additionally contains rotations of 90◦ about all orthogonal

axes with unit vectors ek, k = 1, 2, 3. Hence, the matrix [CCC] becomes

[CCC] =




C1111 C1122 C1122 0 0 0 0 0 0

C1111 C1122 0 0 0 0 0 0

C1111 0 0 0 0 0 0

C1212 0 0 C1221 0 0

C1212 0 0 C1221 0

C1212 0 0 C1221

SYM C1212 0 0

C1212 0

C1212




.

For the physically linear polar-elastic solid with cubic symmetry we have

eight independent elastic moduli.
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6. Isotropy. In this case one can use representation (56) with (57).

Taking into account only quadratic terms in E and Γ we find that

2W = α1I
2
1 + α2I2 + α3I4 + β1I

2
10 + β2I11 + β3I13, (70)

where αa, βa, a = 1, 2, 3 are independent elastic moduli. The corresponding

tensors CCC and DDD are

CCC =α1I⊗ I+ α2ha ⊗ I⊗ ha + α3ha ⊗ hb ⊗ ha ⊗ hb, (71)

DDD =β1I⊗ I+ β2ha ⊗ I⊗ ha + β3ha ⊗ hb ⊗ ha ⊗ hb, (72)

where ha, a = 1, 2, 3 is now any Cartesian base.

The strain energy density of the physically linear polar-elastic isotropic

solid contains only six scalar elastic moduli. This constitutive relation cor-

responds to the linear isotropic elastic Cosserat continuum widely used in

the literature, see for example Nowacki (1986); Eringen (1999). For exam-

ple, in terms of material constants used by Eringen (1999), formulas 5.3.1,

our constants αa, βa are expressed as follows: α1 = λ, α2 = µ, α3 =

µ+ κ, β1 = α, β2 = β, β3 = γ.

Within linear micropolar elasticity the explicit structure of tensors CCC and

DDD was presented by Zheng and Spencer (1993) for 14 symmetry groups.

7. Hemitropy. For the polar-elastic hemitropic solid the material sym-

metry group contains only rotation tensors, see (62). Hence BBB 6= OOO, in

general. Tensors CCC and DDD take here the form (71) while BBB is given by

BBB =γ1I⊗ I+ γ2ha ⊗ I⊗ ha + γ3ha ⊗ hb ⊗ ha ⊗ hb,

where γa, a = 1, 2, 3, are additional independent scalar elastic moduli. As a

result, for the polar-elastic physically linear hemitropic solid the strain energy
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density contains nine independent scalar elastic moduli. In linear micropolar

elasticity this representation is given for example in Dyszlewicz (2004).

12. Physically linear polar-elastic solids which elasticity tensors

depend on the microstructure curvature tensor

Let us now consider the polar-elastic strain energy density as a quadratic

function (68) of E and Γ,

W =
1

2
E : CCC(B) : E+ E : BBB(B) : Γ+

1

2
Γ : DDD(B) : Γ. (73)

But now CCC, BBB, and DDD are 4th-order tensors of elastic moduli assumed to

depend on B. The tensor B plays here the role of structural tensor used

in representation of anisotropic tensor functions, see for example Boehler

(1987) and Zheng (1994). Dependence of elasticity tensors on B changes

significantly representation of (73) and the number of independent elastic

moduli.

In what follows, for simplicity, we restrict ourselves to polar-elastic hemi-

tropic and isotropic solids. Using Table A.1, we obtain the following 58

quadratic invariants of E and Γ:

J1 = tr2ES, J2 = trE2
S, J3 = trE2

A,

J4 = tr2ΓS, J5 = trΓ2
S, J6 = trΓ2

A,

J7 = trESΓS,

J8 = tr2ESBS, J9 = trE2
SBS,

J10 = tr2ESB
2
S, J11 = trE2

SB
2
S,

J12 = tr2ΓSBS, J13 = trΓ2
SBS,

(74)
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J14 = tr2ΓSB
2
S, J15 = trΓ2

SB
2
S, J16 = trESΓSBS,

J17 = trEAΓA, J18 = tr2EABA,

J19 = tr2ΓABA, J20 = trEAΓABA,

J21 = tr2ESB
2
A, J22 = trE2

SB
2
A,

J23 = tr2ΓSB
2
A, J24 = trΓ2

SB
2
A,

J25 = trBSΓ
2
A, J26 = trB2

SΓ
2
A,

J27 = trBSE
2
A, J28 = trB2

SE
2
A,

J29 = trESΓSBA, J30 = trESBSEA,

J31 = trESBSΓA, J32 = trESB
2
SΓA,

J33 = tr2ESBSBA, J34 = trE2
SBSBA,

J35 = tr2ESB
2
SBA, J36 = tr2ESB

2
ABSBA,

J37 = trΓSBSEA, J38 = trΓSBSΓA, J39 = trΓSB
2
SΓA,

J40 = tr2ΓSBSBA, J41 = trΓ2
SBSBA,

J42 = tr2ΓSB
2
SBA, J43 = tr2ΓSB

2
ABSBA,

J44 = trESEABA, J45 = trESEAB
2
A,

J46 = trESΓABA, J47 = trESΓAB
2
A,

J48 = trΓSEABA, J49 = trΓSEAB
2
A,

J50 = trΓSΓABA, J51 = trΓSΓAB
2
A, J52 = trBSEAΓA,

J53 = tr2BSEABA, J54 = trBSE
2
ABA, J55 = tr2BSEAB

2
A,

J56 = tr2BSΓABA, J57 = trBSΓ
2
ABA J58 = tr2BSΓAB

2
A.

The strain energy density of linear polar-elastic hemitropic solid is now the

sum of 58 terms,

W =
58∑

i=1

ciJi, (75)

where ci are functions of invariants of B, in general.
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Since underlined terms in (74) are relative invariants, which change signs

under change of orientation of the space, for the polar-elastic isotropic solid

the strain energy density takes the form (75), but now with c7 = c9 = c13 =

c25 = c27 = c30 = c32 = c44 = c47 = 0.

One can derive in the same manner quadratic strain energy densities of

polar-elastic orthotropic and transversely isotropic solids. Let us however

note that when one takes into account explicit dependence of elasticity ten-

sors on B one obtains a huge number of material parameters even when one

assumes that ci are constant elastic moduli.

13. Conclusions

We have defined anew the material symmetry group Gκ of the non-linear

polar continuum. The group generalizes the one proposed by Eringen and

Kafadar (1976) by introducing the undeformed microstructure curvature ten-

sor B instead of the microinertia tensor Jκ as well as by taking into account

that B and the wryness tensor Γ are axial tensors which change signs under

inversion transformation of 3D space. Our group Gκ consists of an ordered

triple of tensors which make the strain energy density invariant under change

of reference placement. In terms of members of Gκ polar-elastic fluids, solids,

liquid crystals, and subfluids have conveniently been defined. Reduced forms

of constitutive equations for non-linear and physically linear polar-elastic

solids are given for several particular material symmetry groups.

In many cases discussed here even the reduced constitutive equations of

polar-elastic solids still involve a large number of material constants, which

should be experimentally or theoretically identified. Difficulties in identifica-
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tions of material constants pose a serious challenge for wider application of

polar-elastic solids in science and technology.
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Appendix A. Invariants in strain energy density

Using the representations of Zheng (1994), for isotropic polar-elastic solids

in Table A.1 we present the list of 119 irreducible invariants of E, Γ, and B

expressed in terms of their symmetric and skew-symmetric parts.

Table A.1: Invariants in W

Agencies Invariants

ES trES trE2
S trE3

S

EA trE2
A

ES, EA trESE
2
A trE2

SE
2
A trE2

SE
2
AESEA

ΓS trΓS trΓ2
S trΓ3

S

ΓA trΓ2
A

ΓS, ΓA trΓSΓ
2
A trΓ2

SΓ
2
A trΓ2

SΓ
2
AΓSΓA

BS trBS trB2
S trB3

S

BA trB2
A

BS, BA trBSB
2
A trB2

SB
2
A trB2

SB
2
ABSBA

ES, ΓS trESΓS trE2
SΓS trESΓ

2
S trE2

SΓ
2
S

ES, BS trESBS trE2
SBS trESB

2
S trE2

SB
2
S

ΓS, BS trΓSBS trΓ2
SBS trΓSB

2
S trΓ2

SB
2
S

ES, ΓS, BS trESΓSBS

EA, ΓA trEAΓA

EA, BA trEABA

ΓA, BA trΓABA

EA, ΓA, BA trEAΓABA

ES, ΓA trESΓ
2
A trE2

SΓ
2
A trE2

SΓ
2
AESΓA
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Table A.1: Invariants in W

ES, BA trESB
2
A trE2

SB
2
A trE2

SB
2
AESBA

ΓS, EA trΓSE
2
A trΓ2

SE
2
A trΓ2

SE
2
AΓSEA

ΓS, BA trΓSB
2
A trΓ2

SB
2
A trΓ2

SB
2
AΓSBA

BS, ΓA trBSΓ
2
A trB2

SΓ
2
A trE2

SΓ
2
ABSΓA

BS, EA trBSE
2
A trB2

SE
2
A trB2

SE
2
ABSEA

ES, ΓS, EA trESΓSEA trE2
SΓSEA trESΓ

2
SEA trESE

2
AΓSEA

ES, ΓS, ΓA trESΓSΓA trE2
SΓSΓA trESΓ

2
SΓA trESΓ

2
AΓSΓA

ES, ΓS, BA trESΓSBA trE2
SΓSBA trESΓ

2
SBA trESB

2
AΓSBA

ES, BS, EA trESBSEA trE2
SBSEA trESB

2
SEA trESE

2
ABSEA

ES, BS, ΓA trESBSΓA trE2
SBSΓA trESB

2
SΓA trESΓ

2
ABSΓA

ES, BS, BA trESBSBA trE2
SBSBA trESB

2
SBA trESB

2
ABSBA

ΓS, BS, EA trΓSBSEA trΓ2
SBSEA trΓSB

2
SEA trΓSE

2
ABSEA

ΓS, BS, ΓA trΓSBSΓA trΓ2
SBSΓA trΓSB

2
SΓA trΓSΓ

2
ABSΓA

ΓS, BS, BA trΓSBSBA trΓ2
SBSBA trΓSB

2
SBA trΓSB

2
ABSBA

ES, EA, ΓA trESEAΓA trESE
2
AΓA trESEAΓ

2
A

ES, EA, BA trESEABA trESE
2
ABA trESEAB

2
A

ES, ΓA, BA trESΓABA trESΓ
2
ABA trESΓAB

2
A

ΓS, EA, ΓA trΓSEAΓA trΓSE
2
AΓA trΓSEAΓ

2
A

ΓS, EA, BA trΓSEABA trΓSE
2
ABA trΓSEAB

2
A

ΓS, ΓA, BA trΓSΓABA trΓSΓ
2
ABA trΓSΓAB

2
A

BS, EA, ΓA trBSEAΓA trBSE
2
AΓA trBSEAΓ

2
A

BS, EA, BA trBSEABA trBSE
2
ABA trBSEAB

2
A

BS, ΓA, BA trBSΓABA trBSΓ
2
ABA trBSΓAB

2
A
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