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Definition

A phase transition is the transformation of a thermodynaystem from one state
of matter to another. In shell structures it consists prityaf a diffusionless dis-
placive change of the material lattice. Such phase tramsgirocess can usually
be induced by changing the temperature or by applying amredtstress. Exper-
iments indicate that the new solid phase nucleates in naegiens across which
large changes occur in some material properties. Thuswbghase shell can
be regarded as a deformable material surface consistingmfrtaterial phases
divided by a movable non-material surface curve.

Overview

The interest in thin-walled structures undergoing phamasitions (PT) grows re-
cently from their prospective applications in engineerigs examples of such
structures martensitic films and biological membranes @wrdnsidered. The
stress- and temperature-induced PT are widely observéihiwialled structures
made of superelastic shape memory alloys (SMA) and shapeomgmlymers,
such as NiTi, NiMnGa, AgCd, AuCd, CuAINi, polyurethane, ,etehich are
used in various microelectromechanical systems (MEMSh plates, strips, and
tubes made of SMA are used as working elements of such MEMScaspumps,
sensors, actuators, microengines etc., see [1, 2].

The major known theories of PT in deformable solids are eeldb three-
dimensional (3D) thermoelasticity, see [1, 3,4] and refees given therein. Sim-
ple two-dimensional (2D) mechanical models of PT in thin §ilare presented
in[1,2].

The non-linear resultant equilibrium conditions of elagthells undergoing
PT of martensitic type were formulated in [5] within the ritant dynamically
exact and kinematically unique theory of shells presemel®,i7]. These con-
ditions were extended in [8] by taking into account the lieasion energy of
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the interface and in [9, 10] to thermoviscoelastic shellg. @alogy to the 3D
case, the two-phase shell was regarded in [5,8-10] as andaiibe surface con-
sisting of two material phases divided by a sufficiently sthasurface singular
curve (phase interface). Several experiments on thinedghlates, strips, and
tubes demonstrate how the macroscopic domain of the neve pbiass, show its
further evolution during loading and annihilation aftedaading. In the case of
plates and strips the new phase forms often as a few bandssabeostrip. In the
case of tubes the new phase may also appear as helical atragdibands which
width and shape depend on geometric and material paramatgirsy loads and
temperature. Other examples of PT in thin-walled strustare tents and tunnels
appearing in martensitic thin films, see [11].

Here we present the resultant 2D thermomechanics of shelksrgoing diffu-
sionless, displacive phase transitions of martensitie tyfthe shell material and
formulate the corresponding non-linear boundary-valwdlem (BVP).

Kinematics of resultant theory of shells

Kinematics of the general resultant 2D theory of shells cidies with the kine-
matics of 2D Cosserat continuum, see [6, 7] for details. énuhdeformed place-
ment the shell is represented by the base sul¥aeéth the position vectox(69)
and the unit normal vectar(6?), where{89}, a = 1,2, are surface curvilinear
coordinates, see Fig. 1. In the deformed placement the shedpresented by
the surfaceN = x(M) with the position vectoy = x(x) and the attached three
directors(dq,d). Deformation of the shell is described by the relations

y(X,t) = X(X> = X+U(X7t>7 da(xvt) = Q(th)X,Ch d(X,t) = Q(X,t)ﬂ(X), (l)

wheret is a time-like scalar parametey,the deformation functiony the trans-
lation vector ofM, andQ € SO(3) the proper orthogonal tensor representing the
work-averaged gross rotation of the shell cross sectiams their undeformed
shapes described lx 4,n), where(.) 4 denotes partial differentiation with re-
spect to8?. Thenu = U is the translation velocity an@ = ax(QQ" ) the angular
velocity vectors, where gx..) is the axial vector associated with the skew tensor
(...), and(.) denotes the derivative with respectto

Within the framework of resultant theory of shells consetkhere, the two
strain measures corresponding to the deformations (1yeedb, 7]:

1 .
E=go0a", K=x2a", £a=yq—du #a=5dxQeQ'd; (2)
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Figure 1: Kinematics of a two-phase shell

where &%, n) and "), i = 1,2,3, are bases reciprocal to the baseg,n) and
(dq,d), respectively, and is the tensor product. In (2) and below quantities with
repeated upper and lower Greek or Latin indices are summedrange of the
indices.

We assume that in the deformed placement the shell basesitfeonsists
of different material phases occupying different completagy subregions sepa-
rated by the curvilinear phase interfddec N, see Fig. 1. For a piecewise differ-
entiable mapping we can introduce oM a singular image curvé€ = x (D)
with the position vectokc. We call a priori unknown curveld andC the phase
interfaces in the deformed and reference placements,atdgglg. Let us note that
Xc andyp are kinematically independent arandQ. This means thdd andC are
non-material surface curves, in general. For the desonf quasistatic motion
of C on M we introduce the phase interface velodity= xc - v, wherev € TiM is
the unit external normal vector @ andv -n = 0, while TyM is the tangent space
to M atx. Hencey (or u), Q, andxc constitute the basic kinematic unknowns of
the non-linear resultant theory of shells undergoing PT.
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Integral balance laws and entropy inequality

The resultant 2D equations of the non-linear theory of shedh be derived by
direct through-the-thickness integration of 3D balaneeslaf linear and angular
momentum as well as of 3D energy balance and entropy indga@icontinuum
thermodynamics, see [5-7, 10, 12]. In quasi-static probldmcussed here the
global equilibrium conditions require the total force antht torque of all loads
acting upon any paf C M\C to vanish,

F=0, M=0, 3)
where
Fz//fda—i- / ny ds-+ / n*ds,
P JP\OM; JdPNIM¢

M E//(c+y><f)da+ / (my+yxny)ds+ / (m*+yxn*)ds
P IP\OM¢ IPNIM¢

Heref andc are the resultant surface force and couple vector fieldsgotiN\D,
but measured per unit arealdf\C. Similarly,n, andm, are the internal contact
stress and couple resultant vectors defined at an arbitdggaR of R= x(P),
while n* and m* are the external boundary resultant force and couple \&ctor
applied along the palNs of N = x (M), respectively. The latter four vectors are
measured per unit length of the corresponding undeformgdsatP and dMy,
respectively.

According to the Cauchy postulate, the contact veatgrandm, can be rep-
resented through the respective internal surface strelssoauple resultant tensors
N andM byn, = Nv, m, =Mv. The tensoraN, M € E® TyM defined orM\C
are the resultant surface stress measures of the Piolarggpectively, andt is
the 3D vector space.

In the literature several formulations of shell thermodyies are known,
where various surface fields responsible for temperatugeuaed and several
forms of the first and second laws of thermodynamics for stegk discussed.

The resultant local energy balance and entropy inequalitthie shell can also
be derived by direct through-the-thickness integratiotihefglobal 3D balance of
energy and entropy inequality, see [10,12, 13].

The referential form of energy balanEhe 1% Law of thermodynamics) of an
arbitrary partP of the shell base surfadd\C can be described in analogy to the
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3D energy balance, see [14], by the resultant quantities as
K+E=A+Q, (4)

where K is the resultant kinetic energy, E is the resultatdrival energy, A is
the resultant mechanical power, and Q is the resultantrigeefior the quasistatic
process discussed hdfe= 0, while E, A, and Q can be represented on Bny
M\C by

EE//peda, AE//(f~u+c~w)da+ / (ny-V+my-w)ds
P P

0P\OM;

+ / (n*-v+m" - w)ds,
JIPNIM¢

Qz//prda+ / qu ds—+ / q“ds,
P

JdP\oM, JPNIM;,

where p is the resultant surface mass density in undeformed platgmdhe
resultant internal surface strain energy density per undeformed surface mass,
andr the internal resultant surface heat supply minus heat filnxesgh the upper
and lower shell faces, all per unit masdwfq, andq* are the surface heat fluxes
throughdP and dMy, respectively. The contact heat flgy can be represented
through the surface heat flux vectpby the formulag, =q- v.

The referential form of entropy inequalitffhe 2" Law of thermodynamics)
of an arbitrary parP of the shell base surfadd\C follows from the Clausius-
Duhem inequality [14],

H>J, (5)

where in our case H is the resultant shell entropy and J thitaes entropy sup-
ply. For any parP C M\C these fields are defined as follows:

Hzﬂ@m@Jzﬂbmﬁ /jmw /jw&
P P JdP\oM, JdPNIM;,

wheren is the resultant internal entropy densifythe resultant entropy supply
minus entropy fluxes through the upper and lower shell faoet) per unit un-
deformed surface mass, ang and j* are the resultant entropy fluxes through
the internaldP and externabMy, boundary contours, respectively. The figld
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can be expressed through the referential entropy flux v@etdgM according to
Jv=1]-V.

The relations between the resultant quantities and thead@Dterparts can be
derived by use of the through-the-thickness integrati@mtg@dure applied to the
3D fields, [10, 12].

OnM we introduce the mean referential temperatfife,t) > 0 and the tem-
perature deviatiog (x,t) by

1 1/1 1 1/1 1
o=2(ara) *=n(ea) ©

where 8. > 0 are temperatures of the upper and lower shell fa¢éstaken to
be equal to those prevailing in the adjoining external medialh is the shell
thickness.

Unlike in the 3D entropy inequality [14], the resultant swoé entropy supply
] and flux vectol take now the extended forms

o1 o1
J_Er_d)S? J_éq_qbsv (7)

wheres is the resultant extra heat supply amis the resultant extra heat flux
vector.

Local shell equations and constitutive relations

From the integral 2D equilibrium equations (3), the energlabce equation (4)
and the entropy inequality (5), after appropriate tramattrons follow the local
Lagrangian equilibrium conditions

DivN+f =0, DivM+ax(NF' —FNT)+c=0 in M\C, ®)
Nv—-n*=0, Mv—-m*"=0 alongdMs,

the local thermomechanic balances of energy
pé=pr—Divg+NeE°+MeK® in M\C,

g-v—q =0 alongdM, )
and the local resultant entropy inequalities
) r 1 _. : 1 .
_ _ _ = _ .S——qa-a>
pn p(e ¢s)+6D|vq ¢Divs+h-s 92q g>0 in M\C,
(10)

q>|< * qV
o' - (g—qbsv) >0 along M,
g=Gradd, h=Gradp, g,hecTM,

6



of the non-linear resultant shell thermomechanics. WereGrady =y , ® a” is
the surface deformation gradiehte E® TyM, DivN =N 4 -a” means the surface
divergence oN, (-)° = Q%[QT(-)] is the co-rotational time derivative, and the
scalar product of two tensofg B € E® TyM is defined byAeB =tr (AT B).

The fieldsu, Q, 8, ¢ constitute the basic thermo-kinematic independent vari-
ables of the shell boundary value problenMRC, while the fielddN,M, &, n, x, q,
ands have to be specified by the constitutive equations.

The constitutive equations for thermoelastic shells thkefdrm [10],

LI"E 5—9’7 _¢X = LI"(E7K797¢)7
N:PW,E, M :PW,K, ’7:—111,9, X:_w,(ﬁ? (11)
q:q<E7K797g7¢7h)7 SZS<E7K79797¢7h)7

where explicit expressions of the free energyas well as forq and s follow
from requirements of material frame-indifference and @& tnposed material
symmetry.

For thermoelastic shells the local energy balance equéjoreduces to

p(6n+¢x)=pr—Divq, (12)
while the local entropy inequality (10) results in the egumat
—pX +pOBs—6ODivs=cp, c>0, (13)

where the new constitutive functianis introduced, and the reduced dissipation
inequality becomes .
0

Both relations (12) and (13) play the role of thermocondiifgtiequations in
the theory of thermoelastic shells. The two equations acessary to determine
two fields: the surface mean temperatér@and the surface temperature devia-
tion ¢.

The thermoelastic constitutive equations (11) can be el@no the thermo-
viscoelastic ones which are important for example for dpson of shells made
of shape memory polymers. A simple example of thermovisstig shells is
based on the Kelvin-Voigt type model. In this case the 2Dsstraeasurel and
M can be decomposed into the equilibrium and dissipative part

N=Ng+Np, M=Mg+Mp,
NE:NE(E7K76797¢7h)7 ME:‘ME(E7K79397¢7h>7
Np = Np(E,K,E®,K",6,9,0,0,¢,h,9,h),

Mp = Mp(E,K,E°,K",6,0,6,9,¢,h,¢.h),

g-g—6h-s>0. (14)

(15)
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where
ND(E,K,0,0,9,g,0,0,¢,h,0,0) = 07 MD(E,K,0,0,9,g,0,0,¢,h,0,0) =0.

In the case of Kelvin-Voigt type model the 2D free energy dgng and the
equilibrium surface stress measuids, Mg are the same as in the case of ther-
moelastic shells, whil&p, Mp, g, ands may depend on the full list of argu-
ments including the temperature deviatipnits surface gradient and their time-
like derivatives. The reduced 2D dissipation inequaliketathe form

1
NDoE°+MDoK°—ég~q—6h-szo, (16)
which puts a restriction placed on allowable forms of thepoese functions for
Np andM D-

The simplest cases of the constitutive equationgjfands satisfying (14) or
(16) may be taken similar to the referential Fourier law in@tinuum thermo-
dynamics,

q=-¢g, s=-c.h, (17)

wherec is the positive heat conductivity of the shell in tangentimection and
c, is the positive heat conductivity of the shell in the tramseenormal direction.

Continuity conditions and kinetic equation

When a phase transition process takes place in the shelg Belds defined on
M can be discontinuous acraSsin particular, the curvilinear phase interfaces in
shells can be either coherent or incoherent in rotatiores[e For the coherent
interface both fieldy (or u) andQ are supposed to be continuousCaand the
kinematic compatibility conditions alor@ become

[v]+V[Fv] =0, (18)
[w] +V[Kv] =0, (19)
where the expressidp..] = (...)s—(...)a means the jump &2.

The phase interface is incoherent in rotations if on(pr u) is continuous at
C butQ may be discontinuous. In this case the condition (18) iksstisfied, but
(19) may be violated, see [5].



Assuming]ly]] = 0 alongC, from (3) we obtain the local Lagrangian dynamic
compatibility conditions [7],

[Nv]=0, [Mv]=0, (20)

which are just the local balances of forces and coupl€s iatthe case of qua-
sistatic deformations.

In PT problems of shells the mean referential temperafuaiad its deviation
¢ are continuous on the wholé,

[6] =0, [¢]=0 alongC. (21)

The local jumps of energy balance and of entropy inequalap@gC corre-
sponding to (4) and (5) are [10],

Vipe]l+[Nv-v]}+[Mv- o] —[q-v] =0, (22)

Vipn] - | ga-v]| +es vi= ez o @3)

whereég > 0 denotes the surface entropy production alGng
To the second thermoconductivity equation (13) there spads the jump
relation alongC,

V2 lox] - [s-v] = 0. (24)
From (18)—(24) we obtain the compatibility condition in floem
682 =V {[oy] ~v-NT[FV]—v-MT[Kv]} alongC  (25)
for the coherent phase interface, and
6% =V {[py]—v-NT[Fv]} alongC (26)

for the phase interface incoherent in rotations.

The entropy productiomSC2 remains always non-negative for all thermome-
chanical processes. This allows us to postulate the kieefiation, describing
motion of the phase interface for all quasistatic procesedke form

V=-F(v-[C]v), (27)

whereF is the non-negative definite kinetic function depending fwa jump of
CatC, i.e. F(¢) >0 for ¢ > 0, whereC = C. = py/A —NTF — MK for the
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coherent interface and = C; = pWA — NTF for the one incoherent in rotations,
A=I1—-n®n, andl is the 3D identity tensor.
Following [3, 4] we can take the kinetic functi¢f(¢) in the form

k(¢ — <o)
Hec-w @
F(¢)=41 O y ) —G < ¢ < Q, (28)
¢+ G
ecrq =@

Here ¢y describes the effects associated with nucleation of the pleage and
action of the surface tension, see [8]js a parameter describing limit value of
the phase transition velocity [4], akds a positive kinetic factor. Equation (27)
with (28) can be considered as the special constitutivetexudescribing motion
of phase interfaces in shells.

Summarising, in the case of finite deformations the noralinbermome-
chanic BVP for thermoelastic or thermoviscoelastic shelldergoing phase tran-
sition consists of:

¢ the equilibrium equations (8supplemented by appropriate static and kine-
matic boundary conditions fad, M, u, andQ,

¢ the thermoconductivity equations (12) and (13) with appedp boundary
conditions for@ and¢,

e the compatibility conditions (20), (21), and (24) along thierfaceC,
¢ the kinetic equation (27) alorg,
all supplemented with proper constitutive equationsNorM, &, n, x, g, and

s, see [10]. The kinetic equation (27) is used to find positibthe curvilinear
interfaceC in its quasistatic motion.
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