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Abstract We discuss the material symmetry group of the polar-elastic continuum
and related consistently simplified constitutive equations. Following [3] we extent
the definition of the group proposed by Eringen and Kafadar [6] by taking into ac-
count the microstructure curvature tensor as well as different transformation prop-
erties of polar and axial tensors. Our material symmetry group consists of ordered
triples of tensors which make the strain energy density of the polar-elastic contin-
uum invariant under change of the reference placement. Within the polar-elastic
solids we discuss the isotropic, hemitropic, orthotropic, transversely isotropic and
cubic-symmetric materials and give explicitly the consistently reduced representa-
tions of the strain energy density.

1 Introduction

Mechanics of Micropolar Continua (also called Cosserat Continua or Polar Con-
tinua) was first summarized in 1909 by the Cosserat brothers in their centurial
book [1] but without consideration of the constitutive equations. In the books by
Eringen [4, 5], Nowacki [8] and Eremeyev et al. [2] various constitutive equations
of the micropolar elastic continuum were considered and widely discussed. The
Cosserat continuum model is frequently used for description of complex media such
as composites, foams, cellular solids, lattices, masonries, particle assemblies, mag-

Victor A. Eremeyev
Faculty of Mechanical Engineering, Otto-von-Guericke-University, 39106 Magdeburg, Germany
and South Scientific Center of RASci & South Federal University, Milchakova St. 8a, 344090
Rostov on Don, Russia
e-mail: eremeyev.victor@gmail.com, victor.eremeyev@ovgu.de

Wojciech Pietraszkiewicz
Institute of Fluid-Flow Machinery, PASci, ul. Gen. J. Fiszera 14, 80-952 Gdańsk, Poland
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netic rheological fluids, liquid crystals, etc. For characterizations of material be-
haviour of micropolar continua a great role plays the material symmetry group. The
group for the non-linear micropolar continuum was first characterized by Eringen
and Kafadar [6]. They discussed all density-preserving deformations and all micro-
rotations of the reference placement of the micropolar continuum that cannot be
experimentally detected. In terms of members of the group definitions of the simple
micropolar solid and the simple micropolar fluid were given.

In [3] we extended the definition of the material symmetry group proposed by
Eringen and Kafadar [6]. We considered the polar-elastic material characterized by
the strain energy density W and introduced the following modifications:

1. At each material point the strain energy density W , satisfying the principle of ma-
terial frame-indifference, depends explicitly not only on the natural Lagrangian
stretch E and wryness ΓΓΓ tensors, but additionally upon the microstructure cur-
vature tensor B of the undeformed placement as the parametric tensor. The ne-
cessity of using these three fields in W was shown in [9]. The tensor B appears
naturally during change of the reference placement. The case B ̸= 0 corresponds
to non-uniform distribution of directors in the reference placement. In [6] the
similar strain measures were used in W , but the referential mass density ρκ and
the microinertia tensor Jκ were introduced as the parametric quantities in W .

2. Considering invariance properties of W we take into account that E is the polar
tensor, but ΓΓΓ and B are the axial tensors which change their signs under inversion
transformation (mirror reflection) of 3D space. Eringen and Kafadar [6] did not
take into account that their ΓΓΓ was the axial tensor. As a result, difference between
the orthogonal tensors and the proper orthogonal tensors considered as members
of our material symmetry group leads to additional essential reduction of W .

3. Our material symmetry group Gκ consists of the ordered triple of tensors: the
unimodular P, the orthogonal R, and the second-order L one. These tensors ap-
pear from transformation of E,ΓΓΓ and B under an arbitrary change of the reference
placements of the micropolar body. The transformation properties of B are quite
different from those of Jκ .

As a result of these modifications, the material symmetry group Gκ in [3] does not
coincide with the group introduced in [6].

In this paper we consider the consistently reduced constitutive equations of the
non-linear anisotropic elastic micropolar solids. In addition to [3] we present the
lists of additional joint invariants of W describing the orthotropic and transversely
isotropic micropolar solids.

2 Basic Relations of the Cosserat Continuum

Let the micropolar body B deform in the three-dimensional (3D) Euclidean physi-
cal space E which translation vector space is E. The finite deformation of the polar-
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elastic body B can be described by mapping from the reference (undeformed) place-
ment κ(B) = Bκ ⊂ E to the actual (deformed) placement γ(B) =Bγ = χ(Bκ)∈ E .

In κ(B) the position x ∈ E of the material particle X ∈ B is given by the vector
x∈E relative to the origin o∈ E of an inertial frame (o, ia), where ia ∈E, a= 1,2,3,
is a right-handed triple of orthonormal vectors. Orientation of X ∈ B in E is fixed
by the right-handed triple of orthonormal directors ha ∈ E.

In γ(B), χ = γ ◦κ−1, the position y ∈ Bκ of the same material particle X ∈ B
becomes defined by the vector y ∈ E taken here relative to the same origin o ∈
E . The orientation of X becomes fixed by the right-handed triple of orthonormal
directors da ∈ E.

As a result, the finite deformation of the polar-elastic body is described by the
following two smooth mappings:

y = χ(x) = x+u(x), da = Q(x)ha, (1)

where u ∈ E is the translation vector and Q = da⊗ha ∈ Orth+ is the proper orthog-
onal microrotation tensor, Q−1 = QT , detQ =+1. Two independent fields u(x) and
Q(x) describe translational and rotational degrees of freedom of the polar-elastic
continuum.

The natural Lagrangian relative stretch and wryness (or change of the microstruc-
ture orientation) tensors E and ΓΓΓ are defined according to [9] as

E = QT F− I, ΓΓΓ=−1
2

E : (QT GradQ). (2)

Here F=Grady, detF> 0, is the classical deformation gradient tensor taken relative
to Bκ , I is the identity (metric) tensor of the space E, E = −I× I is the 3rd-order
skew permutation tensor with × the vector product, while the double dot product
: of two 3rd-order tensors A, B represented in the base ha is defined as A : B =
AamnBmnbha ⊗hb.

The wryness tensor ΓΓΓ can also be expressed in the equivalent forms, see [9],

ΓΓΓ=−1
2

ha × (haQT GradQ) = QT CF−B, (3)

where B and C are the respective microstructure curvature tensors of the polar con-
tinuum in the reference and actual placements defined by

B =
1
2

ha ×Gradha, C =
1
2

da ×gradda, (4)

with the operator grad being taken in the deformed placement Bγ .
In what follows B and C play an important role because they characterize the

non-uniform distribution of directors ha and da in the reference and actual place-
ments, respectively. In particular, if ha are constant in space then B = 0. Tensors B
and C can be used instead of ha and da as primary quantities. Indeed, ha and da can
be found from B and C, respectively, if some compatibility conditions in terms of B
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and C are fulfilled. The compatibility condition for B follows from

bk,s = bs,k +bs ×bk, (5)

where bk = Bik, and indices after comma denote differentiation with respect to
Cartesian coordinates in the reference placement x1, x2, x3, for example bs,k =

∂Bs
∂xk

.
The compatibility condition for C follows from relation similar to (5) but the vec-
tors ck = Cik are differentiated with respect to Cartesian coordinates in the actual
placement ys.

The material behaviour of the micropolar (hyper)elastic continuum is described
by the strain energy density Wκ per unit volume of the undeformed placement Bκ .
The density Wκ satisfying the principle of material frame-indifference takes the re-
duced form

Wκ = Ŵκ(E,ΓΓΓ;x,B). (6)

We call the polar-elastic continuum homogeneous if there exists a reference place-
ment Bκ such that Wκ does not depend on x and materially uniform if Wκ does not
depend on B or B ≡ 0.

Definition of the material symmetry group is based on invariance of Wκ under
change of the reference placement. Let us introduce another reference placement
κ∗(B) = B∗ ∈ E of B, in which the position x∗ ∈ B∗ of X ∈ B is given by the
vector x∗ relative to the same origin o ∈ E and its orientation is fixed by three
orthonormal directors h∗a. Let P = Gradx∗, detP ̸= 0, be the deformation gradient
tensor transforming dx into dx∗, and R ∈ Orth be the rotation tensor transforming
ha into h∗a, so that

dx∗ = Pdx, h∗a = Rha. (7)

In what follows all fields associated with deformation relative to the reference place-
ment B∗ will be marked by the lower index ∗. We obtain the following transforma-
tion relations, see [3] for details:

F = F∗P, Q = Q∗R, (8)

E∗ = QT
∗ F∗− I = REP−1 +RP−1 − I

= R(E+ I)P−1 − I, (9)

B∗ = (detR)RBP−1 −L, ΓΓΓ∗ = (detR)RΓΓΓP−1 +L, (10)

where

L =RZP−1, Z =−1
2

E : (RGradRT ). (11)

Let us note that the form of elastic strain energy density Wκ of the micropolar
body at any particle X ∈ B depends upon the choice of the reference placement,
in general. Particularly important are sets of reference placements which leave un-
changed the form of the energy density. Transformations of the reference placement
under which the energy density remains unchanged we call here invariant transfor-



Material Symmetry Group and Constitutive Equations of Elastic Cosserat Continuum 5

mations. Knowledge of all such invariant transformations allows one to precisely
define the fluid, the solid, the liquid crystal or the subfluid as well as to introduce
notions of isotropic or anisotropic hyper-elastic continua. Similar approach is used
in classical continuum mechanics and in non-linear elasticity in [14, 15].

The elastic strain energy density W∗ relative to the changed reference placement
B∗ depends in each point x∗ ∈ B⋆ on the stretch tensor E∗, the wryness tensor ΓΓΓ∗,
and also upon the structure curvature tensor B∗. This dependence may, in general,
be different than that of Wκ(E,ΓΓΓ;x,B). However, the strain energy of any part of the
polar-elastic continuum should be conserved, so that∫

Pκ

Wκ dvκ =
∫
P∗

W∗ dv∗ (12)

for any part of the micropolar body Pκ ⊂ Bκ corresponding to P∗ ⊂ B∗, because the
functions Wκ and W∗ describe the strain energy density of the same deformed state
of Pγ ⊂ Bγ = χ(Pκ) = χ∗(P∗), where χ∗ is the deformation function from B∗ to Bγ .

Changing variables x∗ → x in the right-hand integral of (12) we obtain∫
P∗

W∗[E∗(x∗),ΓΓΓ∗(x∗);x∗,B∗(x∗)]dv∗ =
∫
Pκ

|detP|W∗[E∗(x),ΓΓΓ∗(x);x,B∗(x)]dvκ.

Thus, from (12) it follows that W∗ and Wκ are related by

|detP|W∗(E∗,ΓΓΓ∗;x,B∗) =Wκ(E,ΓΓΓ;x,B).

Here E∗, ΓΓΓ∗, and B∗ are expressed as in (9) and (10).
From physical reasons invariant transformations of the reference placement

should preserve the elementary volume of Bκ . Hence, the tensor P should belong to
the unimodular group for which |detP|= 1.

The assumption that the constitutive relation is insensitive to the change of the
reference placement means that the explicit forms of the strain energy densities Wκ
and W∗ should coincide, that is

Wκ(E,ΓΓΓ;x,B) =Wκ(E∗,K∗;x,B∗).

In other words, this means that one may use the same function for the strain energy
density independently on the choice of Bκ or B∗, but with different expressions for
stretch and wryness tensors as well as for the microstructure curvature tensor. In
what follows we not always explicitly indicate that all the functions depend also on
the position vector x and W is taken relative to the undeformed placement Bκ .

Using (9) and (10) we obtain the following invariance requirement for W under
change of the reference placement:

W (E,ΓΓΓ;B) =W
[
REP−1 +RP−1 − I, (detR)RΓΓΓP−1 +L; (detR)RBP−1 −L

]
.

(13)
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The relation (13) holds locally, i.e. it should be satisfied at any x and B, and the
tensors P, R, L are treated as independent here. As a result, the local invariance
of W under change of the reference placement is described by the triple of tensors
(P,R,L).

In what follows we use the following nomenclature:
Orth = {O : O−1 = OT , detO =±1} – the group of orthogonal tensors;
Orth+ = {O : O ∈ Orth, detO = 1} – the group of rotation tensors;
Unim = {P : P ∈ E ⊗E, detP =±1} – the unimodular group;
Lin = {L ∈ E ⊗E} – the linear group.
Here Orth and Unim are groups with regard to multiplication, and Lin is the

group with regard to addition.

3 Definition of the Material Symmetry Group

Following [3] and using (13) we give the following definition:

Definition 1 By the material symmetry group Gκ at x and B of the polar-elastic
continuum we call all sets of ordered triples of tensors

X= (P ∈Unim,R ∈ Orth,L ∈ Lin), (14)

satisfying the relation

W (E,ΓΓΓ;B) =W
[
REP−1 +RP−1 − I, (detR)RΓΓΓP−1 +L; (detR)RBP−1 −L

]
(15)

for any tensors E, ΓΓΓ, B in domain of definition of the function W.

The set Gκ is the group relative to the group operation ◦ defined by

(P1,R1,L1)◦ (P2,R2,L2) =
[
P1P2, R1R2, L1 +(detR1)R1L2P−1

1
]
.

In terms of members of Gκ the polar-elastic fluids, solids, liquid crystals, and
subfluids can be conveniently defined, see [3] for details.

In what follows we restrict ourselves to the polar-elastic solids which are defined
as follows:

Definition 2 The micropolar elastic continuum is called the polar-elastic solid at
x and B if there exists a reference placement Bκ , called undistorted, such that the
material symmetry group relative to Bκ is given by

Gκ = Rκ ≡ {(P = O,O,0) : O ∈ Oκ ⊂ Orth} . (16)

The group Rκ is fully described by a subgroup Oκ of orthogonal group Orth.
Invariance requirement of W leads here to finding the subgroup Oκ such that



Material Symmetry Group and Constitutive Equations of Elastic Cosserat Continuum 7

W (E,ΓΓΓ;B) =W
[
OEOT ,(detO)OΓΓΓOT ;(detO)OBOT ] , ∀O ∈ Oκ. (17)

4 Consistently Simplified Forms of the Strain Energy Density

Let us discuss consistently simplified forms of W corresponding to some particular
cases of anisotropic micropolar solids. We begin from the isotropic material.

Definition 3 Isotropic material. The polar-elastic solid is called isotropic at x and
B if there exists a reference placement Bκ , called undistorted, such that the material
symmetry group relative to Bκ takes the form

Gκ = Sκ ≡ {(P = O,O,0) : O ∈ Orth} . (18)

This definition means that the strain energy density of the polar-elastic isotropic
solid satisfies the relation

W (E,ΓΓΓ;B) =W
[
OEOT ,(detO)OΓΓΓOT ;(detO)OBOT ] , ∀O ∈ Orth.

Scalar-valued isotropic functions of a few 2nd-order tensors can be expressed
by the so-called representation theorems in terms of joint invariants of the tenso-
rial arguments, called also the integrity basis, see [12, 13]. Decomposing the non-
symmetric tensors E, ΓΓΓ and B into their symmetric and skew parts,

E = ES +EA, ES =
1
2
(E+ET ), EA =

1
2
(E−ET ),

ΓΓΓ= ΓΓΓS +ΓΓΓA, ΓΓΓS =
1
2
(ΓΓΓ+ΓΓΓT ), ΓΓΓA =

1
2
(ΓΓΓ−GT ),

B = BS +BA, BS =
1
2
(B+BT ), BA =

1
2
(B−BT ),

we represent the strain energy density as the function of three symmetric and three
skew tensors,

W =W (ES,EA,ΓΓΓS,ΓΓΓA;BS,BA). (19)

The integrity basis for the proper orthogonal group is given by Spencer, see Table
1 in [12] or Table II in [13]. For the proper orthogonal group there is no difference
in transformations of the axial and polar tensors. It is not the case if one considers
transformations using the full orthogonal group. Since ΓΓΓS,ΓΓΓA,BS,BA are the axial
tensors, not all invariants listed in [12, 13] are absolute invariants under orthogonal
transformations, because some of them change sign under non-proper orthogonal
transformations. Such invariants are called relative invariants [13]. Examples of rel-
ative invariants are trΓΓΓS, trΓΓΓ3

S, tr ESΓΓΓS, tr ESBS, etc. This gives us the following
property of W :

W (ES,EA,ΓΓΓS,ΓΓΓA;BS,BA) =W (ES,EA,−ΓΓΓS,−ΓΓΓA;−BS,−BA). (20)
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Using the representations given by Zheng [16], we present the lists of absolute
and relative polynomial invariants for the polar-elastic isotropic solid in Table 1.
In this case there are 119 invariants. They constitute so-called irreducible integrity
basis. The strain energy density of the polar-elastic isotropic solid is given by any
scalar-valued function of these invariants satisfying (20).

Further simplifications are possible if we neglect the explicit dependence of W on
B, that is if we assume that W =W (E,ΓΓΓ). The integrity basis of two non-symmentric
tensors under the orthogonal group contains 39 members, see Ramezani et al. [10]
where these invariants are listed and the corresponding constitutive equations are
proposed. Kafadar and Eringen [7] constructed the list of independent invariants.
Table 1 contains the invariants of [10] and of [7] as well as aditional joint invariants
of E, ΓΓΓ and B. According to [7], the isotropic scalar-valued function W = W (E,ΓΓΓ)
is expressible in terms of 15 invariants,

W =W (I1, I2, . . . , I15), (21)

where Ik are given by

I1 = tr E, I2 = tr E2, I3 = tr E3,
I4 = tr EET , I5 = tr E2ET , I6 = tr E2ET 2,
I7 = tr EΓΓΓ, I8 = tr E2ΓΓΓ, I9 = tr EΓΓΓ2,
I10 = trΓΓΓ, I11 = trΓΓΓ2, I12 = trΓΓΓ3,
I13 = trΓΓΓΓΓΓT , I14 = trΓΓΓ2ΓΓΓT , I15 = trΓΓΓ2ΓΓΓT 2.

Taking into account that W = W (E,ΓΓΓ) is an even function with respect to ΓΓΓ, be-
cause in our case the group Sκ contains the reflection −I, W becomes also the even
function with respect to some invariants,

W (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15) (22)
=W (I1, I2, I3, I4, I5, I6,−I7,−I8, I9,−I10, I11,−I12, I13,−I14, I15).

Expanding W into the Taylor series relative to E and ΓΓΓ, and keeping up to
quadratic terms, we obtain the approximate polynomial representation of (22),

W =w0 +a1I1 +b1I2
1 +b3I2

10 +b4I4 +b5I2 +b7I11 +b8I13 (23)

+O(max(∥E∥3,∥ΓΓΓ∥3)),

where w0, a1, b1, . . . ,b8 are material constants.
We may also consider the representation of W which takes the form of sum of

two scalar functions each depending on one strain measure,

W =W1(E)+W2(ΓΓΓ). (24)

The form (24) was used for example in [10] in order to generalize the classical neo-
Hookean and Moony-Rivlin models to the polar-elastic solids. Using [11] we obtain
the following representation of W :
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Table 1 119 invariants in W in the case of polar-elastic isotropic solid

Agencies Invariants
ES tr ES tr E2

S tr E3
S

EA tr E2
A

ES, EA tr ESE2
A tr E2

SE2
A tr E2

SE2
AESEA

ΓΓΓS trΓΓΓS trΓΓΓ2
S trΓΓΓ3

S
ΓΓΓA trΓΓΓ2

A
ΓΓΓS, ΓΓΓA trΓΓΓSΓΓΓ2

A trΓΓΓ2
SΓΓΓ

2
A trΓΓΓ2

SΓΓΓ
2
AΓΓΓSΓΓΓA

BS tr BS tr B2
S tr B3

S
BA tr B2

A
BS, BA tr BSB2

A tr B2
SB2

A tr B2
SB2

ABSBA

ES, ΓΓΓS tr ESΓΓΓS tr E2
SΓΓΓS tr ESΓΓΓ2

S tr E2
SΓΓΓ

2
S

ES, BS tr ESBS tr E2
SBS tr ESB2

S tr E2
SB2

S
ΓΓΓS, BS trΓΓΓSBS trΓΓΓ2

SBS trΓΓΓSB2
S trΓΓΓ2

SB2
S

ES, ΓΓΓS, BS tr ESΓΓΓSBS
EA, ΓΓΓA tr EAΓΓΓA
EA, BA tr EABA
ΓΓΓA, BA trΓΓΓABA
EA, ΓΓΓA, BA tr EAΓΓΓABA

ES, ΓΓΓA tr ESΓΓΓ2
A tr E2

SΓΓΓ
2
A tr E2

SΓΓΓ
2
AESΓΓΓA

ES, BA tr ESB2
A tr E2

SB2
A tr E2

SB2
AESBA

ΓΓΓS, EA trΓΓΓSE2
A trΓΓΓ2

SE2
A trΓΓΓ2

SE2
AΓΓΓSEA

ΓΓΓS, BA trΓΓΓSB2
A trΓΓΓ2

SB2
A trΓΓΓ2

SB2
AΓΓΓSBA

BS, ΓΓΓA tr BSΓΓΓ2
A tr B2

SΓΓΓ
2
A tr E2

SΓΓΓ
2
ABSΓΓΓA

BS, EA tr BSE2
A tr B2

SE2
A tr B2

SE2
ABSEA

ES, ΓΓΓS, EA tr ESΓΓΓSEA tr E2
SΓΓΓSEA tr ESΓΓΓ2

SEA tr ESE2
AΓΓΓSEA

ES, ΓΓΓS, ΓΓΓA tr ESΓΓΓSΓΓΓA tr E2
SΓΓΓSΓΓΓA tr ESΓΓΓ2

SΓΓΓA tr ESΓΓΓ2
AΓΓΓSΓΓΓA

ES, ΓΓΓS, BA tr ESΓΓΓSBA tr E2
SΓΓΓSBA tr ESΓΓΓ2

SBA tr ESB2
AΓΓΓSBA

ES, BS, EA tr ESBSEA tr E2
SBSEA tr ESB2

SEA tr ESE2
ABSEA

ES, BS, ΓΓΓA tr ESBSΓΓΓA tr E2
SBSΓΓΓA tr ESB2

SΓΓΓA tr ESΓΓΓ2
ABSΓΓΓA

ES, BS, BA tr ESBSBA tr E2
SBSBA tr ESB2

SBA tr ESB2
ABSBA

ΓΓΓS, BS, EA trΓΓΓSBSEA trΓΓΓ2
SBSEA trΓΓΓSB2

SEA trΓΓΓSE2
ABSEA

ΓΓΓS, BS, ΓΓΓA trΓΓΓSBSΓΓΓA trΓΓΓ2
SBSΓΓΓA trΓΓΓSB2

SΓΓΓA trΓΓΓSΓΓΓ2
ABSΓΓΓA

ΓΓΓS, BS, BA trΓΓΓSBSBA trΓΓΓ2
SBSBA trΓΓΓSB2

SBA trΓΓΓSB2
ABSBA

ES, EA, ΓΓΓA tr ESEAΓΓΓA tr ESE2
AΓΓΓA tr ESEAΓΓΓ2

A
ES, EA, BA tr ESEABA tr ESE2

ABA tr ESEAB2
A

ES, ΓΓΓA, BA tr ESΓΓΓABA tr ESΓΓΓ2
ABA tr ESΓΓΓAB2

A
ΓΓΓS, EA, ΓΓΓA trΓΓΓSEAΓΓΓA trΓΓΓSE2

AΓΓΓA trΓΓΓSEAΓΓΓ2
A

ΓΓΓS, EA, BA trΓΓΓSEABA trΓΓΓSE2
ABA trΓΓΓSEAB2

A
ΓΓΓS, ΓΓΓA, BA trΓΓΓSΓΓΓABA trΓΓΓSΓΓΓ2

ABA trΓΓΓSΓΓΓAB2
A

BS, EA, ΓΓΓA tr BSEAΓΓΓA tr BSE2
AΓΓΓA tr BSEAΓΓΓ2

A
BS, EA, BA tr BSEABA tr BSE2

ABA tr BSEAB2
A

BS, ΓΓΓA, BA tr BSΓΓΓABA tr BSΓΓΓ2
ABA tr BSΓΓΓAB2

A

W = W̃1(I1, . . . , I6)+W̃2(I10, . . . , I15), (25)

where W̃2 has the property
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W̃2(I10, I11, I12, I13, I14, I15) = W̃2(−I10, I11,−I12, I13,−I14, I15). (26)

Expanding (25) with (26) into the Taylor series and keeping up to quadratic terms
in E and ΓΓΓ, W takes the form (24) with

W1 = w0 +a1I1 +b1I2
1 +b4I4 +b5I2, W2 = b3I2

10 +b7I11 +b8I13.

If in the definition (18) we use only the proper orthogonal tensors then the result-
ing constitutive equations correspond to the hemitropic polar-elastic continuum.

Definition 4 Hemitropic material. The polar-elastic solid is called hemitropic at
x and B if there exists a reference placement Bκ , called undistorted, such that the
material symmetry group relative to Bκ takes the form

Gκ = S +
κ ≡

{
(P = O,O,0) : O ∈ Orth+

}
. (27)

The strain energy density of the hemitropic polar-elastic solid satisfies the rela-
tion

W (E,ΓΓΓ;B) =W
(
OEOT ,OΓΓΓOT ;OBOT ) , ∀O ∈ Orth+. (28)

The hemitropic polar-elastic solid is insensitive to the change of orientation of the
space. In the case of reduced strain energy density W =W (E,ΓΓΓ) the representation
of W is given by (21), but the property (22) does not hold, in general. Obviously, the
polar-elastic isotropic solid is also hemitropic.

Definitions (18) and (28) are somewhat similar to the corresponding definition of
the isotropic polar-elastic solid proposed by Eringen and Kafadar [6]. However, the
properties (22) or (26) do not follow from the definition used in [6].

Definition 5 Orthotropic material. The polar-elastic solid is called orthotropic at
x and B if the material symmetry group for some reference placement Bκ takes the
form

Gκ = {(P = O,O,0)} : O = {I,−I, 2e1 ⊗ e1 − I, 2e2 ⊗ e2 − I, 2e3 ⊗ e3 − I},
(29)

where O are orthogonal tensors performing the mirror reflections and rotations of
180◦ about three orthonormal vectors ek.

Obviously, the polar-elastic isotropic solid is also orthotropic. Thus, the invari-
ants given in Tables 1 enter the representation of the strain energy density of the
polar-elastic orthotropic solid. The additional list of 60 absolute and relative invari-
ants for the polar-elastic orthotropic solid, which are responsible for the orthotropic
properties, is presented in Table 2. Therefore, the full list of Tables 1 and 2 contains
179 invariants.

Definition 6 Transversely isotropic solid. The polar-elastic solid is called trans-
versely isotropic at x and B with respect to a direction described by e if the material
symmetry group for some reference placement Bκ takes the form
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Table 2 Additional 60 invariants in W in the case of polar-elastic orthotropic solid

Agencies Invariants
ES tr VES tr V2ES tr VE2

S tr V2E2
S

EA tr VE2
A tr V2E2

A tr V2E2
AVEA

ES, EA tr VESEA tr V2ESEA tr VE2
SEA

ΓΓΓS tr VΓΓΓS tr V2ΓΓΓS tr VΓΓΓ2
S tr V2G2

S
ΓΓΓA tr VΓΓΓ2

A tr V2ΓΓΓ2
A tr V2ΓΓΓ2

AVΓΓΓA
ΓΓΓS, ΓΓΓA tr VΓΓΓSΓΓΓA tr V2ΓΓΓSΓΓΓA tr VΓΓΓ2

SΓΓΓA

BS tr VBS tr V2BS tr VB2
S tr V2G2

S
BA tr VB2

A tr V2B2
A tr V2B2

AVBA
BS, BA tr VBSBA tr V2BSBA tr VB2

SBA
ES, ΓΓΓS tr VESΓΓΓS
ES, BS tr VESBS
ΓΓΓS, BS tr VΓΓΓSBS

EA, ΓΓΓA tr VEAΓΓΓA tr VE2
AΓΓΓA tr VEAΓΓΓ2

A
EA, BA tr VEABA tr VE2

ABA tr VEAB2
A

ΓΓΓA, BA tr VΓΓΓABA tr VΓΓΓ2
ABA tr VΓΓΓAB2

A
ES, ΓΓΓA tr VESΓΓΓA tr V2ESΓΓΓA tr VE2

SΓΓΓA
ES, BA tr VESBA tr V2ESBA tr VE2

SBA
ΓΓΓS, EA tr VΓΓΓSEA tr V2ΓΓΓSEA tr VG2

SBA
ΓΓΓS, BA tr VΓΓΓSBA tr V2ΓΓΓSBA tr VG2

SBA
BS, ΓΓΓA tr VBSΓΓΓA tr V2BSΓΓΓA tr VB2

SΓΓΓA
BS, EA tr VBSEA tr V2BSEA tr VB2

SEA

Gκ = {(P = O,O,0)} : O = {I,−I, O(φe), ∀ φ}, (30)

where O(φe) = (I− e⊗ e)cosφ + e⊗ e+ e× Isinφ is the rotation tensor with the
rotation angle φ about the unit vector e.

167 invariants for the polar-elastic transversely isotropic solid are presented in Ta-
bles 1 and 3.

Definition 7 Cubic symmetry. The polar-elastic solid is called cubic-symmetric at
x and B if the material symmetry group for some reference placement Bκ takes the
form

Gκ = {(P = O,O,0)} :
O = {I,−I, e1 ⊗ e1 ∓ e1 × I, e2 ⊗ e2 ∓ e2 × I, e3 ⊗ e3 ∓ e3 × I}, (31)

where O are orthogonal tensors performing the mirror reflections and rotations of
90◦ about three orthonormal vectors ek.

Here we have discussed the structure of the strain energy density of micropolar
elastic solids under finite deformations. Within the linear micropolar elasticity the
explicit structure of stiffness tensors was presented is [17] for 14 symmetry groups,
see [4].
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Table 3 Additional 48 invariants in W in the case of polar-elastic transverse isotropic solid

Agencies Invariants
ES e ·ESe e ·E2

Se
EA e ·E2

Ae
ES, EA e ·ESEAe e ·E2

SEAe e ·EAESE2
Ae

ΓΓΓS e ·ΓΓΓSe e ·ΓΓΓ2
Se

ΓΓΓA e ·ΓΓΓ2
Ae

ΓΓΓS, ΓΓΓA e ·ΓΓΓSΓΓΓAe e ·ΓΓΓ2
SΓΓΓAe e ·ΓΓΓAΓΓΓSΓΓΓ2

Ae
BS e ·BSe e ·B2

Se
BA e ·B2

Ae
BS, BA e ·BSBAe e ·B2

SBAe e ·BABSB2
Ae

ES, ΓΓΓS e ·ESΓΓΓSe
ES, BS e ·ESBSe
ΓΓΓS, BS e ·ΓΓΓSBSe
EA, ΓΓΓA e ·EAΓΓΓAe e ·E2

AΓΓΓAe e ·EAΓΓΓ2
Ae

EA, BA e ·EABAe e ·E2
ABAe e ·EAB2

Ae
ΓΓΓA, BA e ·ΓΓΓABAe e ·ΓΓΓ2

ABAe e ·ΓΓΓAB2
Ae

ES, ΓΓΓA e ·ESΓΓΓAe e ·E2
SΓΓΓAe e ·ΓΓΓAESΓΓΓ2

Ae
ES, BA e ·ESBAe e ·E2

SBAe e ·BAESB2
Ae

ΓΓΓS, EA e ·ΓΓΓSEAe e ·ΓΓΓ2
SEAe e ·EAΓΓΓSE2

Ae
ΓΓΓS, BA e ·ΓΓΓSBAe e ·ΓΓΓ2

SBAe e ·BAΓΓΓSB2
Ae

BS, ΓΓΓA e ·BSΓΓΓAe e ·B2
SΓΓΓAe e ·ΓΓΓABSΓΓΓ2

Ae
BS, EA e ·ESEAe e ·E2

SEAe e ·EAESE2
Ae

5 Conclusions

We have discussed here the new definition of the material symmetry group Gκ of
the non-linear polar elastic continuum. The group Gκ consists of an ordered triple of
tensors which make the strain energy density invariant under change of the reference
placement. Reduced forms of the constitutive equations for the polar-elastic solids
are given for several particular cases of material symmetry groups.
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