Material Symmetry Group and Consistently
Reduced Constitutive Equations of the Elastic
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Abstract We discuss the material symmetry group of the polar-elastic continuum
and related consistently simplified constitutive equations. Following [3] we extent
the definition of the group proposed by Eringen and Kafadar [6] by taking into ac-
count the microstructure curvature tensor as well as different transformation prop-
erties of polar and axial tensors. Our material symmetry group consists of ordered
triples of tensors which make the strain energy density of the polar-elastic contin-
uum invariant under change of the reference placement. Within the polar-elastic
solids we discuss the isotropic, hemitropic, orthotropic, transversely isotropic and
cubic-symmetric materials and give explicitly the consistently reduced representa-
tions of the strain energy density.

1 Introduction

Mechanics of Micropolar Continua (also called Cosserat Continua or Polar Con-
tinua) was first summarized in 1909 by the Cosserat brothers in their centurial
book [1] but without consideration of the constitutive equations. In the books by
Eringen [4, 5], Nowacki [8] and Eremeyev et al. [2] various constitutive equations
of the micropolar elastic continuum were considered and widely discussed. The
Cosserat continuum model is frequently used for description of complex media such
as composites, foams, cellular solids, lattices, masonries, particle assemblies, mag-
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netic rheological fluids, liquid crystals, etc. For characterizations of material be-
haviour of micropolar continua a great role plays the material symmetry group. The
group for the non-linear micropolar continuum was first characterized by Eringen
and Kafadar [6]. They discussed all density-preserving deformations and all micro-
rotations of the reference placement of the micropolar continuum that cannot be
experimentally detected. In terms of members of the group definitions of the simple
micropolar solid and the simple micropolar fluid were given.

In [3] we extended the definition of the material symmetry group proposed by
Eringen and Kafadar [6]. We considered the polar-elastic material characterized by
the strain energy density W and introduced the following modifications:

1. Ateach material point the strain energy density W, satisfying the principle of ma-
terial frame-indifference, depends explicitly not only on the natural Lagrangian
stretch E and wryness I tensors, but additionally upon the microstructure cur-
vature tensor B of the undeformed placement as the parametric tensor. The ne-
cessity of using these three fields in W was shown in [9]. The tensor B appears
naturally during change of the reference placement. The case B # 0 corresponds
to non-uniform distribution of directors in the reference placement. In [6] the
similar strain measures were used in W, but the referential mass density p,, and
the microinertia tensor J,, were introduced as the parametric quantities in W.

2. Considering invariance properties of W we take into account that E is the polar
tensor, butI" and B are the axial tensors which change their signs under inversion
transformation (mirror reflection) of 3D space. Eringen and Kafadar [6] did not
take into account that their I" was the axial tensor. As a result, difference between
the orthogonal tensors and the proper orthogonal tensors considered as members
of our material symmetry group leads to additional essential reduction of W.

3. Our material symmetry group ¥, consists of the ordered triple of tensors: the
unimodular P, the orthogonal R, and the second-order L one. These tensors ap-
pear from transformation of E, I" and B under an arbitrary change of the reference
placements of the micropolar body. The transformation properties of B are quite
different from those of J.,.

As a result of these modifications, the material symmetry group %,, in [3] does not
coincide with the group introduced in [6].

In this paper we consider the consistently reduced constitutive equations of the
non-linear anisotropic elastic micropolar solids. In addition to [3] we present the
lists of additional joint invariants of W describing the orthotropic and transversely
isotropic micropolar solids.

2 Basic Relations of the Cosserat Continuum

Let the micropolar body % deform in the three-dimensional (3D) Euclidean physi-
cal space & which translation vector space is E. The finite deformation of the polar-
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elastic body 4 can be described by mapping from the reference (undeformed) place-
ment (%#) = B,, C & to the actual (deformed) placement y(%) =By, = x(B,.) € &.

In »(9) the position x € & of the material particle X € 98 is given by the vector
x € E relative to the origin o € & of an inertial frame (0,i,), wherei, € E,a=1,2,3,
is a right-handed triple of orthonormal vectors. Orientation of X € & in E is fixed
by the right-handed triple of orthonormal directors h, € E.

In ¥(%), x = yo ', the position y € B,, of the same material particle X € %
becomes defined by the vector y € E taken here relative to the same origin o €
& . The orientation of X becomes fixed by the right-handed triple of orthonormal
directors d, € E.

As a result, the finite deformation of the polar-elastic body is described by the
following two smooth mappings:

y:X(X):X+u(X)> da:Q(X)hm (1

where u € E is the translation vector and Q = d, ®h, € Orth™ is the proper orthog-
onal microrotation tensor, Q' = Q7, detQ = +1. Two independent fields u(x) and
Q(x) describe translational and rotational degrees of freedom of the polar-elastic
continuum.

The natural Lagrangian relative stretch and wryness (or change of the microstruc-
ture orientation) tensors E and I" are defined according to [9] as

E=Q'F-1, TI= —%E : (Q"Grad Q). )

Here F = Grady, detF > 0, is the classical deformation gradient tensor taken relative
to B,,, I is the identity (metric) tensor of the space E, E = —I x I is the 3rd-order
skew permutation tensor with x the vector product, while the double dot product
: of two 3rd-order tensors A, B represented in the base h, is defined as A : B =
AamnBmnpha @ hy,.

The wryness tensor I' can also be expressed in the equivalent forms, see [9],

r= —%ha x (h,Q" GradQ) = Q" CF — B, 3

where B and C are the respective microstructure curvature tensors of the polar con-
tinuum in the reference and actual placements defined by

1 1
B= Eh“ x Gradh,, C= Eda x gradd,, @

with the operator grad being taken in the deformed placement B,.

In what follows B and C play an important role because they characterize the
non-uniform distribution of directors h, and d, in the reference and actual place-
ments, respectively. In particular, if h, are constant in space then B = (. Tensors B
and C can be used instead of h, and d, as primary quantities. Indeed, h, and d, can
be found from B and C, respectively, if some compatibility conditions in terms of B
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and C are fulfilled. The compatibility condition for B follows from
bk,s = bs7k +b; x bk7 (5)

where by, = Bi;, and indices after comma denote differentiation with respect to
Cartesian coordinates in the reference placement x1, x2, x3, for example by ; = ‘31}‘ .
The compatibility condition for C follows from relation similar to (5) but the vec-
tors ¢; = Ciy, are differentiated with respect to Cartesian coordinates in the actual
placement y;.

The material behaviour of the micropolar (hyper)elastic continuum is described
by the strain energy density W,, per unit volume of the undeformed placement B,,.
The density W,, satisfying the principle of material frame-indifference takes the re-
duced form

W, =W, (E,T;x,B). (6)

We call the polar-elastic continuum homogeneous if there exists a reference place-
ment B,, such that W,, does not depend on x and materially uniform if W,, does not
depend on B or B =0.

Definition of the material symmetry group is based on invariance of W,, under
change of the reference placement. Let us introduce another reference placement
7. (%) = B, € & of A, in which the position x, € B, of X € # is given by the
vector X, relative to the same origin o € & and its orientation is fixed by three
orthonormal directors h,,. Let P = Gradx,, detP # 0, be the deformation gradient
tensor transforming dx into dx,, and R € Orth be the rotation tensor transforming
h, into h,,, so that

dx. =Pdx, h.,,=Rh,. @)

In what follows all fields associated with deformation relative to the reference place-
ment B, will be marked by the lower index *. We obtain the following transforma-
tion relations, see [3] for details:

F=F.P, Q=0Q.R, (®)
E,=Q/F,—I=REP ' +RP ! -1
=R(E+DP ' -1, ©)
B, = (detR)RBP ' —L, T, = (detR)R[P'+L, (10)
where
L =RZP !, Z:f%E:(RGradRT). (11

Let us note that the form of elastic strain energy density W,, of the micropolar
body at any particle X € % depends upon the choice of the reference placement,
in general. Particularly important are sets of reference placements which leave un-
changed the form of the energy density. Transformations of the reference placement
under which the energy density remains unchanged we call here invariant transfor-
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mations. Knowledge of all such invariant transformations allows one to precisely
define the fluid, the solid, the liquid crystal or the subfluid as well as to introduce
notions of isotropic or anisotropic hyper-elastic continua. Similar approach is used
in classical continuum mechanics and in non-linear elasticity in [14, 15].

The elastic strain energy density W, relative to the changed reference placement
B, depends in each point x, € B, on the stretch tensor E,, the wryness tensor I',
and also upon the structure curvature tensor B... This dependence may, in general,
be different than that of W,,(E,T';x, B). However, the strain energy of any part of the
polar-elastic continuum should be conserved, so that

/W%dv%:/W*dv* (12)

for any part of the micropolar body P,, C B,, corresponding to P, C B, because the

functions W,, and W, describe the strain energy density of the same deformed state

of Py C By = x(Py) = X«(P;), where Y, is the deformation function from B, to By.
Changing variables x, — X in the right-hand integral of (12) we obtain

/ W, [E. (x.),T. (%, ); s, By (x,)] dv. = / | detP| W, [E. (x), T (x);X, B.. (x)] dv..
P, P

Thus, from (12) it follows that W, and W, are related by
|detP| W, (E.,T;x,B.) = W, (E,I';x,B).

Here E,, T, and B, are expressed as in (9) and (10).

From physical reasons invariant transformations of the reference placement
should preserve the elementary volume of B,,. Hence, the tensor P should belong to
the unimodular group for which |detP| = 1.

The assumption that the constitutive relation is insensitive to the change of the
reference placement means that the explicit forms of the strain energy densities W,
and W, should coincide, that is

W%(E,F;X,B) = W%(E*7K*;X,B*)-

In other words, this means that one may use the same function for the strain energy
density independently on the choice of B,, or B,, but with different expressions for
stretch and wryness tensors as well as for the microstructure curvature tensor. In
what follows we not always explicitly indicate that all the functions depend also on
the position vector x and W is taken relative to the undeformed placement B,,.

Using (9) and (10) we obtain the following invariance requirement for W under
change of the reference placement:

W(E,I;B) =W [REP~' + RP~! I, (detR)R[P~' +L; (detR)RBP~' —L].
(13)
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The relation (13) holds locally, i.e. it should be satisfied at any x and B, and the
tensors P, R, L are treated as independent here. As a result, the local invariance
of W under change of the reference placement is described by the triple of tensors
(P,R,L).

In what follows we use the following nomenclature:

Orth={0:0"! =0T, detO = £1} — the group of orthogonal tensors;

Orth"™ ={0: 0 € Orth, detO = 1} — the group of rotation tensors;

Unim={P:Pc EQE, detP=+1} - the unimodular group;

Lin ={L € E®E} — the linear group.

Here Orth and Unim are groups with regard to multiplication, and Lin is the
group with regard to addition.

3 Definition of the Material Symmetry Group

Following [3] and using (13) we give the following definition:

Definition 1 By the material symmetry group ¢,, at x and B of the polar-elastic
continuum we call all sets of ordered triples of tensors

X = (P € Unim,R € Orth,L € Lin), (14)
satisfying the relation

W(E,I;B) =W [REP~' + RP~' — I, (detR)R[P~' +L; (detR)RBP~' — L]
(15)
for any tensors E, I, B in domain of definition of the function W.

The set ¢, is the group relative to the group operation o defined by
(P1,R1,Li)o (P2,Ry,Ly) = [P1P2, RiRy, Ly + (detRy)R;LoPy ']

In terms of members of ¥, the polar-elastic fluids, solids, liquid crystals, and
subfluids can be conveniently defined, see [3] for details.

In what follows we restrict ourselves to the polar-elastic solids which are defined
as follows:

Definition 2 The micropolar elastic continuum is called the polar-elastic solid at
x and B if there exists a reference placement B,,, called undistorted, such that the
material symmetry group relative to B,, is given by

Y, =%.={(P=0,0,0): O€c O, COrth}. (16)

The group Z,, is fully described by a subgroup &,, of orthogonal group Orth.
Invariance requirement of W leads here to finding the subgroup &,, such that
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W (E,T;B) =W [OEO’, (detO)OT'0”; (detO)OBO’ |, VO € O,.. (17)

4 Consistently Simplified Forms of the Strain Energy Density

Let us discuss consistently simplified forms of W corresponding to some particular
cases of anisotropic micropolar solids. We begin from the isotropic material.

Definition 3 Isotropic material. The polar-elastic solid is called isotropic at x and
B if there exists a reference placement B,,, called undistorted, such that the material
symmetry group relative to B,, takes the form

4, =9,={(P=0,0,0): O € Orth}. (18)

This definition means that the strain energy density of the polar-elastic isotropic
solid satisfies the relation

W (E,T';B) =W [OEO’, (detO)OI'0”; (det0)OBO’ |, VO € Orth.

Scalar-valued isotropic functions of a few 2nd-order tensors can be expressed
by the so-called representation theorems in terms of joint invariants of the tenso-
rial arguments, called also the integrity basis, see [12, 13]. Decomposing the non-
symmetric tensors E, I" and B into their symmetric and skew parts,

1 1
E=Es+E,, Es= i(E+1«:T), Es = i(E—ET),

1 1
[=Ts+T,, Ts= E(1"+rT), Ty= 5(1"—(;T),

1 1
B=Bs+By, Bs=_(B+B'), By=_(B-B')
we represent the strain energy density as the function of three symmetric and three
skew tensors,

W =W (Eg,E4,I's,T'4;Bg,By). (19)

The integrity basis for the proper orthogonal group is given by Spencer, see Table
1 in [12] or Table II in [13]. For the proper orthogonal group there is no difference
in transformations of the axial and polar tensors. It is not the case if one considers
transformations using the full orthogonal group. Since I's,I'4,Bgs,B4 are the axial
tensors, not all invariants listed in [12, 13] are absolute invariants under orthogonal
transformations, because some of them change sign under non-proper orthogonal
transformations. Such invariants are called relative invariants [13]. Examples of rel-
ative invariants are trI'g, trl"g, tr EsI's, tr EgBg, etc. This gives us the following
property of W:

W(E57EA7FS7FA;BS7BA) - W(ES,EA7—I‘S,—FA;—BS, _BA) (20)
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Using the representations given by Zheng [16], we present the lists of absolute
and relative polynomial invariants for the polar-elastic isotropic solid in Table 1.
In this case there are 119 invariants. They constitute so-called irreducible integrity
basis. The strain energy density of the polar-elastic isotropic solid is given by any
scalar-valued function of these invariants satisfying (20).

Further simplifications are possible if we neglect the explicit dependence of W on
B, that is if we assume that W = W (E,T"). The integrity basis of two non-symmentric
tensors under the orthogonal group contains 39 members, see Ramezani et al. [10]
where these invariants are listed and the corresponding constitutive equations are
proposed. Kafadar and Eringen [7] constructed the list of independent invariants.
Table 1 contains the invariants of [10] and of [7] as well as aditional joint invariants
of E,T and B. According to [7], the isotropic scalar-valued function W = W (E,I")
is expressible in terms of 15 invariants,

W:W(Ilvl2a"'7115)a (21)
where [ are given by
L =uE, I :trEz, I; = trE3,
I, =tEE” Is =twEE", Iy = r E’E"?,
I, =twEl, Iy :trEZI‘, Iy = trEI‘z,

L =trT, I :trI‘z, I, = trI‘3,
L3 = «IT?, Iy =« T7, s = «T’r72

Taking into account that W = W(E,T') is an even function with respect to I', be-
cause in our case the group ., contains the reflection —I, W becomes also the even
function with respect to some invariants,

W, b, B, 14,15, 16, 17,13,19, 110,111, 112,113, 114, 115) (22)
=W, b, 13,14,15,1s, — 17, =13, Iy, =110, 11, — 112,113, =114, 115).

Expanding W into the Taylor series relative to E and I', and keeping up to
quadratic terms, we obtain the approximate polynomial representation of (22),

W =wo+a1l; -‘rblllz +b31120 +byly + bsh, +b711 + bsly3 23)
+O0(max([[E[]%, [T|*)),
where wy, ay, by, ...,bg are material constants.

We may also consider the representation of W which takes the form of sum of
two scalar functions each depending on one strain measure,

W =W, (E) + W,(T). (24)

The form (24) was used for example in [10] in order to generalize the classical neo-
Hookean and Moony-Rivlin models to the polar-elastic solids. Using [11] we obtain
the following representation of W':
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Table 1 119 invariants in W in the case of polar-elastic isotropic solid

Agencies

Invariants

Eg
Ea
Es, Eq

trEg
tr E%
trEgE2

7
trEg

212
tr EgEX

3
trEg

trE2E2EgE,

Ty
T
I's,Ts

trCg

2
Iy
5%

2
15 B

22
'y

3
150 I

tr P33T ST 4

Bs
By
B, By

tr Bg
tr B%
tr BB

7
trB§

2p2
tr BsBy

3
tr By

tr B2B2BsB,

Eg,I's
Es, Bg
Ts. B

trEsTg
trEgBg
trCsBg

Es,Ts, B [trEgI’sBg

tr E%l" K
tr EgB S
tr[2Bg

tr Esl"§
tr EsB%
trI"sB?

2
trEgl"S2
trEszg
trgBs

Es. T4
E4, By
T4, Ba

trE L4
trE4By
trCaB4

Es, T4, Bo|trEAL 4B,

Es, T4
Es, B4
Is. Ey
Ts, By
Bs,Ta
Bs, E4

tr Esri
tr EsBi
[I‘rsEi
trl"gB%
tr le"i
tr BsEi

tr E%l"i
tr E%Bﬁ
trT2E3
tr F%Bi
tr Bél’%
tr B% E%

tr Egr‘%ESl‘A
tr E%BiEsBA
trT2EATsE,
trF%Bf\I‘SBA
tr E%F,%BSFA
tr BgE{% BsEA

Es, s, E4 [trEGTsE4
Eg, s, T4 [trEgTsT4
Es,. s, By [trEsT'sBy

tr E%l" sEa
tr E§F sTa
tr E%l" sBa

tr EsT2E,
tr EgT3C 4
tr Esl—%B A

tr ESEirSEA
tr EgT'3TsT
tr EsBirsBA

Es, Bs, E4 [trEsBSE4
Eg, Bg, Ty [trEgBsT4
Es, Bg, B4 [trEsBsB4y

tr E%BsE A
trEZBsT4
tr E%B sBa

tr EngEA
trEgB2T4
tr EsB%BA

tr EsE% BsE4
tr Esr% B4
tr EsBi BsBa

s, Bs, E4 [trT'sBsE4
I's,Bs, T4 |rTsBsIs
s, Bs, B4 |[trTsBsB4

trT3BsE,4
tr[2BsT,
tr I‘%B sBa

tr FSBéEA
trIsBil,
tr FngBA

tr rsEi BsE,4
trCsT2 BT
tl'rsB% BsB4

Es, EA, Ty [trEGEAL 4
Es, E4, BA[trESEAB4
Es, T4, By [trEsT 4By

tr EsE%rA
tr ESE%BA
trEsTi B,

tr EsEAr/%
trEsE4B2
tr ESI‘ABi

[, Eq, Ty [rTgEAL 4
s, Es, By |[trTsE By
[s,T4, Ba |trTsT 4By

trFSEirA
trl"sEf‘BA
trl"sl"iBA

trTsEATS
trCsEq Bi
trCsTa Bi

Bs, E4, T4 [tr BsEAT 4
Bs, E4, Bo|tr BsEAB4
Bs, T4, B4 |[tr BsT'4By

tr BsE2T 4
tr BSEiBA
trBsT'5B4

tr BsEaT'4
tr BsE4 Bi
tr BsI'4 B%\

W =Wi(l,....Js) + Wa(Lo, ... Iis),

where W5 has the property

(25)
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Wa (o, Ti1, 112, 113, Thay Iis ) = Wa(—Tio, T, — T2, 11z, —Thas Ihs). (26)

Expanding (25) with (26) into the Taylor series and keeping up to quadratic terms
in E andI', W takes the form (24) with

Wi =wo+aily +bil} +bals+bsh, W =bsliy+bylii +bslys.

If in the definition (18) we use only the proper orthogonal tensors then the result-
ing constitutive equations correspond to the hemitropic polar-elastic continuum.

Definition 4 Hemitropic material. The polar-elastic solid is called hemitropic at
x and B if there exists a reference placement B,,, called undistorted, such that the
material symmetry group relative to B,, takes the form

9. =75 ={(P=0,0,00: O€cOrh"}. 27)

The strain energy density of the hemitropic polar-elastic solid satisfies the rela-
tion
W (E,I';B) =W (OEO’,0r0”;0BO"), VO e Orth™. (28)

The hemitropic polar-elastic solid is insensitive to the change of orientation of the
space. In the case of reduced strain energy density W = W (E,T") the representation
of W is given by (21), but the property (22) does not hold, in general. Obviously, the
polar-elastic isotropic solid is also hemitropic.

Definitions (18) and (28) are somewhat similar to the corresponding definition of
the isotropic polar-elastic solid proposed by Eringen and Kafadar [6]. However, the
properties (22) or (26) do not follow from the definition used in [6].

Definition 5 Orthotropic material. The polar-elastic solid is called orthotropic at
x and B if the material symmetry group for some reference placement B,, takes the
form

4, ={(P=0,0,0)}:0={L -1, 2¢;®e; — L, 2e; e, — I, 2e3 0 e3 — I},
(29)
where O are orthogonal tensors performing the mirror reflections and rotations of
180° about three orthonormal vectors ey.

Obviously, the polar-elastic isotropic solid is also orthotropic. Thus, the invari-
ants given in Tables 1 enter the representation of the strain energy density of the
polar-elastic orthotropic solid. The additional list of 60 absolute and relative invari-
ants for the polar-elastic orthotropic solid, which are responsible for the orthotropic
properties, is presented in Table 2. Therefore, the full list of Tables 1 and 2 contains
179 invariants.

Definition 6 Transversely isotropic solid. The polar-elastic solid is called trans-
versely isotropic at x and B with respect to a direction described by e if the material
symmetry group for some reference placement B,, takes the form
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Table 2 Additional 60 invariants in W in the case of polar-elastic orthotropic solid

11

Agencies Invariants

Es tr VEg trV’Eg  tr VE% trv? Eg
Es trVEZ  trV?E] trVZEZVE,

Es,E4 |[tr VEGE4 terEsEA tl‘VEgEA

Ty rV[g VI tVIg tr V2G2
T, VI3 VI3 «V3vr,

[5,T4 | VT, trVALGC, tr VIal,

Bs rVBs wV’Bg VB tr V2G3
B, trVB; V2B trV2BiVB,

Bs, By [tr VBgBy tr V2BsBA tr VB%BA

Es, Ty tr VEgI'g

Eg, Bg tr VEgBg

I, Bg tr V[ sBg

Es, T4 |[trVEAT, tr VEZT, tr VE,T;

Es, By [tr VEsB,4 tr VE%BA tl‘VEAB[z4

Ty, By |V, B, tr VI3B, tr VI4B3

Es,. T4 tr VEgI'4 terEsl"A trVE%l"A

Es, B4 |trVEsB4 trVZEsB, tr VEZB,

T's, Ex tr VLgE4 tr VZFSEA tr VG%BA

I's,By tr V[ sBy tr VZI“SBA tr VG?BA

Bs,. T4 tr VBgI'4 terle"A trVB%l"A

Bs.Es |tr VBSsE, tr VZBsE, tr VBZE,

g%Z{(P:O,O,O)} : O:{Ia —I,O((pe), V(P}a (30)
where O(pe) = (I—e®e)cos @ +e® e+ e x Isin@ is the rotation tensor with the

rotation angle @ about the unit vector e.

167 invariants for the polar-elastic transversely isotropic solid are presented in Ta-
bles 1 and 3.

Definition 7 Cubic symmetry. The polar-elastic solid is called cubic-symmetric at
x and B if the material symmetry group for some reference placement B,, takes the
form

4,={(P=0,0,0)}:

O={I,-Ie;®e Fe;xL,ex®e, Te; xI, es@e; Fes xI}, (3D

where O are orthogonal tensors performing the mirror reflections and rotations of
90° about three orthonormal vectors ey.

Here we have discussed the structure of the strain energy density of micropolar
elastic solids under finite deformations. Within the linear micropolar elasticity the
explicit structure of stiffness tensors was presented is [17] for 14 symmetry groups,
see [4].
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Table 3 Additional 48 invariants in W in the case of polar-elastic transverse isotropic solid

Agencies Invariants

Es e-Ece e Ele

E4 e-Ele

Es.,Ey |e-EsEse e-EZE4e e-E EgE3e
T eTse eTze

Ty e ‘I‘f\e

[5, T4 |eTsTae eIl e e TlsTe
Bg e-Bse e Bie

B4 e-Bie

Bs,B, |e-BsBse e-BlBse e B BsB3e
Es, l"S e-ESI"Se

Es, Bg e-EsBge

rs, BS (3 ~1"5B5e

EA,I"A E'EAFAB e~Ef,l"Ae B'EAF%E
Es, B4 |e-EsBse e-E;Bse e-E;Ble
I'y,By |eT,Bse e-I';Bse e T'1B3e
Es.,Ts |e-EsT4e e EX e e T4Ege
Es,Bs |e-EsBse e EZBse e-B4,EgB2e
T's,Eqx |e-T'sEqe e-l"%EAe e~EA1"5Ef‘e
Is,Bs |eTsBye e TiBse e B,IsBie
Bs,Ts |e-BsT4e e Bilse e TyBsle
Bs,E4 |e-EsEse e EZE e e E4,EgE;e

5 Conclusions

We have discussed here the new definition of the material symmetry group ¥,, of
the non-linear polar elastic continuum. The group ¥, consists of an ordered triple of
tensors which make the strain energy density invariant under change of the reference
placement. Reduced forms of the constitutive equations for the polar-elastic solids
are given for several particular cases of material symmetry groups.
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