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ABSTRACT: The globag, refinec, resultan, two-dimensional (2D) balance laws masslinear and angule
momenta, and energy as well as the entropy ingguaére formulated by Pietraszkiewicz (2011) ascéxa
implications of corresponding laws of 3D rationlaétmomechanics. In case of a shell with the rechdase
surface and all resultant surface fields differa@nle everywhere on it and at any time instant)dbal laws of
the resultant shell thermomechanics in the refekfitagrangian) description were also given. la gresent
contribution, on the undeformed base surface a mgovion-material, singular surface curve represgrdi
discontinuous thermomechanical process is allowedhach some resultant surface fields may not edi
entiable. In such a case, to derive the local fegJdations we have extended the surface transgation and
the surface divergence theorems. With these extessithe referential local laws of the resultantlish
thermomechanics are supplemented here by the ponémg referential jump conditions at the non-mate
singular curve moving relative to the referencestbmsgface.

1 INTRODUCTION 2 NOTATION

The jump (also called the continuity) conditions atin the undeformed (reference) placement the skell i
singular 2D surfaces are used in 3D continuumepresented by the regular smooth base surface
thermomechanics for proper modeling of such phek is assumed that in the deformed (current) place-
nomena as wave propagation, phase transitionpstrament the base surface becomes also the regular
localization, fracture, etc. We refer for exampte t smooth surfaceM (t) = y(M,t), where y is the de-
Truesdell & Toupin (1960), Truesdell & Noll formation function andt is time. By x(OM and
(1965), Koshski (1986), Abeyaratne & Knowles y= x(x,t)M (t) we denote corresponding place-
(2006), Gurtin et al. (2010), and the referencesmi ments of a material particle of the base surfadden
there. 3D physical spac€ with E as its translation vector
In 2D shell thermomechanics some jump condispace. Therx =x-0o0E and y=y- dJ]E are the
tions at singular 1D surface curves were formulatedespective position vectors of the surface poirts
in the report by Makowski & Pietraszkiewicz (2002) and y in an inertial framgo,e ), where dJ€ is an
and modified versions of the conditions were usedrigin and ¢ JE, i=1,2,3, are orthonormal vec-
by Eremeyev & Pietraszkiewicz (2009, 2011) totors. The base surfadd may be explicitly defined
model phase transition phenomena in shells. by x=x(6%), where 8°,a=1,2, are curvilinear
Pietraszkiewicz (2011) worked out the refined resurface coordinates. The surfabk is oriented by a
sultant thermomechanics of shells by direct threughchoice of unit normal vecton(x). The space of all
the-thickness integration of corresponding laws oWectors perpendicular to(x) is then the tangent
3D rational thermomechanics proposed by TruesdeipaceT,M at x(IM , and a vector field on M is
& Toupin (1960). The resultant 2D balance of enertangential if t (X T,M at every xUM . Given a
gy in Pietraszkiewicz (2011) was completed with arregular smooth part/7 O M with a piecewise
additional 2D stress power called an interstitialsmooth boundarg/7 , the outward unit normat at
working after Dunn & Serrin (1985). Such resultantregular x(10/7 is directed outward od/7 and tan-
2D balance laws and the entropy inequality of theyenttoM .
resultant shell thermomechanics can be regarded asLet ¢(X)OR, a(x)UE, and T k¢ JIEOE be
exact implications of corresponding 3D laws of ra-smooth scalar-valued, vector-valued, afddder
tional thermomechanics. tensor-valued fields orM , respectively. Then the
surface gradient operat@rad applied to the fields



¢,a, T leads toGrad¢ x YT M, a tangentlal vec- /7 into two time-dependent, closed, complementary
tor field, Grada(x)UEOT,M , a mixed Horder subregions /1°(t) and /77(t) such that
tensor field, andsrad T X D]ED EOT,M ,amixed /77(t)n /77(t)=C(t). Their boundaries consist of
3%order tensor field. Such surface gradlent fielddwo partsa/7*(t) =(a/77 (t)\C(t)JO C(t). At each
can be defined applying results given in Gurtin &regular point ofC(t) the exterior normal vectar™
Murdoch (1975) and Gurtin et al. (2010). of d/7 (t) coincides with the unit vector. of
The surface divergenceDiv of a vector C(t). Thus, the exterior normal velocity a7 (t)
a(X)OE and a mixed %order tensor is equal to V on C(t) and vanishes on
S(X)OEOT,M fields on M are defined respec- 9/7(t)\C(t). Likewise, the vectow™ of a/77(t)
tively by Diva(x)=tr[PGrad a(x)] and coincides with -y, of C(t), so that the exterior
[DivS(X)] [& = DiV{ST(X)c] for any cOE, where normal velocity ofd/7*(t) becomes-V on C(t)

P is the perpendicular projection onib . and vanishes od/7 " (t)\C(t).

With the above definitions the surface divergence Let a smooth time-dependent field(x,t), with
theorems valid on regular smooth paris of M @ belonging to any finite-dimensional vector space
can be given as modifications of those presented isuch aR, TM, E, EOT,M etc., is defined only
Gurtin and Murdoch (1975), in the interior ofM \ C(t), but it need not be defined

_ on C(t). But we suppose that at each instanil
jaﬂaWdSzjjﬂ(D'Va+2Hanq)da1 one-sided finite limits of@(x,t) exist at regular
) Xc JC(t). We write @~ for the finite limit of @ as
Ln SVdSzJ.J‘ﬂ DivSda, C is approached from7~ and @* for the one as
_ C is approached from7". Then [@] =@ -@~
janaXSvds— () denotes the jump o at C(t). If [@] does not
. T T vanish identically, the curv€(t) is said to be sin-
Hﬂ{aX(Dle)+ax[S(Grad a) - (Grada)s }} da  gular with respect tap(x,t) at timet.

- —_ : For the field @(x,t) smooth on the closed subre-
whereg, =nfa andH =~(1/2) tr(PGradn) 's the gions /7 (t) and /77 (t), by the Reynolds trans-port
mean curvature ax[1/7 . theorem for the smoothly evolving subregions

/77 (t) with moving boundarie®/77(t) we have
3 MOVING NON-MATERIAL CURVE EJ‘J‘ cpda:” ¢da+j V@~ ds, (3)
=) (1) a1~ ()nC(t) ’
The global, resultant balance laws and entropy ined . .
quality of shell thermomechanics formulated in’, Hn () Hn ® ‘Ian+(t)ﬁc(t) ds.(4)

Pietraszkiewicz (2011) each involves the materlal

time derivative of a surface integral. In the alwgen From the equations (3) and (4) follows the referen-
of singular curves, the standard transport theaem tial form of the surface transport relation valr f
any fixed part ofM allows one to change the order any piecewise smooth fiel@(x,t) given on/7 in

of surface integration and material time differanti the presence of the singular cur@¢):

tion. But for the reference shell base surfaceaiont

ing a moving, non-material, singular curve the— J-J. @da= H @da- f V[ & ds (5)
transport relation as well as the divergence thaere f7nc®

(2) have to be carefully extended to take into ac- Let us now extend the surface divergence theo-

count the effect of the moving discontinuity. rems (2) in the presence of the singular surface
A surface curve moving oM over a time inter- curve. As there is no time differentiation herer ou
val | =[t,t], t,<t;, is a one—parametric family discussion is confined to a fixed time.

C(t) of piecewise smooth surface curves oriented For example, let the surface mixe¥-arder ten-
consistently with the orientation d¥1, which are sor field S (x t )O EOT,M be piecewise smooth on
parameterized by the arc length coordinaténtro-  any fixed, closed/7 O M divided into two regular,
duced by 67 =67(s). With each regular point closed, complementary parf3~ and /7* as above
X- OC(t) we can associate the triad of orthonormaby the singular curveC. Again, v~ of 0/7” be-
vectors: the tangertt; , the normaln. =n, and the comesvc on C andv elsewhere o@/7 ", andv”
exterior normalv =7 xn. Velocity of C(t) rela-  of 9/7" becomes-v. on C and v elsewhere on
tive to M is a tangential vector field and its exte- /7" . Applying the surface d|Vergence theorem (2)

rior normal componentV =v#. measures the separately on the partd~ and /7% of /7, we ob-
speed with which the curv€(t) transverses the sur- tajin

face M . - - +

Let /7 0M be an arbitrary fixed, regular, clo- Ian SVdS_IaN'SV dS+Ian+SV ds
sed region ofM containing a portion oC(t) in its _J‘ Sy ds— S*y*ds
interior. The surface curv€(t) separates the region o™ n 7" nC



:J'J'nDidea+J'J'n+DivS_da (6) %ﬂnpgda—”ﬂ(N-E%M-Ko)da—janwm ds
o that +.[/70C(S -S )VCdS' —J’J'ﬂpr da+J'amathm ds—J‘aﬂﬁath* ds=0,(13)
[ svds=[[ Divsda+[ [S]vcds. (7) %ﬂﬂ pndaz | p(é—SJda

Analogous arguments lead to the following ex- Q. 7 - q* +st |d
tensions of the surface divergence theoremsai2) .[aﬂ\aMh 9 S IaﬂmaMh o ST jds.

(2)3 in the presence of the singular surface curve:

(14)

_ In the resultant laws of shell mechanics (10) —

[ twds=|[ Divtda+[ [ Wcds (8)  (12) the following mechanical fields have been used
pP(x,t)>0 and c(x,t) are the (referential) resultant

J'aﬂax Svds:jjﬂ{aX(DivS) surface mass and mass production (densities),

f (x,t) and c(x,t) are the resultant surface force
+ax[S(Grada)T —(Grada) STJ} da and couple vectors per unit massMf, |(x,t) and
k(x,t) are the resultant surface linear momentum
+j [axS] v.ds. (9)  and angular momentum vectors per unit aredviof
finC N(xt)UEOTM and M &t ) JEOT,M are the
referential surface stress resultant and strespleou
tensors of the Piola type with corresponding work-
4 JUMP CONDITIONS AT NON-MATERIAL  conjugate referential surface stretch
SINGULAR CURVE E(xx,t)DEOT,M and bendingK Xt, JEOT,M
tensors, while (\)° :Qd/dt(Q (.)) is the co-
In the refined, resultant thermomechanics of shellgotational time derivative, respectively.
developed by Pietraszkiewicz (2011) three surface The resultant energy balance (13) and the entropy
fields on M were used as independent field varia-inequality (14) are expressed through additional re
bles: the position vectoy(x,t)LJE of the deformed  sultant surface fieldss(x,t) and 7(x,t) are the sur-
base surfaceM (t) (or equivalently the translatlon face internal energy and entropy (densitigg,t)
vectoru xt)=y kt )-x of M), the gross rotation and s(x,t) are the surface heat and extra surface en-
tensor Q(x,t) J Orth™ of the shell cross section, and tropy supply (densities), all per unit mass Mf,
the mean referential temperature fiédfx,t) >0. In  while q(x,t)dTM and skt )JTM are the sur-
order to ensure that the resultant 2D balance ef-en face heat flux and extra entropy supply vectors per
gy be an exact implication of 3D energy balance ofinit area ofM , respectively.
rational thermomechanics, an interstitial working |n the present contribution, within any fixed regu-
flux vector field w kt YJT,M was added to the re- |ar /7 O0M we allow a moving, non-material, singu-
sultant 2D balance of energy. Then for any regulafar surface curveC(t) on which some fields appear-
part /70M the referential 2D laws of shell jng in (10) — (14) may not be differentiable, see
thermomechanics - the balances of mass, linear ar@ction 3. In this case, applying (5) from (10)ate
angular momenta, and energy as well as the entropyin the local referential balance of mass and jump

inequality - became the following exact resultantcondition. If we assume, as is usual in solid maeha
implications of corresponding 3D laws of rationalics, that mass is not created during the

thermomechanics: thermomechanical process, so that=0, then
d p =0, and p = p(x). Additionally, [ ] =0 .
—Iﬂpda—”ﬂcdazo, (20) When a singular surface cury&(t) is admitted,
dt in 2D balances of momenta (11) and (12) some
g d d \ d terms containing time derivatives can be trans-
a-—— a+ v ds i '
an at Hn LmaMf 11) ;glrlgv?lgzwnh the help of the transport relation &5)
+ anmaan ds=0, EH Ida=H I'da+J' VI ds (16)
d dt 7 n 1nC(t) ’
HﬂpCda_aﬂnkda-'_”n(y-'-pf)da d _ - :
; aJ'J’/7(k+y><|)da-J'J'/7(k+y><I+y><|)da
_aﬂn(yxl)da-'-J'm\aMf(Mv+yx Nl/)ds(12) +J-/7 C(t)V[[k*‘yx”] ds. a7)
+J'0,700Mf (m* +y><n*)ds= 0, To some other terms we apply the extended surface

divergence theorems (7) and (8) which yields



J‘ Ny dS:J‘J‘ DivN da—J' IN] @.ds, some discontinuous thermomechanical processes in
or n TnC(t) regular shells such as wave propagation or phase

J‘ My ds:J‘J‘ DivM da—_f [M] .ds, transition. In the d_erivation process it ha_s been a

o n 1nC(t) sumed that the singular surface curve is coherent
x Ny ds = %(DivN 1g) during the process, and that the base surfacd itsel

Iaﬂ y J-J.ﬂ {y ( ) 18) does not contain branchings, self-intersections, ab

+aX(NFT + FNT)} da—J‘ [yxN] .ds , rupt thickness changes, technological junctions and
1nC(t) other curvilinear irregularities of this type. Revno

where F =Grad yOEOT,M is the surface defor- ing any of these assumptions would lead to more
mation gradient. Introducing (16), (17) and (1&pin complex jump conditions to be discussed elsewhere.
(11) and (12), and taking into account that foroa c

herent singular curv§ y] =0, we obtain the refer- ACKNOWLEDGEMENTS
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5 CONCLUSIONS

Within the resultant shell thermomechanics of
Pietraszkiewicz (2011), we have formulated the ref-
erential jump conditions at the non-material moving
singular surface curve. They will allow one to miode



