
1    INTRODUCTION 
 
The jump (also called the continuity) conditions at 
singular 2D surfaces are used in 3D continuum 
thermomechanics for proper modeling of such phe-
nomena as wave propagation, phase transition, strain 
localization, fracture, etc. We refer for example to 
Truesdell & Toupin (1960), Truesdell & Noll 
(1965), Kosiński (1986), Abeyaratne & Knowles 
(2006), Gurtin et al. (2010), and the references given 
there. 

In 2D shell thermomechanics some jump condi-
tions at singular 1D surface curves were formulated 
in the report by Makowski & Pietraszkiewicz (2002) 
and modified versions of the conditions were used 
by Eremeyev & Pietraszkiewicz (2009, 2011) to 
model phase transition phenomena in shells.  

Pietraszkiewicz (2011) worked out the refined re-
sultant thermomechanics of shells by direct through-
the-thickness integration of corresponding laws of 
3D rational thermomechanics proposed by Truesdell 
& Toupin (1960). The resultant 2D balance of ener-
gy in Pietraszkiewicz (2011) was completed with an 
additional 2D stress power called an interstitial 
working after Dunn & Serrin (1985). Such resultant 
2D balance laws and the entropy inequality of the 
resultant shell thermomechanics can be regarded as 
exact implications of corresponding 3D laws of ra-
tional thermomechanics. 

 

2   NOTATION 
 
In the undeformed (reference) placement the shell is 
represented by the regular smooth base surface M . 
It is assumed that in the deformed (current) place-
ment the base surface becomes also the regular 
smooth surface ( ) ( , )M t M tχ= , where χ  is the de-
formation function and t  is time. By x M∈  and 

( , ) ( )y x t M tχ= ∈  we denote corresponding place-
ments of a material particle of the base surface in the 
3D physical space E  with E  as its translation vector 
space. Then ox E= − ∈x  and oy E= − ∈y  are the 
respective position vectors of the surface points x  
and y  in an inertial frame (o, )ie , where o∈E  is an 
origin and i E∈e , 1,2,3,i =  are orthonormal vec-
tors. The base surface M  may be explicitly defined 
by ( )αθ=x x , where , 1,2αθ α = , are curvilinear 
surface coordinates. The surface M  is oriented by a 
choice of unit normal vector ( )xn . The space of all 
vectors perpendicular to ( )xn  is then the tangent 
space xT M  at x M∈ , and a vector field t  on M  is 
tangential if (x) xT M∈t  at every x M∈ . Given a 
regular smooth part MΠ ⊂  with a piecewise 
smooth boundary Π∂ , the outward unit normal νννν  at 
regular x Π∈∂  is directed outward of Π∂  and tan-
gent to M .  

Let ( )x Rϕ ∈ , ( )x E∈a , and ( )x E E∈ ⊗T  be 
smooth scalar-valued, vector-valued, and 2nd-order 
tensor-valued fields on M , respectively. Then the 
surface gradient operator Grad  applied to the fields 
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, ,ϕ a T  leads to ( ) xGrad x T Mϕ ∈ , a tangential vec-
tor field, ( ) xGrad x E T M∈ ⊗a , a mixed 2nd-order 
tensor field, and ( ) xGrad x E E T M∈ ⊗ ⊗T , a mixed 
3rd-order tensor field. Such surface gradient fields 
can be defined applying results given in Gurtin & 
Murdoch (1975) and Gurtin et al. (2010). 

The surface divergence Div  of a vector  
( )x E∈a  and a mixed 2nd-order tensor 
( ) xx E T M∈ ⊗S  fields on M  are defined respec-

tively by [ ]( ) tr ( )Div x Grad x=a P a  and 
[ ( )]Div x ⋅ =S c [ ( ) ]TDiv xS c  for any E∈c , where 
P  is the perpendicular projection onto M . 

With the above definitions the surface divergence 
theorems valid on regular smooth parts Π  of M  
can be given as modifications of those presented in 
Gurtin and Murdoch (1975),  
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where na = ⋅n a  and ( )(1/ 2) trH Grad= − P n  is the 

mean curvature at x Π∈ . 
 
 
3    MOVING NON-MATERIAL CURVE 
 
The global, resultant balance laws and entropy ine-
quality of shell thermomechanics formulated in 
Pietraszkiewicz (2011) each involves the material 
time derivative of a surface integral. In the absence 
of singular curves, the standard transport theorem on 
any fixed part of M  allows one to change the order 
of surface integration and material time differentia-
tion. But for the reference shell base surface contain-
ing a moving, non-material, singular curve the 
transport relation as well as the divergence theorems 
(2) have to be carefully extended to take into ac-
count the effect of the moving discontinuity. 

A surface curve moving on M  over a time inter-
val 0 1 0 1[ , ],I t t t t= < , is a one–parametric family 

( )C t  of piecewise smooth surface curves oriented 
consistently with the orientation of M , which are 
parameterized by the arc length coordinate s  intro-
duced by ( )sα αθ θ= . With each regular point 

( )Cx C t∈  we can associate the triad of orthonormal 
vectors: the tangent Cττττ , the normal C =n n , and the 
exterior normal C C= ×ν τν τν τν τ n . Velocity of ( )C t  rela-
tive to M  is a tangential vector field υυυυ  and its exte-
rior normal component CV = ⋅υ νυ νυ νυ ν  measures the 
speed with which the curve ( )C t  transverses the sur-
face M .  

Let Π Μ⊂  be an arbitrary fixed, regular, clo-
sed region of M  containing a portion of ( )C t  in its 
interior. The surface curve ( )C t  separates the region 

Π  into two time-dependent, closed, complementary 
subregions ( )tΠ −  and ( )tΠ +  such that 

( ) ( ) ( )t t C tΠ Π− +∩ = . Their boundaries consist of 
two parts ( )( ) ( ) \ ( ) ( )t t C t C tΠ Π∂ = ∂ ∪∓ ∓ . At each 
regular point of ( )C t  the exterior normal vector −νννν  
of ( )tΠ −∂  coincides with the unit vector Cνννν  of 

( )C t . Thus, the exterior normal velocity of ( )tΠ −∂  
is equal to V  on ( )C t  and vanishes on 

( ) \ ( )t C tΠ −∂ . Likewise, the vector +νννν  of ( )tΠ +∂  
coincides with C−νννν  of ( )C t , so that the exterior 
normal velocity of ( )tΠ +∂  becomes V−  on ( )C t  
and vanishes on ( ) \ ( )t C tΠ +∂ . 

Let a smooth time-dependent field ( , )x tΦΦΦΦ , with 
ΦΦΦΦ  belonging to any finite-dimensional vector space 
such as R , ,xT M  E , xE T M⊗  etc., is defined only 
in the interior of \ ( )M C t , but it need not be defined 
on ( )C t . But we suppose that at each instant t I∈   
one-sided finite limits of ( , )x tΦΦΦΦ  exist at regular 

( )Cx C t∈ . We write −ΦΦΦΦ  for the finite limit of ΦΦΦΦ  as 
C  is approached from Π −  and +ΦΦΦΦ  for the one as 
C  is approached from Π + . Then [[ ]] + −= −Φ Φ ΦΦ Φ ΦΦ Φ ΦΦ Φ Φ  
denotes the jump of ΦΦΦΦ  at ( )C t . If [[ ]]ΦΦΦΦ  does not 
vanish identically, the curve ( )C t  is said to be sin-
gular with respect to ( , )x tΦΦΦΦ  at time t . 

For the field ( , )x tΦΦΦΦ  smooth on the closed subre-
gions ( )tΠ −  and ( )tΠ + , by the Reynolds trans-port 
theorem for the smoothly evolving subregions 

( )tΠ ∓  with moving boundaries ( )tΠ∂ ∓  we have 
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From the equations (3) and (4) follows the referen-
tial form of the surface transport relation valid for 
any piecewise smooth field ( , )x tΦΦΦΦ  given on Π  in 
the presence of the singular curve ( )C t : 
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d
da da V ds

dt Π Π Π ∩
= −∫∫ ∫∫ ∫Φ Φ ΦΦ Φ ΦΦ Φ ΦΦ Φ Φɺ             (5) 

 Let us now extend the surface divergence theo-
rems (2) in the presence of the singular surface 
curve. As there is no time differentiation here, our 
discussion is confined to a fixed time. 

For example, let the surface mixed 2nd-order ten-
sor field ( , ) xx t E T M∈ ⊗S  be piecewise smooth on 
any fixed, closed MΠ ⊂  divided into two regular, 
closed, complementary parts Π −  and Π +  as above 
by the singular curve C . Again, −νννν  of Π −∂  be-
comes Cνννν  on C  and νννν  elsewhere on Π −∂ , and +νννν  
of Π +∂  becomes C−νννν  on C  and νννν  elsewhere on 

Π +∂ . Applying the surface divergence theorem (2)2 
separately on the parts Π −  and Π +  of Π , we ob-
tain 
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so that 

[[ ]] .CC
ds Div da ds

Π Π Π∂ ∩
= +∫ ∫∫ ∫ν νν νν νν νS S S             (7) 

Analogous arguments lead to the following ex-
tensions of the surface divergence theorems (2)1 and 
(2)3 in the presence of the singular surface curve: 

[[ ]] ,CC
ds Div da ds

Π Π Π∂ ∩
⋅ = + ⋅∫ ∫∫ ∫ν νν νν νν νt t t              (8) 
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4     JUMP CONDITIONS  AT  NON-MATERIAL  

SINGULAR  CURVE 
 

In the refined, resultant thermomechanics of shells 
developed by Pietraszkiewicz (2011) three surface 
fields on M  were used as independent field varia-
bles: the position vector ( , )x t E∈y  of the deformed 
base surface ( )M t  (or equivalently the translation 
vector ( , ) ( , )x t x t= −u y x  of M ), the gross rotation 
tensor ( , ) Orthx t +∈Q of the shell cross section, and 
the mean referential temperature field ( , ) 0x tθ > . In 
order to ensure that the resultant 2D balance of ener-
gy be an exact implication of 3D energy balance of 
rational thermomechanics, an interstitial working 
flux vector field ( , ) xx t T M∈w  was added to the re-
sultant 2D balance of energy. Then for any regular 
part MΠ ⊂  the referential 2D laws of shell 
thermomechanics - the balances of mass, linear and 
angular momenta, and energy as well as the entropy 
inequality - became the following exact resultant 
implications of corresponding 3D laws of rational 
thermomechanics:  
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In the resultant laws of shell mechanics (10) – 
(12) the following mechanical fields have been used: 

( , ) 0x tρ >  and ( , )c x t  are the (referential) resultant 
surface mass and mass production (densities), 

( , )x tf  and ( , )x tc  are the resultant surface force 
and couple vectors per unit mass of M , ( , )x tl  and 

( , )x tk  are the resultant surface linear momentum 
and angular momentum vectors per unit area of M , 

( , ) xx t E T M∈ ⊗N  and ( , ) xx t E T M∈ ⊗M  are the 
referential surface stress resultant and stress couple 
tensors of the Piola type with corresponding work-
conjugate referential surface stretch 

( , ) xx t E T M∈ ⊗E  and bending ( , ) xx t E T M∈ ⊗K  
tensors, while ( )o(.) / (.)Td dt= Q Q  is the co-
rotational time derivative, respectively. 

The resultant energy balance (13) and the entropy 
inequality (14) are expressed through additional re-
sultant surface fields: ( , )x tε  and  ( , )x tη  are the sur-
face internal energy and entropy (densities), ( , )r x t  
and ( , )s x t  are the surface heat and extra surface en-
tropy supply (densities), all per unit mass of M , 
while ( , ) xx t T M∈q  and ( , ) xx t T M∈s  are the sur-
face heat flux and extra entropy supply vectors per 
unit area of M , respectively.  

In the present contribution, within any fixed regu-
lar MΠ ∈  we allow a moving, non-material, singu-
lar surface curve ( )C t  on which some fields appear-
ing in (10) – (14) may not be differentiable, see 
section 3. In this case, applying (5) from (10) we ob-
tain the local referential balance of mass and jump 
condition. If we assume, as is usual in solid mechan-
ics, that mass is not created during the 
thermomechanical process, so that 0c = , then 

0ρ =ɺ , and ( )xρ ρ= . Additionally, [[ ]] 0ρ = . 
When a singular surface curve ( )C t  is admitted, 

in 2D balances of momenta (11) and (12) some 
terms containing time derivatives can be trans-
formed with the help of the transport relation (5) as 
follows: 
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To some other terms we apply the extended surface 
divergence theorems (7) and (8) which yields 
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where xGrad E T M= ∈ ⊗F y  is the surface defor-

mation gradient. Introducing (16), (17) and (18) into 
(11) and (12), and taking into account that for a co-
herent singular curve [[ ]] = 0y , we obtain the refer-
ential, local, resultant balances of momenta and dy-
namic boundary conditions derived in 
Pietraszkiewicz (2011), eqs. (30) and (33)1,2, and 
additionally the following dynamic jump conditions 
along ( )C t : 

[[ ]] [[ ]] , [[ ]] [[ ]] .C CV V⋅ + = ⋅ + =0 0ν νν νν νν νN l M k   (19) 

Similarly, in the presence of the singular surface 
curve ( )C t  some terms in the 2D energy balance 
(13) are transformed as follows: 
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Introducing (20) and (21) into (14) we obtain again 
the referential, local, resultant balance of energy and 
the thermal boundary conditions (48) and (34)1 of 
Pietraszkiewicz (2011), and additionally the follow-
ing energetic jump condition along ( )C t , with ac-
count of [[ ]] 0ρ = : 

[[ ]] [[ ]] 0 .CVρ ε + − ⋅ =ννννw q                   (22) 

Finally, in the presence of the singular surface 
cur-e ( )C t  some terms in the resultant entropy ine-
quality (14) are transformed similarly as in (21) and 
(22). Then (14) leads to the referential, local, result-
ant entropy inequality and entropic boundary in-
equality given in Pietraszkiewicz (2011), eqs. (57) 
and (58), and additionally to the following entropic 
jump inequality along ( )C t , with account of 
[[ ]] 0ρ = : 

[[ ]] [[ ]] 0.CVρ η
θ

− + ⋅ ≥ννννq
s               (23) 

 
 
5    CONCLUSIONS 

 
Within the resultant shell thermomechanics of 
Pietraszkiewicz (2011), we have formulated the ref-
erential jump conditions at the non-material moving 
singular surface curve. They will allow one to model 

some discontinuous thermomechanical processes in 
regular shells such as wave propagation or phase 
transition. In the derivation process it has been as-
sumed that the singular surface curve is coherent 
during the process, and that the base surface itself 
does not contain branchings, self-intersections, ab-
rupt thickness changes, technological junctions and 
other curvilinear irregularities of this type. Remov-
ing any of these assumptions would lead to more 
complex jump conditions to be discussed elsewhere. 
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