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ABSTRACT: Within the resultant s-field shell theory, the second approximation to the cemgeintary n-
ergy density of an isotropic elastic shell undengosmall strains is constructed. In this case,rédseiltant
drilling couples are expressed explicitly by theess$ resultants and stress couples as well as phtades of
the quadratic and cubic distributions of an intierdeviation vector. The refined 2D strain-stresd atress-
strain constitutive relations for shells are foumdwhich the effect of curvatures of the shell sudace is
consistently taken into account.

1 INTRODUCTION As a result, in the present report the simplest 2D
constitutive equations are refined by taking cdnsis

The general non-linear theory of shells, proposged bently into account the undeformed midsurface curva-

Reissner (1974) and developed by Libai and Simtures. The refinements are based on the second ap-

monds (1998) and Chidelewski et al. (2004), is proximation to the complementary energy density of

formulated in terms of three translations and threan isotropic elastic shell undergoing small strains

rotations of the base surface as independent field

variables. The theory also takes into account &vo r

sultant drilling couples with corresponding two2 COMPLEMENTARY ENERGY DENSITY

work-conjugate drilling bendings. The sixth (drill-

ing) rotation as well as the drilling stress angist In non-linear elasticity, from a few forms of the

measures become of primary importance in analysestored energy density several forms of the comple-

of irregular shells with kinks, branchings and/of i mentary energy density may be defined applying the

tersections, as well as in junctions of shell elet®ie Legendre transformation. For our purpose, it is-con

with beams, columns and/or stiffeners. venient to begin, after Koiter (1976), with thersid
For an isotropic elastic material undergoing smalenergy density per unit undeformed volume

strains, John (1965) proved that on the crossaecti W=W(g), where e=U-1=¢' is the relative

of a thin shell the transverse shear stressesrae ostretch tensor with the right stretch tenddr= U"

order smaller than the normal stresses. In the siXellowing from the polar decomposition of the de-

field shell model the 2D stress resultants andsstre formation gradient= = RU . Differentiating the den-

couples are defined by direct through-the-thicknessity W(g) we obtain

integration of 3D stress distribution applied oe th 5y 1 )

cross section. Thus, the constitutive equations for— =T ==(SU+US)=T'g, O g 1)

them should be formulated with a greater accuracyas 2 _

than the ones for the transverse shear resultadts awhere T = T' is the Jaumann stress tensSrs S’

the resultant drilling couples. is the 2° Piola-Kirchhoff stress tensog, are base
Yet, in most numerical finite element analyses otvectors of the 3D undeformed curvilinear coordi-

the geometrically non-linear problems of elastichatesé ,i =1,2,3,and 0 is the tensor product.

shells the simplest constitutive equations of the-| For an isotropic elastic solid, wheh and € are

ar five-field theory of plates without the drilling coaxial, Koiter (1976) proved that (1) can be ueiqu

couples and without any account of curvatures ef thly inverted to the forme =¢(T) provided that the

undeformed shell midsurface have been used. In thetationsR are at most moderate.

six-field shell theory the 2D strain measures axre d  The elastic range of many engineering materials

fined from the principle of virtual work only ongh is restricted to small strairgich thatf|e || <<, and

2D level without any relation to 3D strain measuresthe constitutive equations are governed by the



Hooke law. Since under small straifis=S , the wheret,,t are three directors attached to any point
complementary energy density_(S) following by  of N =x(M). As a resultn® andm“ can naturally

the Legendre transformation 9¥(e) becomes be represented in components relative to the whtate
_ _ 1 o baset,,t by
W,(S) = tr[Se(9)] W[ ] ==K ;,5'S" . 2)

2 N =N%t,+Qt, m7 =txM%t,+M“t.

For an isotropic elastic material the 3D elastimeo

pliances are The 2D straing, and bendingk, vectors work-

conjugate to the respective stress resultghtand
stress couplen? vectors are defined by

1
Kija :E[(l'ﬂ/)(gikgjl *q gjk)_ ¥g Ql}
. . . Ex = Yot = Uy, +(1_Q)aa = Eaﬁtﬂ + Eat 1
with E the Young modulusy the Poisson ratio, and .
9 =90, Ky =ax(Qu Q") = txKyut” +K,t

where 1 is the metric tensor of the 3D space and
ax() is the axial vector of the skew teng@r.

For what follows it is convenient to introduce the
referential deviation vectag(x,¢),

2 SOME SHELL RELATIONS

A shell is a three-dimensional (3D) solid body iden
tified in a reference (undeformed) placement with 2=Q'{-¢én=¢€’g,, e(,0)=0. 4)

thin region B of the physical space. The shell , ghe|i theory the rotational part of deformatien
boundarydB consists of three separable parts: thejascribed by the tens@ . Thus, it is natural to ap-

upperM ™ and lowerM ~ shell faces, and the lateral )\ "hore the modified polar decomposition Bfin
shell boundary surfac@B*. The position vectorx the form, see Pietraszkiewicz et al. (2006)
and y =x(x) of any material particle in the refer- ’ ' ’

ence and deformed placements, respectively, caf(x,{)=QMX)[1+O(x,§)], ©#O".

conveniently be represented by If the largest stretchy in the shell space is as-
x=x+&n, y=yXx)+l(x,§), ¥(x,0)=0. sumed to be small, thgi®||<<l. Let us also assume
the vectore to be one order smaller as compared
with h, so that(leJh)* << 1 Then consistently omit-
ting the corresponding small terms with respect to
the unity, the shell stress resultants and stress c
ples follow now from approximations

Here x and y are position vectors of some shell
base surfacéM and N = y(M) in the reference and
deformed placements, respectivefyjs the distance
from M along the unit normal vecton orienting
M such thaté O +h™ h* ], h=h"+h" is the shell
thickness, { is a deviation vector ofy from N, aB _ [Tow B a_ [ s
while x and y mean the 3D and 2D deformation N I—Sa Hhde, Q j— S’W“df’ ®)
functions, respectively. Geometry d@& is usually aB _ [Tcaw, B [
described in the normal coordinateslvI J-Sa Hyuede J- J-h’ ’
(69,8),a=1,2, such that the corresponding basey o _ [*/cav,, 5 y
vectors of M are given by a,=X,,, M _I— (STH e ME S
n=(1/2)¢%a,xa, leading to the surface metric whereps =72 - &b/ andp=|u’|.
a,, =&, [&, and curvaturd; =-a“ [, ; tensors.
Within the six-field theory of shelf?s presented in
Chr&cielewski et al. (2004), the referential internal
contact stress resultami, =n“v, and stress couple
m, =m“, vectors, defined at the edgiR of an
arbitrary part of the deformed base surfac
R=x(P),POM, but measured per unit length of
the undeformed edgéP having the outward unit
normal vector =v,a“?, are defined by

(6)

3 SECOND APPROXIMATION TO COMPLE-
MENTARY ENERGY DENSITY

®raking into account symmetries #fy, andS', the
guadratic expression (2) can be written as thesum
four terms each representing a part of 3D comple-
rgﬁntzg]g en§e¢rgy deg\%jty calculated from the stresses
a_ [ i a _ [ i = and S°. However, the stress com-
= : = X . ’ ’
n J'—h‘ SFgud, m J'—h‘ (xSTFgud () ponentS* acts on the shell surfacés= const par-

3 .
The unique 2D shell kinematics associated witfllel to the base surfack! . Although S* contrib-
M consists of the translation vectar and the Utes to the 3D complementary energy density, it

proper orthogonal (rotation) tens@, both describ- does not enter the resultant 2D equilibrium equatio

ing the gross deformation (work-averaged througPn M and does not contribute to the effective part
the shell thickness) of the shell cross section, W™ of W, associated with the resultants (5) and

(6). Thus,
y=x+u, t,=Qa,, t=Qn,



With the estimates (9) and (10) it follows that

_ 1 " . within the relative accuracy” we can approximate
W :2_“2|:Ab,6ﬂ/1p'¢ (MSWMZZ?)HQ(MSH Hg) - M only by two principal terms,
a _ 1 aB ap
+4R 5415 (155 (15™) |, M? = ¢, ZN"Q" +e,M¥c” +OENTE),  (12)
where Ay, = Kl where O(Eh*76°) means all the remaining terms
J IjKI1e=0 *

Let M be the middle surface of the shell in the ~ Eh2/76?3._Th%ﬂreIa£iﬁon indicates thal* can be es-
undeformed placement, so that =h* =h/2. As-  tablished if N**,M* and g, c” are known, and

sume also that there are no surface forces apatied that contribution of the drilling couples to theests
the upper and lower shell facdd*, and no body distribution across the shell thickness is of sarall

. . . H H ap q,
forces applied in the internal shell space. Then t§rder than contribution oN™ and M 2. _
within the bulk terms distribution of the stresses The 2D effective complementary energy density

eff . .
the shell space can, in fact, be approximatelyerepr = Of the shell can now be obtained by direct
sented by the resultant terms according to through-the-thickness integration of the correspond

p Loap 12 o ing 3D density,
SETV L= VT .
Wb = e o =] e de. (13)

2 (8)
uS"g’:lQ”f ), f({):é(l—in . Taking into account thal/u=1+¢&b +... and
h 2 h introducing (8) into (13) we can express the inte-
For thin isotropic elastic shells undergoing smaligrand of (13) by the infinite series of the resuita
strains John (1965) obtained concrete quantitativetress measures, curvatureshdf, material parame-
error estimates for stresses and their derivatives ters, as well as polynomials ofh" and
the case of vanishing surface and body forces. Witf", n=0,1,2,... With the relations (9) and (10) as
additional physically motivated estimates proposeavell as through-the-thickness integration we ate ab
by Koiter (1980), we can estimate orders of soméo estimate the order of any term appearing inrthe
fields appearing in shell theory as follows: finite series (13). This leads to the following con-
sistent expression foZ™ involving only two prin-

Posiu ~é , pm)f%,g’w ~En,$%~En0, (9 cipal terms ~ Ehy> and four secondary terms

~ Emp%0°:
h h h 2 B 92 eff_l 1 aB N AU 12 aBnp AU
=max — — . |— ./ ~ _~— 2. =—=A, —| NN +—M""M
4 'I'DM(L 'd VR’ ”J G << 1oy~ 1b; h ° h ’“"{2( h?

where ~ means “of the order of’L is the smallest +OENBM M —(N"ﬂbAM PH 4 M %P/ Np”)} (14)
characteristic length of geometric, extensional and L p

bending deformation patterns dh respectively,d Lol 1 670" + O(EMI26°

is the distance of internal shell points to thellshe hpm’”asQ Q (Em°F,

boundary, and/ is the common small parameter.  where the shear correcting facior=5/6.

~ Assuming tpglt the stresség‘;‘; entering defini-  The refined constitutive equations for 2D strain
tions (5) of N™ and (6) of M™ are of the same measures follow now from differentiation of (14)
order, from (9) we obtain the estimates with regard to appropriate resultant stress measure
N - Ehy, M% ~Eh%, Q7 ~Eh6. (10) axef

_ _1 M A A
Let €’ (¢) introduced in (4) be approximated by Eop = awa _EA’W#(N g bpMpﬂJ’bfl((M ﬂ)

the sum of quadratic and cubic polynomialséof 1 A (15)
——h~ '% 3
& (£)=ak(E)+c g (€), P AeppaM ™+ O167),

_4&? _5.(, 4 (11) axe 1 12 00 ,
(0=5 o= | Kaop = 3y = L Ay 1M DN+ BN
The assumptiorfle|h) << 1 above (5) means that in 1., A n 4
terms of & we have assigned orders of the ampli- _EbaA([?A/IN ”+O(E5’ j (16)
tudes in (11) to be g” ~ hc” ~ h@. Unfortunately, a4
we are not aware of any estimation fgf andc¢® E,=——=—A, Q" +O(/793). (17)
available in the literature for the geometricallynn 0Q agh

linear theory of elastic shells. The relations (17) can easily be solved @@t



Eh E v
Qa — a,s aaA E. +O(E 33 ) H apAu — (amaﬂ// + aa/xam + aaﬂaA/xj )
2+v) (Em&) 2(1+v) 1-v

The relations (15) and (16) constitute the set ofitroducing (27) into (19) yields the following con
eight linear inhomogeneous algebraic equations forttutive equations foM™:

eight non-symmetric componentd”’ and M“. 1 h?

They can always be inverted numerically in any parM“ = & ,H ¥ (— hE,,,,a” +—le)cﬁj

ticular coordinates?” provided that determinant of 3 12 (21)
8x 8 matrix of their coefficients does not vanish. +O(Ehn6°),

For example, if@” are the arc lengths of orthog-

onal lines of principal curvatures o1 , then where E, , means the symmetric part &, .

1
a11:a22:1’a12:0’\/5: 1’A1111:A2222:E !
1 1 4 CONCLUSIONS
1:—_,b2:—_,b1:b220, =A..=0,
o R'? R % A= Azziz We have presented the strain-stress and streis-stra
y 1+v constitutive equations for the geometrically non-
A= £ AL,=AL~A 2323:%’ (18) linear theory of an isotropic elastic shell whiate a

o ~ refined by the undeformed midsurface curvature.
where R and R, are principal radii of curvatures of They are based on the second approximation to the
M . With (18) the eight algebraic equations (15) andshell complementary energy density (14). In pasticu
(16) can then be written as two separate setswf folar, the constitutive equations for the resultanii-d

algebraic equations, which in matrix form read ing couples have been proved to be expressible ex-
plicitly by the 2D strain measures and amplitudes o
D,=AS,, D,=BS,, (19)  quadratic and cubic distributions across the shell

thickn f the intrinsi iation tor.
D, =[E11,E22’K11’K 22]T ,Sl=[N”,N SIVEOVE: T , ickness of the intrinsic deviation vecto

T T
D, =[EpEnK K o] S, =[NPNZMEM 2 Ak NOWLEDGEMENT
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can find the consistently refined constitutive equa
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