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Abstract    It is well known that distribution of displacements through the shell thickness 

is non-linear, in general. We introduce a modified polar decomposition of shell 

deformation gradient and a vector of deviation from the linear displacement distribution. 

When strains are assumed to be small, this allows one to propose an explicit definition of 

the drilling couples which is proportional to tangential components of the deviation vector. 

The consistent second approximation to the complementary energy density of the 

geometrically non-linear theory of isotropic elastic shells is constructed. From 

differentiation of the density we obtain the consistently refined constitutive equations for 

2D surface stretch and bending measures. These equations are then inverted for stress 

resultants and stress couples. The second-order terms in these constitutive equations take 

consistent account of influence of undeformed midsurface curvatures. The drilling couples 

are explicitly expressed by the stress couples, undeformed midsurface curvatures, and 

amplitudes of quadratic part of displacement distribution through the thickness. The 

drilling couples are shown to be much smaller than the stress couples, and their influence 

on the stress and strain state of the shell is negligible. However, such very small drilling 

couples have to be admitted in non-linear analyses of irregular multi-shell structures, eg. 

shells with branches, intersections, or technological junctions. In such shell problems six 

2D couple resultants are required to preserve the structure of the resultant shell theory at 

the junctions during entire deformation process.  

 

Keywords:  Drilling couple, Resultant shell theory, Geometrical non-linearity, Constitutive 

equations, Complementary energy, Second approximation 

 

 

1 Introduction 

Drilling couples M   are two-dimensional (2D) stress couple fields which appear in 

the resultant non-linear model of a shell. Such shell model was initiated by Reissner 

(1974), developed in a number of papers for example by Chróścielewski et al. (1992, 

1997), Ibrahimbegović (1997), Eremeyev and Pietraszkiewicz (2006, 2011), 

Pietraszkiewicz (2011), Birsan and Neff (2013), and summarized in monographs by Libai 

and Simmonds (1983,1998), Chróścielewski et al. (2004), and Eremeyev and Zubov 
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(2008), where further references are given. The explicit original definition of M   

proposed in section 3 of this report reveals that the drilling couples are generated by non-

linear part of tangential displacement distribution through the shell thickness. This is the 

reason why M   do not appear in most popular non-linear shell models based on kinematic 

constraints “material fibres, which are normal to the undeformed shell base surface, remain 

straight during shell deformation” or their equivalents as well as in the Cosserat type 

models with one deformable director, see for example Naghdi (1972), Pietraszkiewicz 

(1979, 1989), Altenbach and Zhilin (1988), Simo and Fox (1989), Rubin (2000), Bischoff 

et al. (2004), Antman (2005), or Wiśniewski (2010). Also in all classical linear models of 

elastic shells the resultant 2D stress couple vector does not have the normal (drilling) 

component by definition, due to identification of deformed and undeformed shell 

geometries, see for example Love (1927), Gol’denveizer (1961), Naghdi (1963), Green and 

Zerna (1968), or Başar and Krätzig (2001). 

In the non-linear resultant 2D shell model the local equilibrium equations are exact 

implication of the through-the-thickness integration of 3D equilibrium equations of non-

linear continuum mechanics. Then the 2D virtual work identity allows one to construct 

uniquely the 2D shell kinematics consisting of the translation vector and rotation tensor 

fields (six independent components) as well as the corresponding twelve 2D strain 

measures work-conjugate to the twelve 2D resultant stress measures, all defined on the 

shell base surface. The resultant shell model naturally includes three parameters of finite 

rotation as independent field variables and two drilling stress couples with corresponding 

two work-conjugate drilling bendings. All these fields become necessary in analyses of 

irregular shells with folds, branchings and intersections (Chróścielewski et al. 1997, 

Konopińska and Pietraszkiewicz 2007), when connecting shell elements between 

themselves (Pietraszkiewicz and Konopińska 2011) and with beams, columns and 

stiffeners, as well as in two-dimensional formulation of singular phenomena such as phase 

transition (Eremeyev and Pietraszkiewicz 2004, 2011), crack propagation, dislocations 

(Eremeyev and Zubov 2008), wave motion, etc. 

Yet, in almost all theoretical papers and numerical finite-element analyses of 

geometrically non-linear shell problems the simplest 2D constitutive equations of the 

classical linear theory of plates of Reissner (1944) type with only modest extensions have 

been used. Moreover, the constitutive equations for M   are either proposed without 

derivation in the form analogous to that for shear stress resultants Q  only with bending 
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stiffness D  and different correcting factor t , or are derived as for higher-order stress 

moments also denoted by M   or 3M   which meaning is different from the one of drilling 

couples as we understand them. In fact, we are not aware of any explicitly derived 

constitutive equations for the drilling couples M   available in the literature.  

In this paper we propose new explicit definition (16)2 of the drilling couples for 

shells undergoing small strains. It reveals that the drilling couples appear as a result of 

through-the-thickness integration of tangential stresses cross-multiplied by non-linear part 

of displacement distribution in the shell space. This explicit result becomes possible when 

we apply after Pietraszkiewicz et al. (2006) the modified polar decomposition (10) of the 

shell deformation gradient and isolate in (9) the intrinsic deformation vector which 

describes the non-linear part of displacement distribution through the thickness. 

In the resultant shell model 2D strain measures are defined only on the base surface, 

without any relation to 3D strain measures of non-linear elasticity. Thus, it is not possible 

to found our discussion here on the 3D strain energy density W  as in many publications 

on elastic shells. Instead, we are forced here to begin our discussion of 2D constitutive 

equations from the 3D complementary energy density Wc .  

Various forms of complementary energy in 3D nonlinear elasticity and associated 

variational principles following from that proposed by Fraeijs de Veubeke (1972) were 

discussed for example by Guo (1980), Atluri (1984), Reissner (1987), Ibrahimbegović 

(1993, 1995) or Wempner (1992). In some analogous 2D shell models constructed from 

3D ones by thickness kinematic constraints or 3D-to-2D degeneration the drilling couples 

and bendings were not present, see for example Atluri (1983), Wempner (1986), Simo and 

Fox (1989) or Ibrahimbegović (1994). In some other analogous shell models the drilling 

couples and bendings were included, but the constitutive equations for them were taken in 

the form similar as for shear stress resultants, see for example Chróścielewski et al. (1992, 

1997), Sansour and Bufler (1992) or Bischoff et al. (2004). The 2D drilling  stress couples 

and drilling bendings do not appear by definition in complementary shell models 

formulated directly on the base surface, such as in Altenbach and Zhilin (1988), Valid 

(1989), Gao and Cheung (1990) or Gałka and Telega (1992). 

Brief review of possible forms of Wc  in non-linear elasticity given in section 4 

indicates that even if W  is convex, its dual Wc  obtained by the Legendre transformation 

need not be unique. For an isotropic elastic material undergoing small strains Koiter (1976) 
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proved that the complementary energy density W W ( )c c T , where T  is the Jaumann 

stress tensor, is the unique quadratic function provided rotations of material elements are at 

most moderate. But under small strains T S , where S  is the 2
nd

 Piola-Kirchhoff stress 

tensor. In our discussion the effective part (27) of Wc  containing only tangential S  and 

transverse shear 3S  stresses acting on the shell cross section is used. 

For isotropic elastic shells undergoing small strains John (1965) obtained concrete 

qualitative error estimates for stresses and their derivatives. In particular, the stresses 3S  

were proved to be one order smaller than S . To assure the consistent approximation to 

Weff

c , distribution of  S  through the thickness should be approximated up to cubic terms, 

while for 3S  only quadratic distribution is appropriate. In section 5 such cubic 

approximation (41) of S  is constructed by analogy to refined statically and kinematically 

admissible stress distributions of the linear Reissner type shell theory, which were given by 

Rychter (1988). Applying the system of error estimates proposed by Koiter (1966, 1980), 

the through-the-thickness integration of Weff

c  with refined stress distributions gives the 2D 

complementary energy density eff

c  in the form of quadratic polynomial (47) of the 2D 

resultant stress measures. Two principal terms of (47) can be viewed as the consistent 1
st
  

approximation to the complementary energy density of the geometrically non-linear 

isotropic elastic shell. Such quadratic form of eff

c  is energetically equivalent to the 

consistent 1
st
 approximation to the elastic strain energy density of the shell, which within 

the classical linear theory of shells was proposed by Koiter (1960). The four secondary 

terms of (47) provide a consistent energetic refinement of the two principal terms. We call 

six quadratic terms of eff

c  the consistent 2
nd

 approximation to the complementary energy 

density of the geometrically non-linear isotropic elastic shells. This consistently refined 

form of eff

c  is new in the literature. The corresponding refined constitutive equations (56) 

- (58) for 2D strain measures are then obtained by differentiation of eff

c  with regard to 

appropriate resultant stress measures. 

To make the results more readable, in section 6 we present them in orthogonal lines 

of principal curvatures. It is explicitly shown that the 8 8  matrix of coefficients in the 

constitutive equations for the surface stretches and bendings ,E K   can be divided into 

two matrices 4 4  for which determinants are calculated. Determinant of the first matrix 

4 4  is always positive, while of the second one is positive provided that the principal 
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curvatures 1 2,R R  of the undeformed middle surface are not equal. In both cases we are 

able to solve the set of linear algebraic equations analytically and provide the consistently 

refined constitutive equations for physical components of the stress resultants and stress 

couples ,N M   in terms of  ,E K   and 1 2,R R . 

Finally, in section 7 we derive the constitutive equations (83) - (85) for the drilling 

couples M   following from their definition (16)2 , the constitutive equations (52)2 for 

M  , and the quadratic part of displacement distribution through the shell thickness. The 

drilling couples are estimated to be very small quantities of negligible order in analyses of 

regular shells. However, in case of irregular multi-shells one has to keep these small 

resultant fields in order to preserve the structure of six-field shell theory at the junctions. 

 

 

2 Notation and some exact shell relations  

A shell is a three-dimensional (3D) solid body identified in a reference 

(undeformed) placement with a region B  of the physical space. The shell boundary B  

consists of three separable parts: the upper M   and lower M   shell faces, and the lateral 

shell boundary surface B* . The position vectors x  and ( ) y x  of any material particle  

in the reference and deformed placements, respectively, can conveniently be represented 

by 

 , ( ) ( , ) .    x n y x xx y   (1) 

Here x  and y  are position vectors of some shell base surface M  and ( )N M  in the 

reference and deformed placements, respectively,   is the distance from M  along the unit 

normal vector n  orienting M  such that [ , ] ,h h h h h         is the shell thickness, 

  is a deviation vector of y  from N , while   and   mean the 3D and 2D deformation 

functions, respectively. In what follows we use the convention that fields defined on the 

shell base surface are written by italic symbols, except in a few explicitly defined cases. 

 Geometry of B  can be described in normal coordinates ( , ), 1,2,     such that 

the corresponding base vectors of M  and in B  are given by (see Naghdi 1963, 

Pietraszkiewicz 1979) 
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g x g g g g g

x
a = x a a = n = a a a n

a = a = = n
 (2) 

where   are contravariant components of the permutation tensor   on M , b  are 

mixed components of the curvature tensor b  of ,M  -1and ( ) 
    are geometric shifters, 

1

2
H b  is the mean curvature and  detK b  the Gaussian curvature of M . 

 Within the resultant non-linear theory of shells, formulated in the referential 

description and summarised by Libai and Simmonds (1998) and Chróścielewski et al. 

(2004), the respective 2D internal contact stress resultant n  and stress couple m  vectors, 

defined at the edge R  of an arbitrary part of the deformed base surface 

( ), ,R P P M   but measured per unit length of the undeformed edge P  having the 

outward unit normal vector  , are defined by  

 

*

*
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d , d .
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h

  
 

  
 
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  




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 

 

     
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   

 

Pn p

Pn p

n n n

m m m 

 (3) 

Here 3
3


   P p g p g  is the Piola stress tensor in the shell space, * 

n g  is the 

external normal to the reference shell orthogonal cross section *P  (see Konopińska and 

Pietraszkiewicz 2007, (A.13)),   

 p p  and     a . Then the resultant 2D 

equilibrium equations satisfied for any part P M  are 

 | | , ,  
        n f m y n c0 0  (4) 

where ( )|  is the covariant derivative in the metric of M , while f  and c  are the external 

resultant surface force and couple vectors applied at N , but measured per unit area of M . 

The resultant fields 
n  and 

m  require a unique 2D shell kinematics associated 

with the shell base surface M . As it was shown in Libai and Simmonds (1983, 1998), 

Chróścielewski et al. (1992, 2004), and Eremeyev and Pietraszkiewicz (2006), such 2D 

kinematics consists of the translation vector u  and the proper orthogonal (rotation) tensor 
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Q , both describing the gross deformation (work-averaged through the shell thickness) of 

the shell cross section, such that 

 , , ,   y x u t = Qa t Qn  (5) 

where ,t t  are three directors attached to any point of ( )N M . 

The vectors 
n , 

m  and ,f c  can naturally be expressed in components relative to 

the rotated base ,t t  by 

 
, ,

,

N Q M M M M

f f c c c c

        
  

   
  





      

   

n t t m t t t t t

f t + t c t t + t t + t .
 (6) 

The 2D components M  m t  are usually called the drilling couples. 

The shell stretch   and bending   vectors associated with the 2D shell 

kinematics (5), which are work-conjugate to the respective stress resultant 
n  and stress 

couple 
m  vectors, are defined by 

 
 

, , ( ) ,

ax , ,T

E E

K K K K


      

  
       

     

     

y t = u Q a t t

Q Q t t t t t





1
 (7) 

where 1  is the metric tensor of 3D space and ax( )  is the axial vector of a skew tensor ( ) . 

We call the 2D components K   t  the drilling bendings. 

 In the numerical analysis it is convenient to assume ,a n  to be orthonormal, so that 

,t t  remain orthonormal during shell deformation. 

 

3 Components of stress resultants and stress couples 

Let 
1 S , 1,2,3,ij T

i j i    S F P g g S  be the 2
nd

 Piola-Kirchhoff stress tensor, 

where Grad i
i  F g g  is the 3D deformation gradient tensor in the shell space. In 

convected coordinates ( , )   we have 1 k
k

  F g g  and Sij
i j  P FS g g , see 

Pietraszkiewicz and Badur (1963). Thus, the components of P  in the mixed tensor basis 

i jg g  coincide with Sij , although S P . In terms of Sij  the 2D resultants 
n  and 

m  

appearing in (3) take the form 

 S d , S d .i i
i i

    
 

 
     Fg Fgn m   (8) 
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In shell theory an initially straight and normal material fiber described by x n  

deforms into a generally spatially curved material fiber described in the deformed 

placement by the deviation vector  , see (1). For what follows it is convenient to utilize 

after Pietraszkiewicz et al. (2006) the intrinsic deformation vector ( ),e x defined by 

 e eT ,

    e e gQ n n  (9) 

where eQ  is a measure of deviation of the deformed curved material fiber, which initially 

has been straight n , from its approximately linear rotated shape Qn , see Fig. 1. The 

representation (9) is purely formal and does not introduce any approximation. 

 

 

Figure 1. Deformation of the shell cross section 

 

 Since in this formulation of shell theory the rotational part of deformation is 

described by the tensor Q , it is natural to apply here, in place of the usual polar 

decomposition F RU , the modified one in the form 

 ( ) ( ) ( ) ( )[ ( )]., , ,    F 1x Q x x Q x x   (10) 

In (10) the modified stretch tensor   satisfies det 0 , T   , and the modified 

relative stretch tensor   is also not symmetric, in general, 
i j T

ij  g g  . 

  Let us introduce the referential stress resultant and stress couple vectors 

 
S (δ ) d ,

( ) S (δ ) d .

T i k k
i i k

T i k k
i i k
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M M

     

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
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
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
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 (11) 

After some transformations the vector 
m  can also be given in the expanded form 
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 3 3S ( e)(δ ) e (δ ) e (δ ) di

i i i i i i
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        



             m a n .

 (12) 

The shell stress resultants and stress couples follow now from (11)1 and (12) leading to 
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3 3S ( e)(δ ) e (δ ) d

S e (δ ) d

i

i i i i

i
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 (14) 

The relations (13) and (14) are exact implications of the through-the-thickness integration 

of an arbitrary stress distribution in the shell space. 

 Most shell models are constructed with the use of kinematic constraints “material 

fibres initially normal to the shell base surface remain straight during deformation 

process”. In such shell models e 0  and the drilling couples (14)2 disappear by definition. 

 In the resultant geometrically non-linear shell theory the largest stretch in the shell 

space is assumed to be small, so that || ||<<1 . Let us also assume here the length of 

intrinsic deformation vector e  to be at least one order smaller as compared with h, so that 

2(| |/ ) 1h .e  In fact, we shall show in section 5 that in case of small elastic strains 

tangential components of e  are of much smaller order. Then omitting the corresponding 

small terms with respect to the unity, we obtain 
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3 3 3
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3

3S ( e) S ( e ) d S d

(S e d
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The explicit definition (16)2 of M   have become possible because in (9) we have 

introduced explicitly the vector e  and have applied the modified polar decomposition (10) 

of F . The relation (16)2 indicates that in the geometrically non-linear shell theory M   can 

be established if S 

   and e  are known. We discuss this in more detail in section 7. 

 Libai and Simmonds (1983, 1998) introduced M   implicitly as  M t  as well, but 

their resultant stress couple 
M  was defined relative to the deformed, non-material, 

weighted surface of mass of the shell, not relative to the deformed material shell base 
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surface ( )N M  as in this report. However, in some papers, see for example Naghdi 

(1972), Paimushin (1986), Bishoff et al. (2004) or Chróścielewski et al (2010), the 2D 

fields M   or 3M   are defined as the resultants of first moments of shear stresses 

3S d  




 . Such fields have other mechanical meaning than our drilling couples M  . 

 

4 3D complementary energy density  

In non-linear elasticity the internal energy of the body is usually described by the 

stored energy density W W( ) F  per unit volume of B  such that W/  P F . In our 

approach the 2D vectorial stress measures (8) are the primary fields defined by direct 

through-the-thickness integration of the Piola stress tensor P . Hence, for establishing 2D 

constitutive equations from their 3D form it is necessary to use the complementary energy 

density.  

The first choice of such density W W ( )c c P , per unit volume of B , would be the 

one which is related to the strain energy density W( )F  by the Legendre transformation 

 W ( ) : W( )c  P P F F  , (17) 

where : tr ( )TP F P F . Existence of such W ( )c P  crucially depends on whether the stress–

strain relation ( )P P F  can be uniquely inverted to the form ( )F F P . Only then from 

(17) one could establish uniquely W ( )c P  from which W /c  F P . Unfortunately, unique 

invertibility of the tensor function ( )P P F  is not assured, because the scalar-valued 

function W W( ) F  is not convex, in general. Only some special cases were discussed in 

several papers by Zubov, Koiter, Ogden, Gao, Shield, Wempner, and others. In particular, 

in the case of an isotropic elastic material Zubov (1976) proved that there are four different 

branches of such an inversion. But when the angle of rotation   of principal axes of strain 

is such that cos i.e.      , only one branch of the four is realized. In such a case 

the inverted tensor function ( )F F P  can be uniquely established, at least in principle, 

provided that the tensor T
P P  has distinct eigenvalues at any point of the body. Ogden 

(1977) independently confirmed that such a unique inversion is possible under the latter 

condition. These requirements suggest serious difficulties in constructing explicitly the 

unique function W ( )c P . 
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 For our purpose it is more convenient to use, after Koiter (1976), the stored energy 

density W W( )  , where T  U 1   is the relative stretch tensor with the right stretch 

tensor TU U  following from the polar decomposition F RU . Differentiating the 

density W( )  we obtain 

  
W 1

T ,
2

ij

i j


    


T SU US g g


 (18) 

where TT T  is the Jaumann stress tensor. But even in this case inversion of ( )T T   is 

still complex for anisotropic elastic materials, because then T  and   are not coaxial, in 

general. Only in the case of an isotropic elastic material, when T  and   become coaxial, 

one can invert in principle the stress-strain relation to ( ) T  , and applying the Legendre 

transformation one can construct explicitly W ( )c T  such that W /c  T , provided that 

rotations of material elements are at most moderate, see Koiter (1976). 

 The elastic range of many engineering materials is restricted to small strains such 

that || || <<1  and the constitutive equations are governed by the Hooke law. In such case 

W( )  becomes the positive definite, homogeneous, convex, quadratic function of the form 

 
1

W( ) L , L =L =L =L ,
2

ijkl ijkl jikl ijlk klij

ij kl    (19) 

where Lijkl  are components of the 4
th

-order tensor of elastic moduli. The linear constitutive 

equations T W/ Lij ijkl

ij kl      can now be easily inverted to obtain K Tkl

ij ijkl  , where 

Kijkl  are components of the 4
th

-order tensor of elastic compliances, which satisfy the 

relation 

  
1

K L .
2

klpq p q q p

ijkl i j i j      (20) 

The corresponding complementary energy density follows from the Legendre 

transformation and takes the form 

 
1

W ( ) : ( ) W[ ( )] K T T
2

ij kl

c ijkl .  T T T T   (21) 

It can easily be seen from (18) that within small strains T S , so that also their 

components T Sij ij  in the undeformed tensor base i jg g . 

 For an isotropic elastic material the 3D elastic moduli and compliances are 

 
2

L = g g +g g + g g
2(1+

ijkl ik jl il jk ij klE 

 

 
 
   

 (22) 
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  
1

K (1 ) g g +g g 2 g g ,
2

ijkl ik jl il jk ij kl
E

    
 

 (23) 

with E the Young modulus and   the Poisson ratio. 

 The restriction to small elastic strains used in (19) and (21) does not reduce the 

non-linear elasticity to the linear theory of elasticity, because the rotational part of 

deformation 1= 
R FU  is still allowed to be moderate, see Koiter (1976). 

 Taking into account symmetries of Kijkl  and Sij , the quadratic expression (21) can 

be written as the sum of four separate terms each representing a part of 3D complementary 

energy density calculated from the stresses 3 3S , S S    and 33S , so that  

 

  

       

3 3 3 3 33 33 33
3 3 33 3333

3 3
3 3

33 33 33
33 3333

1
W K S S +K S +S S +S 2K S S +K S S

2

1
μS μ μS μ 4 μS μS

2

2 ( S )( S ) ( S )( S ) ,

c

A A

A A

      
   

         
        

  
  



  
 

     


        

 (24) 

where 

 
33 33

3 3

3 3 3 3 3333 3333

S S K K

S = S K K

, A , A ,

, A , A .

        

          

    

      





        

   
 (25) 

In particular, for an isotropic linearly elastic solid 

 

  3 3

33 3333

1 1
(1 ) + 2 , ,

2

1
, .

A a a a a a a A a
E E

A a A
E E

         

 


 




    
  

  

 (26) 

However, definitions (13) - (16) of the resultant surface stress measures are given 

through the stress components 3S , S   alone, because only those stress components act 

on the shell cross section and their resultants enter the resultant shell equilibrium equations 

(4). The stress component 33S  acts on the shell surfaces const   parallel to the base 

surface M . Although 33S  contributes to the 3D complementary energy density (24), it 

does not enter the resultant 2D equilibrium equations and does not contribute to the 

effective part Weff
c  of Wc  associated with the resultants (13) - (16). Thus,  

        3 3
3 3

1
W μS μ μS μ 4 μS μS .

2

eff
c A A         

        
      
 

 (27) 

This effective part of Wc  will be used to derive the constitutive equations of elastic shells. 
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Let us assume, for definiteness, that the base surface M  is taken as the middle 

surface of the shell in the undeformed placement, that is / 2h h h   . This particular 

choice of M  will considerably simplify all transformations given below. We also assume, 

for simplicity, that there are no surface forces applied at the upper and lower shell faces 

M  , and no body forces applied in the internal shell space (otherwise these loads would 

appear explicitly in 2D constitutive equations, which we do not want). Then the exact 

reduction of 3D stress field to its 2D resultants defined by (15) and (16) means that to 

within bulk terms distribution of pseudo-stresses in the shell space can, in fact, be 

approximately represented up to cubic terms in the thickness direction according to 

 

3

2
3

2

1 12
S ( ) ( ) ,

1 3 4
μS ( ), ( ) 1 ,

2

N M Q C
h h

Q f f
h h

     


 

  


 

    

 
  

 

 (28) 

where ( )Q   are quadratic and ( )C   are cubic polynomials of   which should satisfy 

the relations 

 
( ) ( ) , ( ) 0 , ( ) 0 ,

( ) ( ) , ( ) 0 , ( ) 0 .

Q Q Q d Q d

C C C d C d

   

   

      

      

 

 

 

 

   

    

 

 
 (29) 

 The approximately cubic tangential stress distribution (28)1 with quadratic and 

cubic parts having properties (29) satisfy definitions (15)1 for N  and (16)1 for M  . This 

distribution can be used to derive the approximate expressions for the drilling couples 

following from (16)2 . 

 Unfortunately, we are not aware of any discussion in the literature of possible forms 

of ( )Q   and ( )C   in the geometrically non-linear theory of elastic shells. Looking for 

suggestions as to appropriate forms of ( )Q   and ( )C  , let us recall some results 

available in the linear shell theory.  

 

5 The linear theory of shells 

In the linear theory of shells not only strains in the shell space are small, but also 

translations and rotations are assumed to be small, 

  max || || , || || 1,
x M




 u  (30) 
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where  i  is the linearised rotation vector, with   the angle of rotation about the 

rotation axis described by the eigenvector i  of Q , i.e.  Qi i .  

 In components we have 

 , ( ) .u w  

             u a n n a n a n  (31) 

Since for small rotations  Q 1 , following Chróścielewski et al. 2004, Chapter 2.8, 

we can linearize the kinematic relations (7) with regard to u  and   to obtain 

 
|, ,

, , ,

E u b w w

E w b u

       

 

      

 

 

      

      





u a n

u n a
 (32) 

 
|, ,

, , .

K b

K b

 

      

 

    

   

  

   

   





a

n
 (33) 

Then linearization of component form of equilibrium equations (4) yields 

 
| 0 , | 0 ,

| 0 , | ( ) + 0 .

N b Q f Q b N f

M b M Q c M N b M c

     

   

        

     

     

      
 (34) 

Please note that within such resultant linear shell theory twelve linear kinematic 

relations (32) and (33) involve the drilling rotation   and the drilling bendings K while 

six linear equilibrium equations (34) include also the drilling couples M  . This was 

explicitly shown already by Reissner (1974).  In classical linear shell theories of Kirchhoff-

Love and Timoshenko-Reissner types the components  , K  and M   do not appear in 

analogous shell relations, see for example Love (1927), Naghdi (1972), Basar and Kratzig 

(2001), Ciarlet (2005).   

However, even within such extended six-field linear theory of shells we are not 

aware of any discussion on possible forms of ( )Q   and ( )C   available in the 

literature. Leaving such a discussion for future work, for the purpose of this report we shall 

use some results available for a simpler version of the linear shell theory. 

 Analysing accuracy of the linear Reissner-type shell theory, Rychter (1988) 

constructed consistently refined 3D displacement and stress fields in the shell as 

polynomials of 2D shell solutions. The refined 3D fields were then compared to unknown 

solutions of linear elasticity in energy norm using the hypersphere theorem of Prager and 

Synge (1947) (see also Synge 1957) and appropriate inequalities to obtain refined global 

error estimates. It was found, in particular, that the consistently refined kinematically 



 

15 

 

admissible tangential components of 3D displacement field are (see Rychter 1988, Eqs. 

(26a), (27a,b,c,d)) 

 

2 3

2 3

3
33 3333

( ) ( ) 0

4 1 8 6
û ( , ) ( ) ( ) ( ) ( )

3 5

5
, , , , / | ,

4 48 24 1

u q c
h h h

h h
q D E c D K hE D L L a

    

    

    

       

  
      






   
       

   

    


 (35) 

where symbols ( ) 3 ( )
ˆ , , , , , , , , , ,u x t h c d C 

           of Rychter (1988) have been 

changed here into the respective symbols ( ) ( )û , ,2 / , ,2 , , , , , ,h u h q c D E E K 

         

used in this report. Within the consistent approximation (35) the 2D components ( )u 

   

and ( )

   of the linear theory of shells of Reissner type can be interpreted through the 

kinematically admissible 3D components û ( , )

    of linear elasticity by 

 ˆ ˆ( ) u ( , ) , ( ) u ( , ) .u d d   

            
 

 
    (36) 

The corresponding consistently refined statically admissible tangential pseudo-

stresses of the linear shell theory of Reissner type take the form (see Rychter 1988, eqs. 

(30a), (36)2) 

 

 

2 3

( | ) ( | )3 2 3

33 33 3333

0

1 12 4 1 8 6
,

3 5

2
/ |

2(1 ) 1

N M H q c
h h h h h

E
H L L L L a a a a a a

    

    

         



  




 


    
          

    

 
     

  

 (37) 

where   are statically admissible components of 3D symmetric stress tensor of linear 

elasticity. It is easy to check that the stress field (37)1  is compatible with definitions N  

and M   following from linearization of (15)1 and (16)1 , 

 , .N d M d     

   
 

 
          (38) 

The eqn. (35)1 suggests that within the linear shell theory of Reissner type 

components e ( )   of the intrinsic deviation vector e  introduced in (9) can be consistently 

approximated by the following quadratic and cubic polynomials: 

 
2 3

2 3

4 1 8 6
e ( ) ( ) ( ) , ( ) , ( ) ,

3 5
k q g c k g

h h h

     
          (39) 

which satisfy the relations (29). In particular, the function ( )k   is even while ( )g   is odd 

with regards to  , 

 ( ) ( ) , ( ) ( ) .k k g g         (40) 
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Since orders of ,q c   following from (35)2,3 seem to be very small, the values of 

M   calculated from (16)2 would be very small as well in the linear six-field shell model. 

This suggests that consistently refined 3D tangential displacement and stress fields (35)1 

and (37)1 , which are appropriate for the Reissner type linear shell model, should also be 

adequate for the resultant six-field linear shell model. 

 

6 The geometrically non-linear theory of shells 

The bulk distribution of S 
   given in (28)1 does contain only intrinsic resultant 

2D variables. Thus, when strains are small everywhere in the shell space, the pseudo-

stresses can still be refined by quadratic and cubic terms analogous to those appropriate for 

the Reissner type linear shell model in (37)1, 

 ( | ) ( | )3

1 12
S ( ) ( ) .N M H k q g c

h h

    

              (41) 

For thin isotropic elastic shells undergoing small strains John (1965) obtained 

concrete quantitative error estimates for stresses and their derivatives in the case of 

vanishing surface and body forces. With additional physically motivated estimates 

proposed by Koiter (1960, 1966, 1980), we can estimate orders of some fields appearing in 

such small-strain shell theory as follows: 

  

3
3 3

2

2 4

2 2

1
, , S , S ,

min , , , max , , , , 1,

1 1
1, , ,

E K
x M M

A A E E
E E

h h h
L l L L

L d R

a b b H K
R h R h

 
  

 
   


 

  

 


 

 
    

 x
 (42) 

where  means “of the order of”, l  is the characteristic length of geometric patterns of M, 

andE KL L  are the characteristic lengths of extensional and bending deformation patterns 

on M, respectively, d  is the distance of internal shell points to the shell boundary B , and 

  is the common small parameter. 

 Assuming that the stresses S  entering definitions (15)1 of N  and (16)1 of M  

are of the same order, from (28) and (42) we obtain the estimates 

 2, , .N Eh M Eh Q Eh      (43) 
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 We have assumed above (15) that in case of small strains 2(| |/ ) 1h .e  This means 

that in terms of   defined in (42)2 we have assigned orders of the amplitudes in (39) to be 

q c h   . But now from (35)2,3 and (43) follow much stronger estimates for these 

amplitudes ,q c h    and their surface derivatives 2

( | ) ( | )q / L ,c     . 

These estimates together with H E  and ( ) ( )k g h   indicate that the quadratic 

and cubic terms in (41) are of the relative order of 2  and 2h , respectively, as compared 

with two principal terms. 

The 2D effective complementary energy density eff
cΣ  of the shell can now be 

obtained by direct through-the-thickness integration of the corresponding 3D density, 

 W .eff eff
c cΣ d 




   (44) 

Taking into account that 2 21/ 1 (4 ) ...b H K
        and introducing (28)2 

and (41) into (27), we can express the integrand of (44) by infinite series of the resultant 

stress measures, curvatures of M , material parameters, as well as polynomials of nh  and 

, 0,1,2,...n n  , such that  

 

 

   

   

     

( | ) ( | )2

( | ) ( | )2

3 3

1
W 1 ...

2

1 12
( ) ( )

1 12
( ) ( )

1 1
2 1 ... ( ) ( ) .

eff
c b A

b N M hH k q g c
h h

b N M hH k q g c
h h

b A b Q f b Q f
h h


 

    
     

    
     

      
      

 

    

    

      

  

 
     

 

 
     

 

    

 (45) 

With the estimates (42), (43) and those given below (43) we are able to estimate the 

order of any term appearing in the infinite series (45). To speed-up the analysis, one should 

note that only even terms containing n  with 0,2,4,...n   in (45) should be integrated in 

(44), because integrals of odd terms of (45) containing n  with 1,3,5,...n   vanish 

identically in (44) for our symmetric bounds of integration / 2h . Performing integration 

in (44) with (45) we should also take into account the following relations: 
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3 3
2 2 3

2 2 2

4 5

( ) , ( ) 0 , ( ) 0 ,

1
( ) , ( ) , ( ) ,

20 45 350

6 4 4
( ) , ( ) , ( ) ,

5 45 175

1 2
( ) , ( ) ( ) , etc. ,

210 175

f d h k d g d

h h
f d k d g d h

f d h k d h g d h

k d h k g d h

      

        

     

      

  

  

  

  

  

  

 

 

  

  

  

 

  

  

  

 

 (46) 

The outcome of such an elementary but involved estimation and through-the-

thickness integration procedures, which we do not reproduce here for brevity of 

presentation, gives the following two principal terms 2Eh  and four secondary terms 

2 2Eh  :  

 2

2 3
3 3

1 1 12

2

1 1
2 ( ),

eff
c

s

Σ A N N M M b N M N b M M b N
h h

A Q Q O Eh
h

            
   

 
   



  
      

  

 

 (47) 

where (.)O  means “of the order of “ and the shear correcting factor 5/ 6s  .  

One would expect that within the higher accuracy 2 3( )O Eh   of eff

c  there should 

also appear some terms containing the quadratic and cubic distributions of stresses through 

the thickness. But it is ease to check that terms of (47) with even functions ( )k   and 

( )g   disappear during the integration process according to formulae (46)2,3 . Thus, higher 

order terms of the stress distribution (41) do not appear in the refined form of eff

c . 

 Two first terms in the first row of (47) take into account the principal ingredients of 

the 2D shell complementary energy density,  

 ( ) ( ) ( ) ( ) 2 2

2

1 1 12
( ),

2

eff
cΣ A N N M M O Eh

h h

   
  

 
   

 
 (48) 

where due to symmetries of A  only symmetric parts of 2D stress measures 

( ) ( )andN M   are present. The eq. (48) leads to the corresponding constitutive 

equations 

 

( ) 2
( ) ( )

( ) 2
( ) ( ) 3

1
( ),

12
.

eff
c

eff
c

Σ
E A N O

hN

Σ
K A M O

hM h


 


 







  


  
    
  

 (49) 
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 To invert (49) for ( )N   and ( )M   one has to find components H  of a 2D 4
th

-

order surface elasticity tensor which are dual to the compliances A  in the sense 

  
1

2
H A .    

          (50) 

For the isotropic linearly elastic material with compliances (26)1 it is easy to find that 

H  satisfying (50) are  

 
2

.
2(1 ) 1

E
H a a a a a a      

 

 
   

  
 (51) 

Then we can invert the constitutive equations (49) and obtain 

 
3

( ) 2 ( ) 2 2
( ) ( )( ), ( ).

12

h
N hH E O Eh M H K O Eh   

       (52) 

Please note that H  in (52) do not coincide with elasticities A  calculated 

on M  directly from (22) under the condition 0  . The elasticities H  correspond to 

the plane stress state in the shell space as discussed in Pietraszkiewicz (1979), section 6.1. 

In the present approach the plane stress state is automatically induced by the invertibility 

requirement (50). 

The geometrically non-linear theory of thin isotropic elastic shells based on (48) 

can be called the consistent first approximation to the complementary energy density of the 

geometrically non-linear isotropic elastic shells. Within the error 2 2( )O Eh   the density 

(48) provides the constitutive equations only for symmetric parts ( ) ( )andN M   of 2D 

stress resultants and stress couples. The drilling couples M   can be calculated from (83) 

with accuracy to the skew part [ ]M   which should satisfy the third scalar moment 

equilibrium equation following from (4)2. Then Q  can be established solving two 

tangential scalar moment equilibrium equations following from (4)2 .  

The virtual work identity based on remaining three force equilibrium equations 

requires the translation vector u  to be the only kinematic field variable, while the rotation 

tensor Q  becomes entirely expressible through u . This version of shell theory can be 

shown to be energetically equivalent to the one based on the consistent first approximation 

to the shell strain energy density developed in many historical papers, convincingly 

presented for the classical linear theory of shells by Koiter (1960) and summarised within 

the geometrically non-linear theory of thin elastic shells in Pietraszkiewicz (1989). In FEM 

numerical analyses such 3-field shell model (of the Kirchhoff-Love type) requires 1C  
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interelement continuity and second derivatives of the translations appear as nodal 

variables, so that such finite elements become complex and numerically inefficient. 

 The remaining four secondary terms in (47), which are 2 2Eh  , provide the 

consistent energetic refinement, compatible with the estimates (42) and (43), of the first 

two principal terms of (47). These secondary terms take into account additional 

complementary energies following from the transverse shear stress resultants Q  as well 

as from coupling between the stress resultants N  and stress couples M  due to the 

undeformed midsurface curvature. We can call (47) the consistent second approximation to 

the complementary energy density of the geometrically nonlinear isotropic elastic shell.  

Within the error 2 3( )O Eh   the shell theory based on (47) cannot be regarded as 

equivalent to the one based on the consistent second approximation to the elastic strain 

energy density of the shell proposed by Pietraszkiewicz (1979) and extensively discussed 

by Badur (1984). In these works shell kinematics was first simplified by assuming the 

linear distribution of displacements through the shell thickness. The error of such an 

assumption cannot be precisely estimated. Then 2D strain measures were defined on M  

from expansion of 3D Green strain tensor 
1

= ( )
2

T E F F 1  in the thickness direction. The 

resulting 2D strain measures were regarded as the primary fields. In the second 

approximation to the shell strain energy density there appeared also second-order 2D strain 

measures   and corresponding second-order couple stress fields K  work-conjugate to 

 , while 2D strains 33  and bendings 33  at M  were eliminated through the additional 

assumption of plain stress.  

In our present approach leading to (47), only twelve components of 2D stress 

measures ,N Q  , M , M   acting on the shell cross section are the primary fields, 

while twelve 2D strain measures , ,E E K   , K  are constructed uniquely only on M  

through u  and Q  as 2D fields work-conjugate to the corresponding 2D stress measures. 

Additionally, by definition (16)2 , M  are expressible through ,N M   and amplitudes 

,q c   of the quadratic and cubic tangential components of the intrinsic deviation vector 

e . Thus, within the second-order accuracy of the shell complementary energy density the 

resultant 2D stress and strain measures introduced in this paper are not the same as those 
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introduced in Pietraszkiewicz (1979), and both sets of surface measures cannot be 

identified. 

 The constitutive equations for 2D strain measures should now follow from 

differentiation of (47) with regard to appropriate resultant 2D stress measures. To perform 

derivative of the tensor function ( )F N  with regard to N  let us recall the general rules 

of differentiation of tensor functions given in Pietraszkiewicz (1974) according to which  

   0

( )
for any ,x x

F N d
B F N B | T M T M R .

dN


  


 





    


Β  (53) 

For the linear tensor function  
1

F N A b N M
h

   
  appearing as the fifth term of  

(42) we obtain 

 

 

0

1
( ) ,

( ) 1 1
| ,

F A b N B M
h

dF
A b B M b A M B

d h h

   
 

     
    

 






 

 
   

 

 (54) 

so that 

 
( ) 1

,
F N

b A M
hN


 
 





 (55) 

with similar formula for derivative of the fourth term in (47) with regard to M  . 

 The constitutive equations for , andE K E    can now be calculated by 

differentiating (47) with (55),  

   31 1
( ),

eff
cΣE A N b M b M b A M O

h hN

      
     




     


 (56) 

 3

2

1 12 1
,

eff
cΣK A M b N b N b A N O

h h hM h

      
     




    
        
    

 (57) 

  3
3 3

4
.

eff

s

Σ
E A Q O

hQ


  





  


 (58) 

 The constitutive equations (58) can easily be solved for Q  with the help of (20) 

and (26), which leads to 

 3 3 3 3 3 3 3

0( ) ,
2(1 )

s

E
Q hC E O Eh C L | a .       

  


   


 (59) 

 The relations (56) and (57) constitute the set of eight linear inhomogeneous 

algebraic equations for eight non-symmetric components N  and M . It seems to be 

difficult to solve them analytically for an arbitrary system of surface coordinates  , 

although such solution can always be performed numerically for any particular choice of 
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coordinates   provided that determinant of 8 8  matrix of coefficients of (56) and (57) 

does not vanish.  

 

7 Constitutive equations in lines of principal curvatures 

 To be more specific, let the surface coordinates   be arc lengths of orthogonal 

lines of principal curvatures of M . Then 

 

1 2 1 2

11 22 12 1 2 2 1

1 2

1111 2222 1122 1212 1313 2323 1112 2212

1 1
1, 0 , 1, , , 0 ,

1 1
, , , 0 ,

2

a a a a b b b b
R R

A A A A A A A A
E E E

 

         


        

 (60) 

where 1R  and 2R  are principal radii of curvatures of M , and other values of A  follow 

from symmetries of the surface elastic compliances. In such coordinate system the 

covariant and contravariant components become indistinquishable. Then particular 

components of andE K   following from (56), (57) and (60) are  

 3

11 11 22 11

1 2

1 1 1
( ) ,E N N M O

Eh R R
 

  
      

  
 (61) 

   3

12 12 21 12

1 2

1 1 1
( ) ,

2
E N N M O

Eh R R




  
      

  
 (62) 

   3

21 12 21 21

1 2

1 1 1
( ) ,

2
E N N M O

Eh R R




  
      

  
 (63) 

           3

22 22 11 22

1 2

1 1 1
( ) ,E N N M O

Eh R R
 

  
      

  
 (64) 

 

   3

11 11 22 113

1 2

12 1 1 1
+ ( ) ,K M M N

Eh Eh R R h


 

 
    

 
 (65) 

   3

12 12 21 123

1 2

6(1+ ) 1 1 1
( ) ,

2
K M M N O

Eh Eh R R h

  


 
     

 
 (66) 

   3

21 12 21 213

1 2

6(1+ ) 1 1 1
( ) ,

2
K M M N O

Eh Eh R R h

  


 
     

 
 (67) 

   3

22 22 11 223

1 2

12 1 1 1
( )K M M N O .

Eh Eh R R h


 

 
     

 
 (68) 
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One should note that 12 21E E  in (62) and (63) as well as 12 21K K  in (66) and (67). Thus, 

within the consistent second approximation to eff

c  the 2D strain measures are defined as 

non-symmetric surface fields on M . 

 The constitutive equations (61) - (68) can be written in the matrix form 

 ,D CS  (69) 

where 

 
11 12 21 22 11 12 21 22

11 12 21 22 11 12 21 22

[ , , , , , , , ] ,

[ , , , , , , , ] ,

T

T

E E E E K K K K

N N N N M M M M





D

S
 (70) 

 

 C

1 2

1 2

1 2

1 2

3 3

1 2

3

1 2

1 1 1 1
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1 1 1 1 1
0 0 0 0 0

2 2 2

1 1 1 1 1
0 0 0 0 0

2 2 2

1 1 1 1
0 0 0 0 0

1 1 1 12 12
0 0 0 0 0

1 1 1 6(1+ ) 6(1+
0 0 0 0

2

Eh Eh Eh R R

Eh Eh Eh R R

Eh Eh Eh R R

Eh Eh Eh R R
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Eh R R Eh



  

  





  

 
  

 

   
 

 

   
  

 

 
   

 

 
  

 

 
 

 
3

3 3

1 2

3 3

1 2

)
0

1 1 1 6(1+ ) 6(1+ )
0 0 0 0 0

2

1 1 1 12 12
0 0 0 0 0

Eh

Eh R R Eh Eh

Eh R R Eh Eh

  



 
 
 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
   

  
  
    
   

 (71) 

The matrix C  given above is symmetric with non-zero values of elements along the 

main diagonal. This matrix is non-singular if its determinant does not vanish. In such case 

there exists an inverse matrix 1
C  such that the reduced constitutive equations (69) can be 

inverted to the form 

 1 .S C D  (72) 

To reveal when the matrix C  may be singular, let us note that the eight linear 

algebraic equations (69) can be written as two separate sets of four linear algebraic 

equations,  

 1 1 2 2, , D AS D BS  (73) 

where 

 
   
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E E K K N N M M
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 

D S

D S
 (74) 
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  
    

   

A  (75) 
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0

2

1 1 1 6(1+ ) 6(1+ )
0
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Eh Eh Eh R R

Eh R R Eh Eh

Eh R R Eh Eh

  

  

  

  

    
  

  
    
   
  

  
  

  
  

  
   

   

B  (76) 

Determinant of A  is  

    
2 44 2

2
2 2

2 2

1 2 1 2

1 12 12 1 1 1 1
det 1 2 1 .

Eh h h R R R R
 

         
               

          

A  (77) 

Hence, the matrix A  is non-singular for any geometry of M . Thus, using the Cramer rule 

we can calculate analytically elements of 1S  with the second-order accuracy leading to  

 

 

 

 

 

3

11 11 22 11

1 2

3

22 22 11 22

1 2

2 3

11 11 22 11

1 2

2 3

22 22 11 22

1 2

1 1
( ),

1 1
( ),

1 1
( ),

1 1
( ),

N C E E D K O Eh
R R

N C E E D K O Eh
R R

M D K K D E O Eh
R R

M D K K D E O Eh
R R

 

 

 

 

 
     

 

 
     

 

 
     

 

 
     

 

 (78) 

 
 

3

2 2
,

1 12 1

Eh Eh
C D .

 
 

 
 (79) 

 Determinant of B  is 
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44

1 2

2 1 1
det

1

Eh
.

R R

  
   

   
B  (80) 

Hence, the matrix B  is non-singular provided that 
1 2R R . If 

1 2R R  the principal terms 

of the inverted constitutive equations are given by (52) only for the symmetric components 

of the resultant 2D stress and 2D strain measures. In order to refine them by the consistent 

secondary terms proportional to 2

1 2h / R h / R   we require 1
B  to be such that 

1 3( )O   B B I , where I  is the identity 4 4  matrix. Then the refined constitutive 

equations for mixed components of the resultant 2D stress measures are 

 

 

 

 

 

3

12 12 21 12

1 2

3

21 12 21 21

1 2

3

12 12 21 12

1 2

21 12 21 21

1 2

1 1 1
(1 ) (1 ) ( ) ,

2

1 1 1
(1 ) (1 ) ( ),

2

1 1 1
(1 ) (1 ) ( ),

2

1 1 1
(1 ) (1 )

2

N C E E D K O Eh
R R

N C E E D K O Eh
R R

M D K K D E O Eh
R R

M D K K D E O
R R

  

  

  

 

 
       

 

 
       

 

 
       

 

 
       

 

3( )Eh .

 (81) 

The constitutive equations for shear stress resultants (59) become 

 1 1 2 2

1 1
(1 ) , (1 ) .

2 2
s sQ C E Q C E        (82) 

 The refined constitutive equations (78) and (81) as well as (82) are particularly 

suitable for development of numerical FEM codes for analyses of complex shell structures, 

see Chróścielewski et al. (2004). 

 It is worth noting that up to the principal first-order terms our constitutive equations 

(78) and (81) agree with those proposed in main classical linear models of an isotropic 

elastic shell, see for example Koiter (1960) and Naghdi (1963). Koiter (1960) proposed to 

treat various linear shell models with different additional secondary terms in the 

constitutive equations as to be equivalent within the consistent 1
st
 approximation to the 

shell elastic strain energy density. We have derived our constitutive equations (78) and 

(81) from the consistent 2
nd

 approximation to the shell elastic complementary energy (47). 

This has allowed us to select, among various possible secondary terms, only those which 

are consistent with the higher accuracy of (49). 

 

8 Constitutive equations for drilling couples 
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The constitutive equations for drilling couples M   can now be formulated directly 

from definition (16)2 in which the stress distribution (41) should be introduces together 

with estimates (42), (43) and q  . To within the relative error of 2  this leads to the 

following relation: 

 2 2 312 1
1 ( )

45
M M b q O O Eh .

h

   

    
 

      
 

 (83) 

From this estimate it is apparent that the influence of M   on the stress distribution through 

the shell thickness is much ( 3 / h  times) smaller than the influence of 2M Eh  .  

Introducing (52)2 with (51) and (35)2 into (83), we can represent M   in the more 

explicit and concise form, 

 (1 ) ,dM D K     (84) 

where  

 ( ) ( ( 2 3 2

) )

4
, , ( / ) .

15 1 4 1
d

h
K K a K b E O h     

   

 
   

 

 
    

  
 (85) 

Since within small strains M   is expressible through ( ) ,M b 

  and q , our drilling 

bendings K  in (85)2  are not derivable from rotations but are defined intrinsically through 

bendings ( )K  , curvatures b

  and surface derivatives of the strain invariant (

)E 

 . As a 

result, the order of 2 3 2/K h    is much smaller (again 3 / h  times) than the order of 

K . Such small quantity of M   can always be omitted in numerical analyses of regular 

shell structures. However, in case of irregular multi-shells (eg. with branches, intersections 

or junctions with beams), when six couple resultants are required at any interface, one has 

to keep these very small values of M   in order to preserve the structure of six-field shell 

theory at the junctions. 

If arc-length orthogonal lines of principal curvatures are taken as the surface 

coordinates  , then the relations (84) and (85) lead to 

 1 1 2 2(1 ) , (1 ) ,d dM D K M D K        (86) 

       

       

1 11 22 11 22 2 12 21 11 22 12

2 1

1 22 11 11 22 1 12 21 11 22 22

1 2

1 1 1
, , ,

4 (1 ) 4 1 2

1 1 1
, , .

4 (1 ) 4 1 2

h h
K K K E E K K E E

R R

h h
K K K E E K K E E

R R

 


 

 


 

      
 

     
 

 (87) 
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The constitutive equations in the form (86) were first proposed by Chróścielewski 

et al. (1992) with 1d t    and K   t , where   were understood as expressed in 

rotations according to (7)2 . In our case 4 /15d   follows from the result 3 / 45h  of 

through-the-thickness integration of 2 ( )k  , which is then multiplied by 312 / h  standing 

in front of the constitutive equation (52)2 . Within the geometrically non-linear theory of 

elastic shells the K  in (87) are not independent surface bendings, but are expressible 

entirely through K , 1/ R , and 
11 22( ),E E  . 

 

9 Conclusions 

We have discussed several problems arising in the resultant, six-field, geometrically 

non-linear model of isotropic elastic shells. Our approach has been based on the 3D 

complementary energy density of geometrically non-linear elasticity undergoing moderate 

rotations. Among new results obtained here let us point out the following: 

1. Explicit definition (16)2 of the drilling couples M  . 

2. The tangential stress distribution (41) through the shell thickness consistently 

refined by quadratic and cubic terms. 

3. The consistent 2
nd

 approximation (47) to the 2D complementary energy density 

of the geometrically non-linear isotropic elastic shells. 

4. The refined constitutive equations (56) and (57) for 2D strains E  and 

bendings K . 

5. The refined constitutive equations (61) - (68) for E  and K  expressed in 

orthogonal lines of principal curvatures, and their inverted forms (78) and (81) 

for the stress resultants N  and stress couples M . 

6. The explicit constitutive equations (83) - (87) for drilling couples and their 

estimates as very small quantities of negligible order in analyses of regular 

shells. 

These theoretical results should be of interest to specialists of the non-linear theory 

of elastic shells and those developing computer FEM software for analyses of complex 

non-linear problems of irregular multi-shell structures. 
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