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Basic relations of the resultant linear six-field theory of shells are established by consistent linearization of 

the resultant 2D non-linear theory of shells. As compared with the classical linear shell models of Kirchhoff-

Love and Timoshenko-Reissner type, the six-field linear shell model contains the drilling rotation as an 

independent kinematic variable as well as two surface drilling couples with two work-conjugate surface 

drilling bending measures are present in description of the shell stress-strain state. Among new results 

obtained here within the six-field linear theory of elastic shells there are: 1) formulation of the extended 

static-geometric analogy; 2) derivation of complex BVP for complex independent variables; 3) description of 

deformation of the shell boundary element; 4) the Cesáro type formulas and expressions for the vectors of 

stress functions along the shell boundary contour; 5) discussion on explicit appearance of gradients of 2D 

stress and strain measures in the resultant stress working.  

 

 

 

1 Introduction 

The classical linear theory of thin elastic shells, usually called of the Kirchhoff-Love type, 

was initiated by Love [1], developed in thousands of papers and summarized in many 

monographs, for example by Love [2], Gol’denveiser [3], Naghdi [4], Green and Zerna [5], 

Başar and Krätzig [6], or Novozhilov et al. [7], to mention only a few. The refined linear 

theory of elastic shells with an additional account of transverse shear deformations, here 

called of the Timoshenko-Reissner type, was extensively treated for example by Naghdi 

[8], Librescu [9], Pelekh [10] or Reddy [11]. Almost all linear versions of shell theory are 

based on various approximations in kinematical description of linear elasticity following 

from a through-the-thickness polynomial expansion with truncation at some level, 

asymptotic analyses, applying kinematic constraints etc., see Fig. 1, the left graph. In all 

classical linear shell models the resultant couple stress vectors do not have the drilling 

(normal to the shell midsurface) components due to identification of deformed and 

undeformed position vectors of linear elasticity in definition of the resultant couple stress 

vectors.  The drilling component (about the normal) of the linearized rotation vector does 

not appear as the kinematical field variable, and there is no drilling components of the 2D 

bending vectors as well. 

In the shell model proposed by Reissner [12] dynamics of stress resultants and 

stress couples together with the concept of virtual work were the basic notions. In this 

approach the equilibrium equations of the deformed shell were first derived by exact 

through-the-thickness integration of the equilibrium equations of continuum mechanics, 

see Fig. 1, the middle graph. In this approach, the resultant 2D stress and couple vectors 
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, 
n m  satisfying the resultant equilibrium equations of the deformed shell each had three 

independent components in any vector base. Then the 2D virtual work identity allowed one 

to construct uniquely the 2D shell kinematics consisting of the translation vector u  and the 

rotation tensor Q  (or an equivalent finite rotation vector  ), which were the through-the-

thickness energetic averages of the non-linear displacement distribution of the shell cross 

section. The corresponding 2D stretch and bending vectors ,    defined by ,u  each 

had three independent non-vanishing components in any vector base. This approach was 

developed in a number of papers and summarized in the books by Libai and Simmonds 

[13], Chróścielewski et al. [14] and Eremeyev and Zubov [15]. Such non-linear resultant 

six-field shell model could be consistently linearized for small translations, rotations and 

2D strain measures. As a result, this led to different formulation of the linear shell theory 

than the ones presented in all classical papers and books mentioned above. The main 

difference consisted in that now also the drilling rotation (about the normal) remained as an 

independent kinematic variable, and two drilling couples with two work-conjugate drilling 

bending measures appeared in the description of stress and strain states of the linear shell 

theory.  

 

 
 

Figure 1. Formulations of the linear theory of elastic shells 

 

 

Along the same line of reasoning, we may ask what happens when we begin with 

the 3D non-linear continuum thermomechanics, reduce it consistently to a 2D non-linear 

shell thermomechanics, then omit temperature effects, assume the elastic material 

behaviour and linearize all the shell relations, see Fig. 1, the right graph. Pietraszkiewicz 

[16] derived the resultant 2D balance laws of mass, linear and angular momenta, and 

energy as well as the entropy inequality by direct through-the-thickness integration of 

corresponding 3D laws of rational thermomechanics of Truesdell and Toupin [17]. It was 

found that the resultant mechanical power could not be expressed entirely through the 

resultant 2D stress and strain measures, because the through-the-thickness integration 

process did not allow to account for the mechanical power following from the stresses 

acting on surfaces parallel to the shell base surface as well as from self-equilibrated parts 

of distribution of stresses and body forces through the shell cross section. Thus, an 

additional 2D mechanical power called an interstitial working had to be added to the 
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resultant balance of energy. Only then the so refined resultant 2D balance of energy and 

entropy inequality could be regarded as the exact resultant implication of 3D continuum 

thermomechanics. However, even for a thermoelastic material the 2D restrictions imposed 

by the procedure of Coleman and Noll [18] upon the constitutive equations of such 

resultant refined 2D shell thermomechanics allowed some 2D fields to depend also on 

surface gradients of the shell strain measures and on higher surface gradients of 

temperature. The possible dependence of constitutive equations upon surface gradients of 

the strain measures does not disappear even after linearization of all shell relations and 

omission of temperature effects. This feature contradicts all forms of constitutive equations 

appearing in the classical linear versions of elastic shells.  

In this paper we wish to investigate in more detail what the resultant six-field linear 

theory of isotropic elastic shells brings to the well established classical linear shell models. 

In section 2 we recall some exact 2D relations of the resultant theory of shells which are 

needed in what follows. The exact relations are then consistently linearized in section 3 

under small translations and rotations of the shell base surface and for the isotropic elastic 

material. This leads to the complete BVP of the resultant six-fields linear theory of 

isotropic elastic shells. As compared with the classical linear shell models of K-L and T-R 

type, the six-field shell model additionally contains the drilling rotation as an independent 

kinematic variable as well as two surface drilling couples and two work-conjugate surface 

drilling bending measures. For the six-field shell model the extended static-geometric 

analogy is established in section 4 and the corresponding complex formulation of BVP for 

complex independent variables is proposed. 

Deformation of the shell boundary element is described in section 5. In particular, 

the total rotation vector of the boundary element is found by the superposition of two 

rotations: the one corresponding to the global linearized rotation and the additional rotation 

following from the stretch along the shell boundary contour. The Cesáro type formulas for 

the translation and rotation vectors are derived and expressions for the vectors of stress 

functions are established along the shell boundary contour. The final section 6 contains 

discussion on contribution of surface gradients of 2D shell strain and stress measures to the 

resultant 2D stress working. 

 

2 Notation and some exact resultant shell relations  

Let us recall some exact resultant relations of the non-linear theory of shells, see for 

example Libai and Simmonds [13], Chróścielewski et al. [14], Eremeyev and 

Pietraszkiewicz [19], or Pietraszkiewicz and Konopińska [20]. 

A shell is a three-dimensional (3D) solid body identified in a reference 

(undeformed) placement with a region B  of the physical space  having the translation 

vector space E . The shell boundary B  consists of three separable parts: the upper M   

and lower M   shell faces, and the lateral shell boundary surface *B . The position vectors 

x  and ( ) y x  of any material particle in the reference and deformed placements, 

respectively, can conveniently be represented by 

 , ( ) ( , ) , ( ,0) .     x y 0x n y x x x   (1) 

Here x  and y  are the position vectors of some shell base surface M  and ( )N M  in 

the reference and deformed placements, respectively,   is the distance from M  along the 

unit normal vector n  orienting M  such that [ , ] ,h h h h h         is the shell 

thickness,   is a deviation vector of y  from N , while   and   mean the 3D and 2D 

deformation functions, respectively. In what follows we use the convention that fields 



4 

 

defined on the shell base surface are written by italic symbols, except in a few explicitly 

defined cases. 

 Within the resultant non-linear theory of shells formulated in the referential 

description, the respective 2D internal contact stress resultant n  and stress couple m  

vectors, defined at the edge R  of an arbitrary part of the deformed base surface 

( ), ,R P P M   but measured per unit length of the undeformed edge P  having the 

outward unit normal vector  , are defined by 

 

*

*

d , d , ,

d , d .

h

h

  
 

  
 
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  





   

   

 

 

     

      

   

 

Pn p

Pn p

n n n

m m m 

 (2) 

Here 3
3


   P p g p g  is the Piola stress tensor in the shell space, / i

i   g x , 

1,2,3,i   are the base vectors in B , * 
n g , 1,2,   is the external normal to the 

reference shell orthogonal cross section *P ,   
 p p ,     a , 

   a x /  are 

the base vectors of M , and 
  are geometric shifters with  det 

   , see Naghdi [4] or 

Pietraszkiewicz [21]. 

The resultant 2D equilibrium equations satisfied for any part P M  are 

 | | , ,  
        0 0n f m y n m  (3) 

where ( )|  is the covariant derivative in the metric of M , while f  and m  are the 

external resultant surface force and couple vectors applied at N , but measured per unit 

area of M . 

 The resultant dynamic boundary conditions satisfied along fM  are 

 * *, , 
   n n m m  (4) 

where * *,n m  are the external resultant boundary force and couple vectors applied along 

( )f fN M    but measured per unit length of fM , and *( )  means the prescribed field. 

In order the conditions (3) and (4) be satisfied, the resultant fields 
n  and 

m  

require a unique 2D shell kinematics associated with the shell base surface M . Applying 

the virtual work identity Libai and Simmonds [22, 13], Chróścielewski et al. [23, 14], and 

Eremeyev and Pietraszkiewicz [19] proved that such 2D kinematics consists of the 

translation vector u  and the proper orthogonal (rotation) tensor Q , both describing the 

gross deformation (work-averaged through the shell thickness) of the shell cross section, 

such that 

 , , ,   y x u t = Qa t Qn  (5) 

where ,t t  are three directors attached to any point of ( )N M . Thus, along the 

complementary boundary contour \d fM M M     the kinematic boundary conditions are 

 ** , . u u Q Q  (6) 

The vectors 
n , 

m  and ,f c  can naturally be expressed in components relative to 

the rotated base ,t t  by 

 
, ,

, ,

N Q M M M M

f f m m m m

        
  

   
  





      

   

n t t m t t t t t

f t + t m t t + t t + t
 (7) 
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where   are components of the skew surface permutation tensor. The 2D components 

M  are usually called the drilling couples. 

The shell strain   and bending   vectors associated with the 2D shell kinematics 

(5), which are work-conjugate to the respective stress resultant 
n  and stress couple 

m  

vectors, are defined by 

 
 

, , ( ) ,

ax , ,T

E E

K K K K


      

  
       

     

     

1



y t = u Q a t t

Q Q t t t t t
 (8) 

where 1  is the metric tensor of 3D space and ax( )  is the axial vector of skew tensor ( ) . 

The 2D components K  can be called the drilling bending measures. 

 Since u  (or y ) and Q  are independent kinematic variables, it is required that for 

the simply connected regular surface M , 

 | |, . 
   0 0y Q  (9) 

From (9)1 and (8)1 it follows that 

 
| | | | | | |

|

( ) ,

,

T

b

              

    

      

   

  

 

y t Qa Q Q Qa Qa

t t
 (10) 

and the condition (9)1 is equivalent to 

  | .
       0  t  (11) 

 To reveal the meaning of (9)2 , we note that  

 | | |, , , ( ) .                      1 1     Q Q Q Q Q Q  (12) 

Then using the identity ( ) 1/ 2 ( ) 
           v v  valid for any vector field 

Ev , and noting that Q  is non-singular, the condition (9)2 with (12) becomes equivalent 

to 

 |

1
.

2


   

 
   

 
0    (13) 

The relations (11) and (13) are the compatibility conditions for the vectorial shell 

strain measures ,    in the resultant six-field non-linear theory of shells. Similar 

conditions for the non-material shell base surface were first proposed by Libai and 

Simmonds [22, 13]. In lines of principal curvatures of the shell base surface M  these 

conditions become equivalent to those proposed by Reissner [12]. 

It is sometime more convenient to describe rotations by a finite rotation vector   in 

place of Q . By the Euler theorem the rotation tensor Q  can be expressed in terms of an 

angle of rotation   about an axis described by the eigenvector i  corresponding to the real 

eigenvalue 1  of Q  such that 

    
1 1

, cos tr 1 , sin .
2 2

T      Qi i Q Q Q  (14) 

Introducing the finite rotation vector sin i , we have 

  
2

2

1
.

2cos / 2
    1 1 1 Q  (15) 

For an arbitrary deformation of the shell space, distribution of displacements 

through the shell thickness is non-linear, in general. To account for this non-linearity, 
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Chróścielewski et al. [14] and Pietraszkiewicz et al. [24] introduced the intrinsic deviation 

vector ( , ) e  defined by 

 ( ) ( ) ( ) ,T e e
      e gQ n n  (16) 

where eQ  is a measure of deviation of the deformed curved material fiber from its linear 

rotated shape Qn , see Fig. 2. 

 

Figure 2. Finite deformation of the shell cross section 

 

In the non-linear theory of shells the 3D deformation gradient of the shell space 

, i
i F y g  can be decomposed according to the modified polar decomposition as 

F Q , where T   is the modified 3D stretch tensor. Since  y y  , we have 

 
   

3 3

, , ( ) , ( ) ( , , ) ,

, ( , ) ,

                  

 

y e e e

y e

 y Q n t Q n Q n

Q n
 (17) 

   3, ( ) ( , , ) ( , ) .
               F e e g eQ x n n n n   (18) 

From (18) it follows that  

 
 

 

3

3

, ( ) ( , , ) ( , ) ,

( ) , , ,


    


   

 



          

         

e e g e

e e e g e

x n n n n

n n

  

   
 (19) 

where overdot means the material time derivative. 

With the results (18) and (19) the 3D stress power density per unit undeformed 

volume ( ) :  FS F , where 3
   S s g s n  is the symmetric 2

nd
 Piola-Kirchhoff 

stress tensor, can be transformed as follows: 

 ( ) : ( ) ( ) : ( ) ( ) : ( ) ( ) : ,T T T     S S S SQ Q Q Q Q Q Q          (20) 

because the double-dot (scalar) product :  of the symmetric T
S   and skew T

Q Q  tensors 

vanishes in the space of 2
nd

-order tensors E E . 

 The resultant 2D stress power density   per unit area of M  can be defined by 

direct through-the-thickness integration of  , 

 ( ) : d . 



  S   (21) 

Let us introduce (19) into (21) and perform appropriate transformations, which 

leads to (see [24], Eqs (28) and (29)) 
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3
3( ) d , d , d ,   

      
  

  
                 n m e s s e s e       (22) 

where  

 
d ,

( ) d ,

T

T

N Q

M M

    


     




  









    

      





n s

m e s

Q n a n

Q m n a n





 (23) 

 ., .T TE E K K  
              Q a n Q a n   (24) 

The 2D relation (22) with (23) and (24) is the exact resultant implication of the 3D 

stress power density   in the non-linear six-field theory of shells. The first two terms of 

(22) represent the 2D effective stress power density expressible entirely in terms of the 2D 

resultant stress measures and corresponding work-conjugate 2D strain measures. The last 

three integrals in (22) represent the additional part of the 2D stress power density which is 

not expressible through the resultant 2D shell stress and strain measures alone. 

 

3 The linear six-field shell theory 

In the linear theory of shells it is assumed that translations and rotations are small: 

  max || || , || || 1.
x M

h


 u  (25) 

In order to derive the linear theory of shells from the non-linear continuum 

mechanics one needs two steps: contraction of dimension from 3 to 2 and linearization. 

These two steps can be performed in different order. In Chróścielewski et al. [14] it was 

explicitly shown that if one first linearizes the equilibrium equations of continuum 

mechanics and then contracts the dimension, one always obtains the 5-field linear shell 

theory of T-R type. When the equilibrium equations of continuum mechanics are 

linearized, geometry of the deformed continuum is usually identified with that in the 

undeformed placement. As a result, in the linearized integral definition (2)2  of the surface 

stress couple vectors 
m  instead of   the rectilinear vector n  normal to the undeformed 

base surface is vectorialy multiplied by the linearized stress vector i
i

 g  of linear 

elasticity leading to their component representations M  
m a . Thus, the drilling 

component of 
m  along n  is cut off by definition. Then, from the virtual work identity the 

drilling rotation component of   on n  remains indefinite, which finally leads to the 5-

field linear shell theory of T-R type.  

However, when the dimension contraction (through-the-thickness integration) of 

the non-linear continuum mechanics is first performed as in definition (2)2 of 
m , the 

deviation vector   still follows the curved deformed material fibre, which is neither 

rectilinear nor normal to the deformed shell base surface, see Fig. 2. The through-the-

thickness integration (2)2 leads then to three independent vector components of 
m , so that 

we have always two drilling couples M  as components of 
m  relative to t . Then the 

virtual work arguments require Q  (or  ) to have three independent rotational scalar 

parameters, and after linearization the component of   on n  remains non-zero, in general. 

As a result, this leads to the complete six-field linear shell theory containing also the 

drilling rotation  , two drilling couples M  and two work-conjugate drilling bending 

measures K . This is the reason why we have to derive the relations of the linear shell 
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theory by the consistent linearization of corresponding 2D relations of the resultant six-

field non-linear shell theory. 

Linearizing all kinematic relations with regard to small u  and  , we obtain 

 sin , cos 1, , ,        1 1 i Q  (26) 

 
 

1
, ( ) ,

2

( ) , ,

u w

a

   
    

 
      

    

   

          

          



 

u a n n a n a n a t n t

t a a a n t n n n a

 (27) 

 
|

|

, ( ) ( , ) ,

, ( ) ( , ) .

u b w w b u

b b

 
     

   
           

   

   

u a n

a n
 (28) 

In the six-field linear theory of shells the vectorial strain measures (8) reduce to 

 , , , ,E E K K  
                    u a a n a n  (29) 

 
|, ,

, , ,

E u b w

E w b u

       

 
      

  

 

      

      





u a n

u n a
 (30) 

 
|, ,

, , .

K b

K b

 
      

 
    

   

  

   

   





a

n
 (31) 

Please note that indeed in the six-field linear shell theory the kinematic relations (29) - (31) 

contain also components of the drilling rotation   and the drilling bending measures K . 

In the classical linear shell theories the components   and K  do not appear by definition 

in the kinematic relations. 

 With definitions (29) - (31) the vector compatibility conditions (11) and (13) reduce 

to  

  | |, , 
         0 0  a  (32) 

which in components relative to ,a n  read 

 
   

   

| |

| |

0 , 0 ,

0 , 0 .

E E b K E E b K

K b K K K b

  
          

    
       

  

   

     

   
 (33) 

 In the linear six-field shell theory the base vectors ,t t  in (7)2 can be approximated 

by ,a n , and the component representations of 
n , 

m  and f , m  given in (7) reduce to  

 
, ,

, .

N Q M M

f f m m

      
 

  
 





   

   

n a n m a n

f a n m a n
 (34) 

Hence, the equilibrium equations (3) written trough components (34) in the base ,a n  

become 

 
| 0 , | 0 ,

| 0 , | ( ) + 0.

N b Q f Q b N f

M Q b M m M N b M m

     
   

        
     

     

      
 (35) 

Within such six-field linear shell theory the six linear equilibrium equations (35)3,4 

contain also the drilling couples M . In the classical linear shell theories of K-L and T-R 

type the components M  do not appear in analogous shell relations.  
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The kinematic and dynamic structures of the linear six-field shell model are similar 

to those of the linear Cosserat surface discussed by Günther [25], but physical 

interpretations of fields of the two approaches are entirely different. 

Twelve components of the resultant 2D stress measures in (35) and twelve 

corresponding work-conjugate components of the 2D strain measures require some 

constitutive equations refined above those following from the consistent 1
st
 approximation 

to the strain energy density of isotropic elastic shells. Pietraszkiewicz and Konopińska [20] 

constructed the consistent 2
nd

 approximation to the complementary energy density of the 

geometrically non-linear theory of isotropic elastic shells. From the density followed the 

refined constitutive equations for the 2D strain measures, 

 

 

 

2

3 3

3 3

1 1
,

1 12 1
,

4
,

1 1
(1 ) + 2 , ,

2

s

E A N b M b M b A M
h h

K A M b N b N b A N
h hh

E A Q
h

A a a a a a a A a
E E

      
     

      
     


  

         




 

   

 
    

 




    
  

 (36) 

where E is the Young modulus,   is the Poisson ratio, 5 / 6s  , and h  is the shell 

thickness. When inverted in lines of principal midsurface curvatures, the constitutive 

equations (36) led to the following physical components of the resultant 2D stress 

measures: 

 

 

 

 

 

11 11 22 11

1 2

12 12 21 12

1 2

21 12 21 21

1 2

22 22 11 22

1 2

1 1 2 2

1 1
,

1 1 1
(1 ) (1 ) ,

2

1 1 1
(1 ) (1 ) ,

2

1 1
,

1 1
1 1

2 2
t t

N C E E D K
R R

N C E E D K
R R

N C E E D K
R R

N C E E D K
R R

Q C( )E , Q C( )E ,



 

 



   

 
    

 

 
      

 

 
      

 

 
    

 

   

 (37) 

 

 

 

 

 

11 11 22 11

1 2

12 12 21 12

1 2

21 12 21 21

1 2

22 22 11 22

1 2

1 1 2 2

1 1
,

1 1 1
(1 ) (1 ) ,

2

1 1 1
(1 ) (1 )

2

1 1
,

1 1d d

M D K K D E
R R

M D K K D E
R R

M D K K D E ,
R R

M D K K D E
R R

M D( )K , M D( )K ,



 

 



   

 
    

 

 
      

 

 
      

 

 
    

 

   

 (38) 
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where 

 
3

2 2

4
, , ,

151 12(1 )
d

Eh Eh
C D 

 
  

 
 (39) 

and 1R  and 2R  are the principal radii of midsurface curvatures. 

 When solving a linear shell problem with a regular base surface M , the drilling 

couples M  are usually much smaller than the stress couples M , see estimates given in 

[20]. Similarly, the drilling bending measures K  are much smaller than K . This is the 

reason why omission of the drilling components in the classical linear models of elastic 

shells does not lead to loss of accuracy of solutions within the first approximation to the 

shell strain energy. 

 However, many real shell structures may contain folds, branches, intersections, 

stiffeners, junctions with beams and columns and other engineering design elements, 

which allows one to form complicated spatial shell structures. In such irregular structures 

the kinematic junction conditions require three translations and three linearized rotations to 

be adjusted along the junctions of regular shell parts. In development of FEM design codes 

finite elements based on the six-field shell model have six dof in any node and allow for 

only 0C  interelement continuity. Such finite elements are numerically much more efficient 

than the finite elements based on the classical K-L type linear shell model requiring 1C  

interelement continuity, see discussion in [14]. This is the reason why development of the 

linear six-field theory of elastic shells and discussion of its predictive capabilities seem to 

be important for engineering applications.  

 

4 Static – geometric analogy and complex shell relations 

Changing some indices and performing elementary algebraic transformations, the 

compatibility conditions (33) can be presented in the following equivalent forms : 

 

|

|

|

|

( ) ( ) ( ) 0 ,

( ) ( ) ( ) 0 ,

( ) ( ) 0 ,

( ) ( ) 0 .

E K b E

E K b E

K b K

K b K

    
    

     
      

   
   

  
   

    

      

  

  

     

    

  

  

 (40) 

It is easy to note that between the homogeneous equilibrium equations (35) and the 

compatibility conditions (40) there exists the following correspondence: 

 
, ,

, .

N K Q K

M E M E

    
 

    
 

  

  

  

   
 (41) 

When the resultant 2D stress measures in (35) are replaced by the 2D strain measures 

according to (41), the homogeneous equilibrium equations (35) are converted exactly into 

the compatibility conditions (40). The correspondence (41) is the extended static-geometric 

analogy in the resultant six-field linear theory of shells. Within the classical three-field 

linear shell model of K-L type the analogy was first noted by Gol’denveiser [26], while for 

the five-field linear shell model of T-R type it was first noted by Pelekh and Lun’ [27]. The 

correspondence (41) naturally extends the static-geometric analogy to the resultant six-

field linear theory of shells. 

 The correspondence (41) allows one to formulate all relations of the six-field linear 

shell theory in an easily memorable operator form, which is convenient for further 
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algorithmization of the six-field shell model towards numerical applications. Such operator 

representation of the classical linear shell models were discussed in detail in the books by 

Başar and Krätzig [6, 38]. 

The correspondence property (41) of the linear six-field shell theory allows one to 

introduce six stress functions , , ,u w    by the relations 

 

* *

* *
2

, ,

, , .
12(1 )

N N Ehc K Q Q Ehc K

h
M M Ehc E M M Ehc E c

      
 

      
 

  

  


   

    


 (42) 

Here * * * *, , ,N Q M M     is some particular solution of the inhomogeneous equilibrium 

equations (35), and the expressions , , ,K K E E     are similar to (30) and (31) only 

constructed from the corresponding stress functions , , ,u w   . It is easy to see that 

indeed the relations (42) satisfy the equilibrium equations (35) for any value of the stress 

functions because of the compatibility conditions (40). 

Let us introduce the following complex stress resultants and stress couples: 

 
, ,

, , 1 .

N N i Ehc K Q Q i Ehc K

M M i Ehc E M M i Ehc E i

      
 

      
 

  

  

   

     
 (43) 

Changing here the stress resultants and stress couples by their expressions (42), we obtain 

 
* *

* *

, ,

, ,

N N i Ehc K Q Q i Ehc K

M M i Ehc E M M i Ehc E

      
 

      
 

  

  

   

   
 (44) 

where , , ,K K E E     are now the expressions corresponding to (30) and (31), but 

constructed from the complex translations and rotations 

 , , , .u u iu w w iw i i                   (45) 

When the system of equations (40) is multiplied by i Ehc  and added with the 

corresponding equilibrium equations (35), this leads to the system of linearized equilibrium 

equations for the complex 2D stress measures, 

 
| 0 , | 0 ,

| 0 , | ( ) + 0 .

N b Q f Q b N f

M Q b M m M N b M m

     
   

        
     

     

      
 (46) 

When expressed in terms of complex displacements (47), the above system of 

PDEs for the complex independent variables is of 6
th

 order, while the system (35) of PDEs 

for the real displacements is of 12
th

 order. 

Corresponding dynamic and kinematic boundary conditions associated with the 

complex shell equations (46) are 

 
* *

* *

Re , Re along ,

Re , Re along \ .

f

d f

M

M M M

 
    

     

n n m m

u u  
 (47) 

 The complex formulation of shell relations for the linear K-L theory of thin elastic 

shells was proposed by Novozhilov [28], generalizing a similar approach to the 

axisymmetric deformation of shells of revolution proposed by Meissner [29]. The complex 

BVP was subsequently used to solve a number of non-trivial shell problems, many of 

which were included in the books by Novozhilov [30], Chernykh [31] and Novozhilov et 

al. [7]. For the linear theory of elastic shells of T-R type the complex equilibrium equations 
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were proposed by Pelekh and Lun’ [27], and some analytical solutions of shell problems 

were presented in Pelekh [10]. Now one can use the complex BVP of the linear six-field 

shell theory with hope to obtain more accurate analytical results than those based on K-L 

and T-R type shell models.  

 

5 Deformation of the shell lateral boundary element 

In the resultant shell theory, the undeformed rectilinear shell lateral boundary surface *B  

deforms into the deformed lateral boundary surface *B  , which is not the rectilinear 

one anymore, see Figs. 2 and 3. To describe the linearized deformation of *B  into 
*B  , let the boundary contour M  of the shell midsurface be parametrized by the 

length coordinate s . Along M  we can introduce the triad of orthonormal vectors: the 

tangent /d ds x , the n  normal to M , and the exterior normal    n . In the base 

, ,  n  the translation u  and rotation   vectors are represented by 

 

, ,

, , , ,

, , , .

u u w

u u u u

   

   
       

       
 

  

       

       

      

   

     

    

 

u n n

a a

 (48) 

With the shell deformation described by the infinitesimal u  and   the orthonormal triad 

, ,  n  is moved into the orthonormal triad , , t t t  defined by 

 

,

,

.

 

 

 

 

 

 

     

      

     

    

    

  

t n

t n

t n n n

 (49) 

Because   describes the global averaged rotation of neighbourhood of the boundary point 

x M , there is no reason to expect that so defined t  becomes tangent to the deformed 

boundary contour ( )M  . 

 According to the modified polar decomposition (18) the material fibre ds  tangent 

to M  should be rotated by a total rotation vector   into the fibre ˆds  tangent to 

( )M  , where ̂  denotes the unit vector tangent to the deformed boundary contour in 

( )y M  . This can be achieved by two rotations: the global rotation   associated with 

the rotation tensor Q  of the neighbourhood of x M  followed by an additional rotation 

a  associated with the stretch  . Let us construct such a total rotation vector of the 

boundary contour appropriate for the linear six-field shell theory. 

 Since  ( ) ( )s sy x , the vector /d dsy  becomes tangent to ( )M   at ( )y x , 

 
, ,

( ) (1 ) ( ) ,

d d d

ds ds ds

E E E

 
 

   

 

 

       

     

    

 

y x u
u

n

 (50) 

 



13 

 

 
 

Figure 3. Deformation of the shell lateral boundary surface 

 

where 

 

,

,

( ) ,

du
E E u w

ds

du
E E u w

ds

dw
E E u u

ds

  
    

  
    


       

     

   

    

     

   

     

 (51) 

and b  
     is the normal curvature, b  

      is the geodesic torsion, and 

| |   
              is the geodesic curvature of M . 

Now the length of the vector /d dsy  following from (50) is 

 

2

2 2 2( ) (1 ) ( ) 1 .
d

E E E E
ds

     
 

        
 

y
 (52) 

The unit vector ̂  tangent to ( )M   in ( )y x  can be defined by 

 
/

ˆ ( ) ( ) .
1

d ds
E E

E
  



      


  
y

n  (53) 

Please notice that ̂  does not coincide with t  introduced by (49)2. 

 In order to properly describe the linearized rotation of the rectilinear boundary 

element s h   defined by the triad , ,  n , one has to introduce in the deformed placement 

an orthonormal triad containing ̂  as the unit tangent to ( )M  . This can be achieved by 

introducing two other unit vectors 

 
ˆ ˆ ( ) ,

ˆ ˆ ˆ ( ) .

E

E

 

  

 

 

     

     

   

   

t n

n n
 (54) 

The same unit vectors follow if one defines first ˆ ˆ n t  and then ˆ ˆˆ   n . The triad 

ˆ ˆˆ, ,  n  is orthonormal within the linear terms in infinitesimal translations and rotations. But 
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here n̂  is neither normal to ( )M  nor tangent to *B   and ̂  is neither tangent to 

( )M  nor normal to *B  , because the deformed boundary surface *B   itself is not 

the rectilinear one, in general.  

The triad ˆ ˆˆ, ,  n  allows one to introduce the total rotation vector   of the normal 

element s h   associated with the boundary contour M  by  

 
 

1
ˆ ˆˆ ( ) ( )

2

, .a a

E E

E E

    

 

            

   

      

   

n n n

n  

 (55) 

The physical meaning of the additional rotation vector a  is apparent: it allows one to 

bring the triad , ,  n , initially rotated into , , t t t  by the global linearized rotation vector 

 , to coincide with the triad ˆ ˆˆ, ,  n .  

 With   defined in (55), differentiation of the translation field along M  gives 

 ,
d

E
ds

     
u

 (56) 

where the right-hand side is expressible by three stretches , ,E E E    and three linearized 

rotations , ,     along M . 

 Warping properties of the boundary element s h   can be characterized by the 

vector of change of boundary curvature defined by 

 ,
d

k k k
ds


       


 k n  (57) 

 , , ,
dE dE

k K E k K E E k K E
ds ds

 
                          (58) 

where 

 

,

,

.

d
K K

ds

d
K K

ds

d
K K

ds

  
    

  
    


     


     


     


    

   

   

   

 (59) 

The vector k  is expressed by (57) entirely through the 2D surface strain measures 

, ,E E E    and , ,K K K   .  

 In analogy to [31], the relation (57) can be integrated along M  to obtain 

 
0

0 ' .
s

s
ds      k  (60) 

From (56) it also follows that  

  
0

0 ' ' ' .
s

s
E ds       u u  (61) 

Since 0( ) /d ds  x x , we can integrate by parts the last term in (61) leading to  

 
0 0

0 0' ' ( ) ( ' ) ' ,
s s

s s
ds ds            x x k x x  (62) 

which together with (60) allows one to present (61) in the form 

    
0 0

0 0
0 0 0( ) ' ( ) ' ( ' ) ' .

s s

s s
ds E ds               u u x x k x x x x k  (63) 
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But using the identity 

       
0 0 0

0 0' ( ) ( ' ) ' ' ,
s s s

s s s

d
ds ds ds

ds
           k x x k x x k  (64) 

the relation (63) can be transformed into the more concise form 

  
0 0

'0 0
0( ) '' ' ' ' .

s s

s s
ds E ds  

 
      

     u u x x k  (65) 

 The relation (65), derived here along the boundary contour M , is valid also for 

any regular curve C  on the shell base surface. In case of the linear K-L type shell theory, it 

was indicated in [31] that for the simply connected base surface M  the resulting 

translations (61) and rotations (60) do not depend on the type of surface curve connecting 

the initial 0x  and current x  points on M . Thus, the relations (60) and (65) can be treated 

as the Cesáro type formulas in the resultant linear six-field theory of shells.  

The results given in sections 3 and 4 generalize those known in the literature for the 

linear K-L and T-R type shell models. However, a direct reduction of our results to those 

of the simpler shell models needs some reinterpretation of the basic fields of shell theory. 

Our independent kinematic field variables ,u  associated with M  describe the energetic 

through-the-thickness averaged gross displacement of the shell cross section. A similar 

meaning of through-the-thickness energetic averages have our 2D surface strain vectors 

,    associated with M . In the classical linear shell models, the 2D displacement and 

strain fields are defined approximately from corresponding 3D fields either by enforcing 

some kinematic constraints or by expanding the corresponding 3D fields into polynomials 

in the normal direction and defining the shell kinematic fields as the zeroth- and/or first-

order terms of the expansion. Such geometrically defined 2D fields have different physical 

meaning than our energetically defined fields used here for the resultant linear six-field 

theory of shells. 

 For example, in the classical linear K-L shell model, developed in many papers and 

books, for description of shell kinematics usually the kinematic constraint “the material 

fibres, which are normal to the undeformed shell base surface, remain normal to the 

deformed base surface and do not change their lengths” is used. Under this constraint, the 

2D translation vector u  means just the translation of M  into ( )N M , while the 

linearized rotation vector is not an independent field variable, but is expressed through 

components of u  and their surface derivatives. Both shell strain measures become the 

symmetric tensors defined only by u  and its surface gradients. Nevertheless, if one 

simplifies all the fields of the linear six-field shell model given here under such kinematic 

constraint one can interpret them as being approximately equivalent to corresponding 

fields of the K-L type shell model given in the book by Novozhilov et. al. [7], Chapter 

VIII. In particular, under this interpretation our formulas (56), (57), and (65) reduce to the 

corresponding formulas given in that book.  

 In the T-R type linear shell model, the relaxed kinematic constraint “the material 

fibres, which are normal to the undeformed shell base surface, remain straight after 

deformation process and do not change their lengths” is used. In this case, the translation 

vector of M  and two linearized rotations about tangents to M  are the independent field 

variables. We may again reduce our six-field shell relations under this constraint and 

interpret them as being approximately equivalent to the corresponding relations given for 

example in the books [8, 21]. In particular, under such interpretation our results for 

linearized deformation of the shell boundary element can be shown to be compatible with 

those following from linearization of corresponding geometrically non-linear results of 

Pietraszkiewicz [32]. 
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 When solving shell problems in terms of stress functions it is of importance to 

know how the stress function vectors u  and   are related to the resulting force and 

moment vectors of loads acting along the boundary contour fM . 

 

 
 

Figure 4. The resulting forces and couples along the shell boundary 

 

 According to (4) and (42), the boundary loads 
n  and 

m  per unit length of 

fM  are 

   

     

* * * *

* * * *

,

.a

N N Q Ehc K K K Ehc

M M M Ehc E E E Ehc E


        


        





        

           

    

      

n n n n

m n n m
 (66) 

 The resulting force vector F  of the loads n  acting along the part 0s s  of fM  is 

  
0 0

*' = ' .
s s

s s
ds Ehc ds     n nF  (67) 

Applying the relation /d ds    following from (28)2 and (42), we can integrate (67) 

along fM  to obtain 

  
0

0* * *, ' ,
s

s
Ehc ds      nF F F  (68) 

where *F  is the resulting force vector corresponding to the chosen particular solution of 

the inhomogeneous equilibrium equations (35). 

 The resulting moment vector (o)B  taken with regard to a spatial origin o  of the 

loads n  and m  acting along the part 0s s  of fM  is (see Fig. 4) 

 

 

   

0

0 0

(o)

**

' '

' ' ' ' ' ' .

s

s

s s

a
s s

ds

ds Ehc E ds

 

   

  

       



     

m x n

m x n x

B

 (69) 

But since in analogy to (56) and (55), 



17 

 

 ,a

d
E

ds
         

u
 (70) 

the last integral of (69) can be integrated by parts, 

 
0

0 0
0' ' ' ,

' '

s

s

d d
ds

ds ds

 
          

 



   

u
x u u x x  (71) 

so that  

    
0

0 0**
(o) 0' ' .

s

s
ds Ehc           m x n u u x xB  (72) 

 The resulting moment vector B  of the loads n  and m  taken with regard to the 

current point fx M  with the coordinate s  is 

 0 0*
(o) 0( ) ,Ehc          x u u + x xB B F B  (73) 

where now 

 
0

* ** ( ' ) '
s

s
ds 

      m x x nB  (74) 

is the resulting moment vector with regard to a current point fx M  corresponding to the 

chosen particular solution of the inhomogeneous equilibrium equations (35). 

 Solving (68) and (73) for the stress function vectors u  and   we obtain 

 
* *

0 0 0
0, ( ) .

Ehc Ehc

 
        u u x x

F F B B
 (75) 

The relations (75) along the boundary contour fM  are also valid for any regular 

curve C  on the shell base surface M . In the case of simply connected M  and the closed 

curve C  we can assume 0 0  0u . This means the change of stress function vectors by 

the term 0 0
0( )  u x x  of “rigid-body motion” type which does not influence the 

stress-deformation state of the shell. In the case of shell problems with a multi-connected 

M  the relations (75) should allow to construct multivalued parts of the stress functions in 

analogy to procedures discussed for the linear K-L type elastic shells developed in [31, 33, 

7]. 

 

 6   Gradients of 2D shell measures in the resultant stress working 

For reasons noted in Introduction, Pietraszkiewicz [16] had to introduce to the resultant 

non-linear 2D energy balance an additional 2D mechanical power called an interstitial 

working. Only then the so refined 2D balance of energy and the 2D entropy inequality 

could be regarded as the exact resultant implications of corresponding 3D laws of rational 

thermomechanics. But then the constitutive equations even of thermoelastic shells were 

allowed to depend also on surface gradients of the 2D strain measures, in general. 

 We are not aware of any discussion of possible appearance of the strain gradients in 

2D constitutive equations of linearly elastic shells following from a 3D-to-2D reduction of 

non-polar elastic solids. To have some insight into the problem, let us analyse the 3D-to-

2D reduction of the exact 3D stress power density (22) for the special case of the resultant 

linear six-field theory of isotropic elastic shells. In this case, time derivatives of various 

fields become increments of the fields from the undeformed shell state, and the 2D stress 

power reduces to the 2D stress working. In equilibrium problems, the first two terms in 

(22), but without overdots, represent the effective 2D stress working expressed entirely in 
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terms of 2D shell stress and strain measures. Any possible non-classical terms may only be 

hidden in the last three integrals of (22) containing the intrinsic deviation vector ( , ) e . 

To estimate the components of e  we need to know quadratic and cubic parts of 3D 

displacement distributions within the shell space. Unfortunately, for the resultant six-field 

linear shell theory the discussion of possible quadratic and cubic parts of displacement and 

stress distributions across the thickness is not available in the literature yet. But for our 

purposes it is sufficient to estimate only orders of magnitude of such terms, not to have 

their explicit exact expressions. Thus, in this paper we shall use the approximate results 

derived by Rychter [34] for the Reissner type linear theory of isotropic elastic shells: his 

Eqs. (26) and (27) for the kinematically admissible components of 3D displacement field, 

and his Eqs. (30) for the statically admissible components of 3D stress field. In our 

notation and conventions, the components of ( , ) e  following from the 3D displacement 

distributions of [34] are: 

 ( ) ( ) , ( ) ( ) ,e k q g c e r q s d          (76) 

where 
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  
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

 (78) 

In the statically admissible stress distributions needed in (22) it is sufficient for our 

purpose to take into account only the main terms (see [34], Eq. (30c), and [20], Eqs. (28)),  
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 (79) 

 
2 3
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( ) , ( ) 1 , ( ) .

2 2 2 2
m f l

h hh h
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  

 
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 
 (80) 

 Now one has to introduce the relations (77) - (80) into the last three terms of (22) 

without overdots, calculate explicitly all the non-vanishing integrals, and then select the 

leading terms with estimated highest orders. In such an elementary but involved through-

the-thickness integration and estimation procedure, which we do not fully reproduce here 

for brevity of presentation, one has to account that only polynomials with highest terms 

containing n  with 0,2,4,n   should be integrated. Integrals of polynomials with 

highest terms containing n  with 1,3,5,n   vanish identically for our symmetric bounds 

of integration / 2h . One has also use some integration formulae given in [20], Eqs. (46), 

and the following formulae: 
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 (81) 

 When we introduce the relations (76) - (81) into the last three integrals of (22) after 

appropriate transformations we obtain 
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 Let us now recall some order estimates derived by Koiter [35, 36] and John [37] for 

thin isotropic elastic shells undergoing small strains. In the case of vanishing surface and 

body forces the orders of some fields were estimated as 
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 (83) 

 

where (.)O  means “of the order of”, R  is the smallest radius of curvature of M  at x M , 

l  is the characteristic length of geometric patterns of M , EL  and KL  are the characteristic 

lengths of extensional and bending patterns of shell deformation,   is the smallest stretch 

in the shell space, b  is the distance of internal shell points to the shell lateral boundary 

surface *B , and   is the small parameter. 

 To estimate orders of surface gradients of some fields we use the large parameter   

defined by 
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 (84) 

 With (83) and (84) we have the following order estimates for the components (78) 

of e : 
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 (85) 

where numerical factors are still kept for further discussion. 

 Applying the relations (82) to (85), we are able to estimate all terms in the right-

hand side of (82)1, 
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so that the expression (82)1 can be estimated by its largest second term as 

 2 1
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The expression (82)2 can be estimated by 

 2 3
, d .

160

h
Eh O

   






 
      

 
 s e  (88) 

Similarly, all terms in the right-hand side of (82)3 can be estimated as follows: 
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 (89) 

so that the expression (82)3 can be estimated by its two first terms as 
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 According to the estimates given in [20], within the small strain theory of isotropic 

elastic shells the first two terms of the resultant 2D stress working (22) consist of the main 

terms N E
  and M K

  which are 2( )O Eh , of the secondary terms Q E
  which are 

2 2( )O Eh  , and of the terms M K
  of smaller order. But when the constitutive 

equations (36) - (38) of the 2
nd

 approximation theory are used, their secondary terms 

multiplied by corresponding N  and M  become 2 2( )O Eh   as well. 

 The additional terms in (22) containing the deviation vector e  are calculated in (82) 

and their contributions to (22) are estimated in (87), (88), and  (90) to be  
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 (91) 

 In the estimation procedure developed in [35-37] the approximate relation 

( / )O h   was used. Please also note that the first two terms in (91) contain small 

numerical factors which essentially reduce values of these terms as compared with the 

main terms in (22). As a result, the contribution to (22) of the main terms of (91) becomes 
2 2( )O Eh  . Therefore, the contribution of the surface gradients of 2D shell strain 

measures to the resultant stress working are of the same order as of the secondary terms 

following from the effective part  
   n m  . This indicates that while the surface 

gradients of 2D shell stress and strain measures do not contribute to the 1
st
 approximation 

shell models, their contribution to the 2
nd

 approximation to the complementary energy 

density is of the order of secondary terms of the energy. The questions of whether and/or 

how to consistently incorporate the gradients of 2D shell measures into the constitutive 

equations of the 2
nd

 approximation linear six-field shell model should be addressed 

separately. 
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7 Conclusions 

We have formulated the relations of the resultant linear six-field theory of elastic shells by 

consistent linearization of corresponding relations of the resultant non-linear theory of 

shells. Contrary to the classical linear three-field K-L type and five-field T-R type shell 

models, kinematics of the resultant linear six-field shell model is described by six 

independent components of the infinitesimal translation and rotation vectors of the shell 

base surface. Additionally, in the six-field linear shell model the resultant 2D stress couple 

vectors and corresponding 2D bending vectors all have the drilling components. The 

presence of these additional degrees of freedom is important for analyses of irregular shell 

structures containing junctions, self-intersections, shell-to-beam transitions, etc. 

Within the resultant six-field linear theory of elastic shells we have formulated 

several results which are not available elsewhere. Among the new results let us point out 

the following: 

 Formulation of the extended static-geometric analogy and derivation of complex 

shell relations for the complex displacements (section 4). 

 Description of infinitesimal deformation of the shell boundary element (section 5) 

and derivation of the corresponding Cesáro type formulas (60) and (65). 

 Expressions (75) for the vectors of stress functions in terms of the resulting force 

and moment vectors along an arbitrary curve on the shell base surface. 

 Discussion on possible appearance of the surface gradients of 2D stress and strain 

measures in the resultant 2D stress working. 

These theoretical results should be of interest to specialists of the linear theory of 

shells and those developing computer FEM software for analyses of irregular multi-shell 

structures.  
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