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Abstract  The virtual work principle for two regular shell elements joined together along a 

part of their boundaries is proposed within the general non-linear resultant shell theory. It is 

assumed that translations across the junction curve are smooth, but no restrictions are 

enforced for the rotations. For stiff and hinge type junctions the curvilinear integral along the 

junction curve vanishes identically. In the case of deformable junction, the 1D constitutive 

type relation is proposed, where the constitutive function should be established by 

experiments for each particular engineering construction of the junction.  

 

 

1. Introduction 

By junctions of shells we mean design elements used for assembling regular shell 

parts along some of their boundaries into the complex multi-shell structure.  

It follows from the review by Pietraszkiewicz and Konopińska [1] that different shell 

models available in the literature require special forms of jump conditions at the singular 

surface curves modelling the shell junctions. Jump conditions corresponding to different shell 

models may lead to different stress and strain distributions near the junction. But the review 

also indicates that almost in all descriptions of shell junctions available in the literature the 

stiff junction conditions were enforced. Deformability of the junction itself was explicitly 

indicated and used in only a few papers based on simplest shell models. This is in sharp 

contrast to the analyses and design of one-dimensional steel framed structures, where various 
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semi-rigid beam-to-column connections were discussed in a number of papers, summarized in 

several books e.g. [2, 3] and were even introduced into Eurocode 3, [4]. 

Within the resultant non-linear six-field shell model, the mechanical theory of 

compound multi-shell structures was initiated by Makowski and Stumpf [5] and developed in 

the book by Chróścielewski et al. [6]. In this approach several regular shell elements may be 

joined at the common junction, deformability of any of the shell branches at the junction may 

individually be defined, and the junction curve itself may be equipped with additional 

mechanical properties independent from the adjacent shell branches. Unfortunately, the BVP 

of such a general theory became extremely complex and virtually useless for engineering 

applications. Even relatively simple cases of branching and self-intersecting shells developed 

in [7, 8] led to complex shell relations which were still hardly readable for engineering 

community. This explains why in the review [1] only a few papers on compound shell 

structures with deformable junctions was noted. 

In this paper we formulate the variational principle of virtual work for the simple 

compound shell structure under the following assumptions: 

 The structure consists of only two regular shell elements joined along a part of their 

boundaries. 

 Translations of the whole base surface, including the junction curve, are smooth. 

By further constraining the junction behaviour the stiff junction, the hinge junction, 

and the deformable junction are described and the corresponding reduced forms of the PVW 

are derived. 

 

2 Notation and basic shell equilibrium conditions 

The system of notations used here and basic shell relations are compatible with the 

ones used in the book by Chróścielewski et al. [6] and papers by Konopińska and 

Pietraszkiewicz [7], and Pietraszkiewicz and Konopińska [8, 9]. 

A shell is a 3D solid body identified in the undeformed placement with a region B  of 

the physical space  having the translation vector space E . The position vectors x  and 

( )y x  relative to some origin o  of any material particle in the undeformed and 

deformed placement, respectively, are represented by 

 , ( ) ( , ) , ( ,0) .     x t y x x xx y 0   (1.1) 
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Here x  and y  are position vectors of some shell base surfaces M  and ( )N M ,   is a 

deviation vector from N , n  is the unit vector normal to M  and orienting it, t  is the unit 

vector not necessary normal to M  with 0 t n , and [ , ]h h     is the distance from M  

along  t  with h h h    the initial shell thickness measured along  .  

 The shell base surface M  may be irregular one, in general, consisting of regular parts 

1 2, ,..., nM M M  joined together along some parts of their edges. The junction curves form 

together a net of singular surface curves   along which the junction jump (or continuity) 

conditions should be formulated. 

 The resultant 2D equilibrium equations in the referential description, which are 

satisfied for any part \M  , are 

  , ax ,T T
s sDiv Div     0 0N f M NF FN c  (1.2) 

where ( , ) xE T M N M  are the referential stress resultant and stress couple tensors, 

andf c  are the external resultant surface force and couple vectors applied on N , but 

measured per unit area of M , s xGrad E T M  F y  is the shell deformation gradient 

tensor, sDiv  is the divergence surface operator on M , and ax( )  is the axial vector associated 

with the skew tensor ( ) . 

 The resultant static boundary conditions satisfied along fM  are 

 * *, ,   0 0 n N m M  (1.3) 

where * *and n m  are the external resultant boundary force and couple vectors applied along 

( )f fN M    but measured per unit length of fM  having the outward unit normal  , and 

*( )  means the prescribed field. 

 There may be in general k  shell elements with regular base surfaces 1 2, ,..., nM M M  

joined together by parts of their edges , 1,2,..., ,iM i k n    along the singular curve  . In 

such a general case the resultant static continuity conditions across the curve   are [6, 7] 

 [ ] , [ ] [ ] ,      0 0  N f M y N c  (1.4) 

 
1 1

[ ] , [ ] ,
k n k n

i i i ii i

 

 
     N N M M  (1.5) 

where [ ]N  and [ ]M  are the jumps of N  and M  at each regular point of  , and 

f , c  are some 1D compensating force and couple vector fields applied along   . 
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Explicit definitions for ,c f  in case of branching and self-intersecting shells are given in 

[7]. 

 

2. Kinematic relations at the shell junction 

In order to keep the junction relations in focus, we discuss here only two shell 

elements with regular base surfaces 1 2andM M  connected together along their common 

edges coinciding with  , see Fig. 1.  

 

 

Figure 1. The irregular surface 1 2M M M    with the fold  , [9]. 

If   is oriented consistently with 1M , then at any point x   we have 1   , 

1 n n , and 1       n . At the same point x   the orthonormal triad 2 2 2, ,  n  of 

the edge 2 2M      does not coincide with the triad 1 1 1, ,  n . In fact, we have,  

 2 1 2 1 1 2 1 1, cos sin , cos sin .             n n n  (1.6) 

Hence, in this case the static jumps in (1.5) across  are defined as follows: 

 
 

 

1 1 2 2 2 1 1

1 1 2 2 2 1 1

[ ] cos ,

[ ] cos .





    

    

   

   

N N N N N

M M M M M
 (1.7) 

For only two surface elements connected along the fold  , the direct through-the-

thickness integration of 3D equilibrium equations along the skew coordinate   indicated in 
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[7] can be performed exactly. It is only sufficient to understand the transverse coordinate   as 

a rectilinear one, not necessarily orthogonal to the surfaces 1M  and 2M , but which coincides 

on the both sides of the junction region. In the case of only two shell elements there is also no 

necessity of introducing additional compensating force f  and couple c vectors, as well as 

there is no additional concentrated loadings ,i in m  and ,e en m  at the initial and end points of 

 within M  as well, which were necessary in the case of branching and self-intersecting 

shells, see [7]. As a result, in this case the static continuity conditions (1.4) are simplified to 

 [ ] , [ ] [ ] ,   0 0  N M y N   (1.8) 

where the jumps are defined by (1.7). 

 In this paper we additionally assume the deformed position vector field y  to be 

always smooth, so that [ ] 0y  across  . By this requirement we prevent the shell to be 

decomposed along   during deformation. As a result, the static continuity conditions (1.8) 

are reduced  to 

 [ ] , [ ] . 0 0 N M   (1.9) 

 Let ( , ) Ev w  be two vector fields smooth at the regular points of \M  , and 

( , ) E  v w  be two other vector fields smooth along  . Then for any part M   

containing the fold   we can set the integral identity 

 

    

    

 

\

* *

ax( )

[ ] [ ] 0 .

f

T T
s s

M

Div Div da

ds

ds

 



  





      

     

    







 

 

N f v M NF FN c w

n N v m M w

N v M w

 (1.10) 

By simple algebra we have 

 
( ) , ( ) ,

ax( - ) ( ),

s s s s

T T

Div Grad Div Grad   

 

N v N v M w M w

NF FN w N WF
  (1.11) 

where  is the scalar product in the tensor space such that for any , xE T M A B we have 

tr( )TA B A B  , and  1W w   is the skew tensor, where 1  means the identity tensor of the 

space E E  . 

Since   is an arbitrarily chosen part of M  containing  , transforming (1.10) with 

the help of (1.11) and applying the surface divergence theorems (see [7], f. (23)-(26)) we 

obtain 
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    

   

 

\ \

*

[ ] [ ] [ ] [ ] 0 .

f d

s s
M M

M M

Grad Grad da da

ds ds

ds

 

 

 

      

     

        

 

 



   

   

*

N v WF M w f v c w

n v m w N v M w

N v N v M w M w

 (1.12) 

 The real shell deformation is described by the translation vector  u y x  and the 

rotation tensor , 1,2,3,i i i  Q d t  of M , where ,i id t  are orthonormal triads of directors 

associated with M  in the deformed and undeformed placements, respectively. Then the 

vectors ,v w  in (1.12) may be interpreted as the kinematically admissible virtual translations 

and rotations, 

    
1 1

, ( ) , ,
2 2

T          1 1 1 1 1   v u W Q Q w W  (1.13) 

where   is the symbol of virtual change (variation). 

 Since    0u  along \d fM M M    , the integral over dM  in (1.12) vanishes 

identically. Moreover, it was found in [6, 10] that 

 , ,c c
s sGrad Grad     u F E K  (1.14) 

where ( ) { ( )}c T   Q Q  is the co-rotational variation of ( ) , and the 2D shell stretch and 

bending tensors are defined by 

 , .   F FE J QI K C QB  (1.15) 

In (1.15), s xGrad E T M  I x  and s ygrad E T N  J y  are the inclusion operators on 

\M   and \ ( )N   , B  and C  are the structure curvature tensors of the shell base surface 

in the undeformed and deformed placement, respectively, and y xT N T M F  is the 

tangential surface deformation gradient such  that dy dxF . 

 Introducing the virtual strain energy density in \M   defined by 

 ,c c   N E M K  (1.16) 

the principle of virtual work following from (1.12) takes the form 

 
   

 

* *

\ \

[ ] [ ] [ ] [ ] .

fM M M
da da ds

ds

 

 

  




       

       

  



 

    

f u c n u m

N u N v M M w

 (1.17) 

The curvilinear integral over   in (1.17) includes the jump terms which describe the shell – 

junction interaction between two joined shell elements with base surfaces 1 2andM M . 



7 

 

Explicit expressions of the jump terms depend on the type of junction modelled by this 

approach. 

 The large variety of types of 1D structural elements, which can be used as junctions in 

compound shell structures, together with complex kinematics required within the resultant 

six-field shell model, makes the general non-linear BVP of such structures to be very complex 

and hardly readable in engineering applications.  

The compound jump terms in (1.17) can be decomposed as follows: 

 
[ ] [ ] [ ] ,

[ ] [ ] [ ] ,

          

        

  

     

N u N u N u

M M M
 (1.18) 

where  a  is the average value of Ea  at  . In our special case of smooth translations 

everywhere discussed here, the translation at the junction curve   may be interpreted as the 

average translation of both edges 1M    and 2M   , so that   u u . But the 

rotation tensors 
11 | M  Q Q  and  

22 | M  Q Q  of the edges at the same x   may be 

different, in general, 1 2Q Q .  

With (1.18) the PVW  (1.17) can be reduced to 

 
   

  

* *

\ \

[ ] [ ] .

fM M M
da da ds

ds

 



  


       

       

  



 

   

f u c n u m

M w M

  (1.19) 

Let us introduce explicitly the net rotation tensor Q  of   such that 2 1Q Q Q  at 

any x   when x  is approached from both sides of  , respectively. Since 2 1, ,Q Q Q   

are all proper orthogonal tensors, we have 

 2 2 1 1, , .T T T

   1 1 1Q Q Q Q Q Q   (1.20) 

Virtual changes of these orthogonality relations lead to 

 

2 2 2 2 2

1 1 1 1 1

,

,

,

T T

T T

T T

    

 

 

 

   

   

   

1

1

1







Q Q Q Q

Q Q Q Q

Q Q Q Q

  (1.21) 

 2 1 .    Q   (1.22) 

The virtual rotations 2 1, and   are all defined in the shell deformed placement. 

Let the virtual rotation w  at   be interpreted in terms of   as 

  1
1

( )
2

      1  Q w   (1.23) 
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Then the PVW (1.19) can be further reduced to 

 
   * *

\ \

[ ] .

fM M M
da da ds

ds

 



  


       

   

  



 

 

f u c n u m

M

  (1.24) 

The variational statement (1.24) governs the simplified BVP of two regular shell 

elements with base surfaces 1M  and 2M  joined along the junction  . This PVW has been 

constructed under the assumption that the joint translations are smooth everywhere during 

deformations. As a result, kinematic description of the junction has been reduced to 

characterising how the rotations 1Q  and 2Q  of the neighbouring points of the junction are 

related to each other during deformation. This still allows one for a variety of possible 

characterisations of the junction. Some of the simplest particularly appealing junction 

characterisations are discussed below. 

 

3. Description of the junction 

4a. The stiff junction 

 The shell junction along  is called stiff  if the shell deformation is continuous on the 

whole 1 2M M M   including  . In this case 

 1 2 1 2[ ] , [ ] , , ,    0 0u u u Q Q  (1.25) 

and the curvilinear integral along   in (1.24) vanishes. The correspondingly simplified PVW 

is reduced to 

    * * .
fM M M

da da ds  


         f u c n u m    (1.26) 

 The physical meaning of (1.26) is that in this case the junction along   does not 

contribute to the virtual work of the compound shell structure. The mechanical behaviour of 

the junction itself is enforced by the behaviour of stiffly joined shell lateral boundary surfaces 

of regular shell parts with surface elements 1 2andM M . This is exactly the case of almost all 

types of shell junctions reviewed in [1]. In particular, within the resultant non-linear six-field 

shell theory several folded and multi-shell structures with stiff junctions were modelled and 

analysed with FEM by Chróścielewski et al. [11]. Non-linear dynamic problems of such 

structures were discussed by Chróścielewski et al. [12]. A number of linear and non-linear FE 

solutions of multi-shells with stiff junctions was summarized in the book [6]. 
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4b. The hinge junction 

 The hinge junction along   is understood when u  is continuous across  , that is 

[ ] , 0u  1 2u u  , but 1 2,Q Q  are entirely unconstrained when approaching   along a path 

on corresponding 1 2,M M . In this case [ ] 0 , in general. However, in order the entirely 

unconstrained rotations 1 2,Q Q  to happen, from equilibrium it follows that no moments at both 

sides of   should be allowed, 

 1 1 2 2, , 0 0 M M   (1.27) 

so that   0M  and hence [ ]  0 M  along  . As a result, in the corresponding 

PVW (1.24) the curvilinear integral along   vanishes as well reducing it again formally to 

(1.26). However, the important difference to the stiff junction is that in the case of hinge 

junction along   the additional static equilibrium conditions (1.27) have to be enforced in 

the process of solution of BVP. 

Some special cases of such BVP for the linear elastic plate problems were proposed in 

the literature. For example, linear boundary value problems for anisotropic elastic Kirchoff 

plates with internal line hinges were discussed by Grossi [13]. Natural vibrations of the 

rectangular plate with a hinge line were analysed by Huang et al. [14] and Grossi and Raffo 

[15] within the linear Kirchhoff plate model, while Xiang and Reddy [16] used the linear first 

order shear deformation plate model for this purpose. 

 

4c. The deformable junction 

 In the PVW (1.24) both ingredients  M  and [ ]  in the last integral may not 

together identically vanish, in general, that is   0M  and [ ] 0 . In this general case the 

shell junction along   may be called deformable.  

From engineering point of view, the junctions can be classified according to: 

 the type of medium used: bolted, welded, riveted, glued, adhesively bonded etc.; 

 the type of internal forces the junction is expected to transmit: membrane, shear, 

moment (stiff, deformable); 

 the type of elements the junction is joining: regular shell elements, transition stiffening 

ringbeams, special junction constructions. 
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This leads to a large variety of constructions of junctions in compound shell structures. 

Mechanical and/or deformability properties of each particular case of such junction should be 

known in advance before the analyses take place. 

Let us differentiate the orthogonality relations (1.21) along  ,  

 

2 2 2 2 2

1 1 1 1 1

( ) ' ( ) ' ,

( ) ' ( ) ' ,

( ) ' ( ) ' , (.) ' (.) ,

T T

T T

T T d

ds

    

   

   

    

1

1

1

Q Q Q Q

Q Q Q Q

Q Q Q Q







  (1.28) 

 2 1 .  Q     (1.29) 

The vector   describes the bending properties of the junction curve   during shell 

deformation. 

The mechanical behaviour of the deformable junction can be characterized by the 

relation 

 ( ) ,f   M    (1.30) 

where f  is a smooth vector function of vectorial argument at any x  . The relation (1.30) 

is the kind of 1D constitutive equation modelling deformability properties of real engineering 

junctions. It is apparent that due to possible complexity of engineering junction constructions 

the function f  should be established from appropriate experiments for each particular type of 

the junction. 

 With (1.30) and (1.22) the PVW (1.19) takes the modified form 

 
   

 

* *

\ \

1( ) ( ) .

fM M M
da da ds

f ds

 

  

  


       

   

  

 1

 

  

f u c n u m

Q

  (1.31) 

 If there exists a scalar function ( )W   such that ( ) /f W     , the junction 

along   may be called elastic. The function W  may be quite complex non-linear function of 

 , so that such a junction is non-linearly elastic, in general. But in some cases W  may 

become a quadratic function such that 

 
1

( ) , ( ) ,
2

W f     L L      (1.32) 

where L  is the 2nd order tensor of rotational material properties along  . In this case the 

shell junction can be called linearly elastic.  
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 Special cases of elastic junction conditions within the linear Kirchhoff-type theory of 

elastic plates were discussed by Bernadou [17], Titaux and Sanchez-Palencia [18] and 

Nardinocci [19]. Elastic junctions between two thin linearly elastic shells of Koiter type were 

asymptotically analysed by Akian [20] and Merabet et al. [21]. Within the non-linear theory 

of thin shells of Kirchhoff-Love type, description of several types of shell junctions were 

given by Makowski et al. [22], and explicit numerical solutions of the shell of revolution with 

deformable elasto-plastic junctions were given by Chróścielewski et al. [23, 24]. Within the 

non-linear six-field shell theory, the deformable junction of one branch at the shell branching 

was kinematically classified in [8] as locally elastic, non-locally elastic and dissipative. 

 

4. Conclusions 

Within the general non-linear resultant shell theory, we have formulated the virtual 

work principle for two regular shell elements joined together along their common boundaries. 

It has been assumed that translations across the junction curve are smooth, but no restrictions 

are enforced for the rotations. It has been shown that for stiff and hinge type junctions the 

curvilinear integral along the junction curve vanishes identically and does not bring an 

additional virtual work to the shell BVP. In the case of deformable junction, the 1D 

constitutive type relation has been proposed for the junction moments in terms of net rotations 

of the junction curve. The constitutive function should be established by experiments for each 

engineering construction of the deformable junction. As special cases, description of non-

linearly elastic and linearly elastic junctions have been noted. 

The proposed description of shell junctions should allow development of appropriate 

numerical FEM programs for non-linear analyses of multi-shells with various types of 

junctions. 
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