
 

1 
 

1 INTRODUCTION  

The resultant non-linear theory of elastic shells was 
proposed by Reissner (1974), developed in a number 
of papers and summarised in several monographs, 
for example by Libai and Simmonds (1998) and 
Chróścielewski et al. (2004). In this formulation the 
2D non-linear shell equilibrium equations are 
derived by the exact through-the-thickness 
integration of equilibrium conditions of non-linear 
elasticity. Then the 2D virtual work identity allows 
one to construct uniquely the 2D shell kinematics 
consisting of the translation vector u and rotation 
tensor Q (or an equivalent finite rotation vector  ) 
fields (six independent scalar variables) defined on 
the shell base surface. The 2D surface stretch and 
bending measures follow then again uniquely as 
direct consequence of the exact resultant equilibrium 
equations. When such a resultant shell model is 
linearized for infinitesimal translations, rotations, 
stretches and bending measures, the linearized 
drilling rotation remains as the independent 
kinematic variable, as well as two linearized drilling 
couples and two work-conjugate drilling bending 
measures remain in the description of 2D stress and 
strain state. The latter features contradict all classical 
shell formulations of the Kirchhoff-Love and 
Timoshenko-Reissner type following from linear 
elasticity by any 3D-to-2D reduction technique.  

 In this note we wish to investigate what the 
resultant six-field linear theory of shells brings to the 
classical linear shell models. 

2 EXTENDED STATIC–GEOMETRIC 
ANALOGY 

For the general system of notation let me refer to the 
recent paper by Pietraszkiewicz & Konopińska 
(2014), where the exact resultant 2D relations of the 
six-field non-linear theory of shells are briefly 
recalled. When translations and rotations of the shell 
base surface M are assumed to be small, the 
corresponding vectors ,u   on M  are given by 

, ( )u w 
      u a n n a n  

where ,a n  are the contravariant base vectors of M
. The above relations contain the drilling rotation   
which is not present in the classical shell models. 

The corresponding vectorial surface strain 
measures are 

,

,

E E

K K


    

 
     

    

  

u a a n

a n

 

 
   

The resultant vectorial surface stress measures are 

,N Q M M      
    n a n m a n   
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Linearization of the component form of exact 
equilibrium equations gives  
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These twelve PDEs involve the drilling stress 
couples M   as well, which are not present in 
analogous PDEs of the classical linear shell models 
of the K-L and T-R type. 

The corresponding exact 2D compatibility 
conditions of the six-field non-linear theory of shells 
follow from integrability conditions |


  0u  for 

the surface translation vector and |


  0Q  for 
the surface rotation tensor fields. For small stretch 
and bending surface measures the component form 
of non-linear compatibility conditions can be 
linearized to  
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These twelve PDEs involve the 2D surface drilling 
bending measures K . Again, the fields K  are not 

present in compatibility conditions of any classical 
linear shell models. 

Between the homogeneous equilibrium equations 
(1) and the compatibility conditions (2) there exists 
the following correspondence: 
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When the resultant  stress measures in (1) are re-
placed by the 2D strain measures according to (3), 
the homogeneous equilibrium equations (1) are con-
verted exactly to the compatibility conditions (2). 
The correspondence (3) can be called the extended 
static-geometric analogy in the resultant six-field 
linear theory of shells.  

The property (3) allows one to introduce the 2D 
complex stress and strain measures in analogy to 
those used by Novozhilov (1964) in the classical K-
L type linear shell theory, 
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where 21 , / 12(1 ) ,i c h      the star means a 
particular solution of inhomogeneous PDEs (1), and 

, , ,K K E E   
     are the 2D strain measures but 

constructed from the complex translations and rota-
tions, 
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where by overbar we denote the stress functions. 
This leads to the following complex linear 
equilibrium equations:  
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The  system (4) of PDEs is of 6th order in complex 
domain as compared with PDEs (1) which are of 
12th order in real domain. One can apply the com-
plex shell equations (4) with hope to obtain more ac-
curate analytical results than those based on K-L 
shell model presented in Novozhilov (1964) and 
Novozhilov et al. (1991) and those based on T-R 
type shell model presented in Pelekh (1978). 

3 RELATIONS ON THE SHELL BOUNDARY 

In the resultant shell theory, the undeformed recti-
linear shell lateral boundary surface *B  deforms in-
to the deformed lateral boundary surface *B  , 
which is not the rectilinear one anymore. To de-
scribe the linearized deformation of *B  into 

*B  , let the boundary contour M  of the shell 
base surface be parametrized by the length coordi-
nate s . Along M  we can introduce the triad of or-
thonormal vectors: the tangent  , the n  normal to 
M , and the exterior normal    n . In the base 

, ,  n  the translation u  and rotation   vectors are 
represented by 

,u u w               u n n   (5) 

According to the modified polar decomposition 
the material fiber ds  tangent to M  should be ro-
tated by a total rotation vector   into the fiber ˆds  
tangent to ( )M  , where ̂  denotes the unit vector 
tangent to the deformed boundary contour. This can 
be achieved by two rotations: the global rotation 
vector   of the neighborhood of x M  followed 
by an additional rotation a  associated with the 
stretch in the direction  . After transformations giv-
en in detail by Pietraszkiewicz (2015) the linearized 
total rotation vector is given by 

( ) ( )a E E                 n   (6) 

Differentiation of the translation and rotation 
fields along M  gives 
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where the components , ,k k k    are expressed only 
through the surface strain measures and geometry of 

M . These relations can be integrated along M  to 
obtain 

 
0 0

0 0' ' ', ' (7)
s s

s s
E ds ds              u u k

 Using some transformations the relation (7)1 can 
also be given in the form 

 
0 0

'0 0
0( ) '' ' ' '

s s

s s
ds E ds  

            u u x x k  

The relation above and (7)2, derived here along 
the boundary contour M , are also valid for any 
regular curve C  on the shell base surface. Since for 
the simply connected base surface M  the resulting 
translations and rotations do not depend on the type 
of surface curve connecting the initial and current 
points on M , these relations can be treated as the 
Cesáro type formulas in the resultant linear six-field 
theory of shells.  

When solving shell problems in terms of stress 
functions it is of importance to know how the stress 
function vectors u  and   are related to the result-
ing force and moment vectors of loads acting along 
the boundary contour fM . 

The boundary loads 
 n n  and 

 m m  
per unit length of fM  are 

 * *, aEhc Ehc E             n n m m  

where the first terms * *, n m  correspond to the 

chosen particular solution of the inhomogeneous 
equilibrium equations (1). 

The resulting force vector F  of the loads n  act-
ing along the part 0s s  of fM  is 

 
0 0

*' = '
s s

s s
ds Ehc ds    n n F   

The resulting moment vector B  of the loads n  and 
m  acting along the part 0s s  of fM , taken with 

regard to the current point fx M  with the coordi-
nate s , is (see Pietraszkiewicz 2015) 

0 0*
0( )Ehc       u u + x x B B  

Solving the two relations given above, for the stress 
function vectors u  and   we obtain  

* *
0 0 0

0, ( ) (8)
Ehc Ehc

 
        u u x x

F F B B

 

The relations (8) along fM  are also valid for any 
regular curve C  on the shell base surface M . In the 
case of simply connected M  and the closed curve 
C  we can assume 0 0  0u . This means the 
change of stress function vectors by the term 

0 0
0( )  u x x  of “rigid-body motion” type 

which does not influence the stress-deformation 
state of the shell. In the case of shell problems with 

non-vanishing differences *F F  and *B B  as well 
as with a multi-connected M  the relations (8) 
should allow to construct multivalued parts of the 
stress functions in analogy to procedures developed 
by Chernykh (1968) and Pietraszkiewicz (1968) for 
the linear K-L type elastic shells. 

4 GRADIENTS OF 2D SHELL MEASURES IN 
THE RESULTANT STRESS WORKING 

From the resultant thermomechanics of shells 
worked out by Pietraszkiewicz (2011) it follows that 
even if thermal fields are neglected and kinematic 
fields are linearized, the constitutive equations of 
elastic shells are still allowed to depend upon sur-
face gradients of 2D strain measures. We are not 
aware of any discussion of this problem in the litera-
ture.  

To have some insight into the problem, let us re-
mind that distribution of translations through the 
shell thickness is non-linear, in general. For an arbi-
trary deformation of the shell space, we have intro-
duced in Chróścielewski et al. (2004) the intrinsic 
deviation vector ( , ) e  defined by 

( ) ( ) ( )T e e
      e gQ n n   (9) 

where eQ  is a measure of deviation of the deformed 
curved material fiber from its approximately linear 
rotated shape Qn , see Figure 4 in Pietraszkiewicz 
(2015). 

The 3D stress power density is defined by 
( ) :  FS F , where F  is the 3D deformation gradi-

ent, the overdot means the material time derivative,
i

i S s g  is the 2nd Piola-Kirchhoff stress tensor, 
and : denotes the double-dot (scalar) product in the 
tensor space. Using the modified polar decomposi-
tion F Q , where T   is the modified stretch 
tensor, we can calculate exactly the resultant 2D 
stress power density in the form 

d

( ) d d (10)
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 e s S e

   

   

 where   means the 3D gradient performed in the 
undeformed shell space. The last two integrals in 
(10) represent that part of   which is not 
expressible through the 2D shell stress and strain 
measures alone. 

In case of linear equilibrium problems, material 
time derivatives in (10) become linear increments of 
the fields from the undeformed state and the 2D 
stress power (10) reduces to the resultant 2D stress 
working, i.e. to the relation (10) without overdots. 

We have thoroughly analyzed the principal terms 
of the last two integrals in (10) within the accuracy 
of equilibrium problems of the linear theory of iso-
tropic elastic shells. In particular, we have used 
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some results obtained Rychter (1988) for kinemati-
cally admissible components of 3D displacement 
field of the Reissner type linear shell theory and pos-
tulate approximate through-the-thickness distribu-
tions of the intrinsic deviation vector 

( ) ( ) , ( ) ( )e k q g c e r q s d         
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while ( ), ( ), , , andk g q c D
    are defined in 

Pietraszkiewicz & Konopińska (2014). Then for the 
principal terms of (10)2 after appropriate 
transformations we are able to obtain the following 
consistently estimated relations: 
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2 1
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where   is a small parameter defined in 
Pietraszkiewicz & Konopińska (2014), the large 

parameter  min , , , / , ( ), ( ) / ,
x M

L b hR h   


    

and /h   .  
Within the first-approximation linear theory of 

elastic shells, all terms in (11) can be neglected as 
compared with the main terms 2Eh  in (10). 
However, in the Timoshenko-Reissner type and the 
resultant six-field linear shell models the terms (11) 
are of the same order (aside from small numerical 
factors) as those following from Q . Their role 
should still be discussed if these linear models are to 
be regarded as energetically consistent ones.  

5  CONCLUSIONS 

Within the resultant six-field linear theory of elastic 
shells we have formulated several results which are 
not available elsewhere. Among the new results let 
us point out the following: 
 Formulation of the extended static-geometric 

analogy and derivation of complex shell rela-
tions for the complex displacements (section 4). 

 Description of infinitesimal deformation of the 
shell boundary element (section 5) and deriva-
tion of corresponding Cesáro type formulas. 

 Expressions (8) for the vectors of stress func-
tions in terms of the resulting force and moment 

vectors acting along the boundary contour and 
along an arbitrary curve on the shell base sur-
face. 

 Estimation that surface gradients of 2D stress 
and/or strain measures may be of 2nd order 
small in the 2nd approximation to the comple-
mentary energy density. 

These theoretical results should be of interest to 
specialists of the linear theory of shells and to those 
developing computer FEM software for analyses of 
irregular multi-shell structures.  
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