Better use of bioenergy and plant nutrients from human waste

IV Baltic Biogas Forum 11 – 12 September 2014 Gdansk

Ruzena Svedelius AgrD BAS-konsult rsvedeliushotmail.com www.biotransform.eu

0046/70 733 11 20

Human Waste (**HW**) per person and day

- One litre urine & 200 g faeces
- 200 550 litre wastewater per person and day is "cleaned" using plenty of energy and by adding various more or less toxic chemicals
- Unhealthy working milieu
- Losses of bioenergy and nutrients
- Polluting environment (N₂O etc.)

Household waste (HHW) and human waste (HW) in Sweden Table 1.

Solid waste	Recommendations in report "Reforsk, FoU 145, 1998" %	Treatment of household waste in 1998 %	
Recycling	12	12	
Incineration	6	50	
Landfilling	6	38	
Suitable for biological	76	0	
treatment			
Liquid waste	Suitable for	Waste water treatment	
Assumption per person per	biological treatment	in 1998	
year			
Waste water (litre)		73 000 – 100 750*	
Human waste (kg)	430		
Grey water (litre)	71 000**		
* Mostowater and human wasta			

* Wastewater and human waste

** Water from bathing, dishwashing and laundry.

Recycling Closet (RC) (instead of the Water Closet) affects when used

- Directly
 - Protecting water in toilets and in WWTP
 - Reduction of drugs in waterways
 - Safer transport to biogas plants
 - Without polluting losses to environment
 - Improving of working milieu
- After treatment in local biogas plants
 - Better use of bioenergy as methane in biogas and in organic structures in biofertilizers

 More efficient recycling of plant nutrients, thus reduction of use of artificial fertilizers

Bioenergy flow in biogas

plant Bioenergy in substrate

Bioenergy in
 biogas
 Bioenergy in biofertilizers

Bioenergy losses during processing

Plant nutrients flow in biogas

plant Plant nutrients in substrate

Plant nutrients in biofertilizers Plant nutrients losses during processing

The Baltic Sea

415 000 km2

The catchment area

Countries that border on the sea: **Denmark, Estonia, Finland,** Germany, **Latvia, Lithuania, Poland,** Russia, **Sweden**

Countries that are in the drainage basin but do not border on the sea: Belarus, Czech Republic, Norway

Using RC in countries round Baltic Sea DK, SE, FI, EE, LT, LV and PL

- 65 millions inhabitants
- 44 million tons per year processed in Optimal Solids Anaerobic Digestion (OS-AD) in local biogas plants will give
 - 45 58 TWh bioenergy in biogas
 - 65 78 TWh bioenergy in biofertilizers
 - €300,000 €800,000 value of nitrogen and phosphorus

2 kg renewable organic material (ROM) per person per day can be used as raw material in local biogas plants Table 2.

Inhabitants	ROM (at least) tons per year	GWh Total bioenergy per year	GWh Bioenergy in biogas per year	GWh Bioenergy in biofertilizers per year	€ Value of nitrogen and phosphorus per year
1 000	730	2,2	0.7-0.9	1.0-1.2	5-7
10 000	7 300	22	7-9	10-12	50-70
100 000	73 000	220	70-90	100-120	500-700
1 000 000	730 000	2 200	700-900	1 000-1 200	5 000-7 000
DK 5.5 millions	4 025 000	12 100	3 850-4 950	5 500-6 600	27 500-38 500
SE 9.5 millions	6 935 000	20 900	6 650-8 550	9 500-11 400	47 500-66 500
FI 5.4 millions	3 942 000	11 880	3 780-4 860	5 400-6 480	27 000-37 800
EE 1.3 millions	949 000	2 860	910-1 170	1 300-1 560	6 500-9 100
LT 3.3 millions	2 409 000	7 260	1 540-1 980	3 300-3 960	16 500-23 100
LV 2.2 millions	1 606 000	4 840	2 310-2 970	2 200-2 640	11 000-15 400
PL 38 millions	27 740 000	83 600	26 600-34 200	38 000-45 600	190 000-266 000
EU 742,5 millions	542 025 000	1 633 500	519 750-668 250	742 500-891 000	3 721 500-5 197 500

rsvedelius@hotmail.com

Some definitions

Bio inspired by the Greek word $\beta i \circ \zeta$, bios, = "life"

Biomass – general: total amount or weight of living organisms in an area (such as plants, animals and birds per hectare of forest / field) or volume (eg, worms, microorganisms and roots in a cubic meter of soil).

Bioenergy / **biofuel** - solar energy that is biochemically bound to biological structures of plants during photosynthesis

Organic - originally from living organisms (plants, animals or microorganisms).

Organic material - every composite substance containing the element carbon (C) as a main component, it can be solid, liquid or gas and come in three types:
a) renewable organic material
b) synthetic organic material

c) fossil organic material

Anaerobic digestion To obtain maximum benefit microorganisms need

- Right substrate having all factors at optimum
- Right environment that is created with the appropriate equipment

Efficient biological conversion require

- Excellent knowledge in microbiology
- Modern logistics
- Mechanization
- Automation
- Computerization

Anaerobic digestion Total Solids (TS) describe biogas plants

- 0.5% 15% TS Anaerobic Digestion (AD)
- >15% TS
 - Solid-State Anaerobic Digestion (SS-AD)
 - High Solids Anaerobic Digestion (HSAD)
 - dry-AD
 - "anaerobic composting"
- Here proposed about 30% TS
 - Optimal Solids Anaerobic Digestion (OS-AD)

Optimal Solids Anaerobic Digestion (OS-AD)

- Requires
 - Environment free of atmospheric oxygen
 - Substrate free of impurities
 - TS about 30%
- Other factors must be close to optimum
 - Particle size
 - C / N ratio
 - ∘ pH
 - Temperature
 - Inoculum

Local biogas plants with OS-AD

- Advantages
 - Short and fast transports of raw material
 - Local jobs
 - Better understanding of process by residents
 - Local use of biogas
 - Biofertilizers delivered to narrow producers of food
- Disadvantages
 - What do you think?

Two valuable products of OS-AD

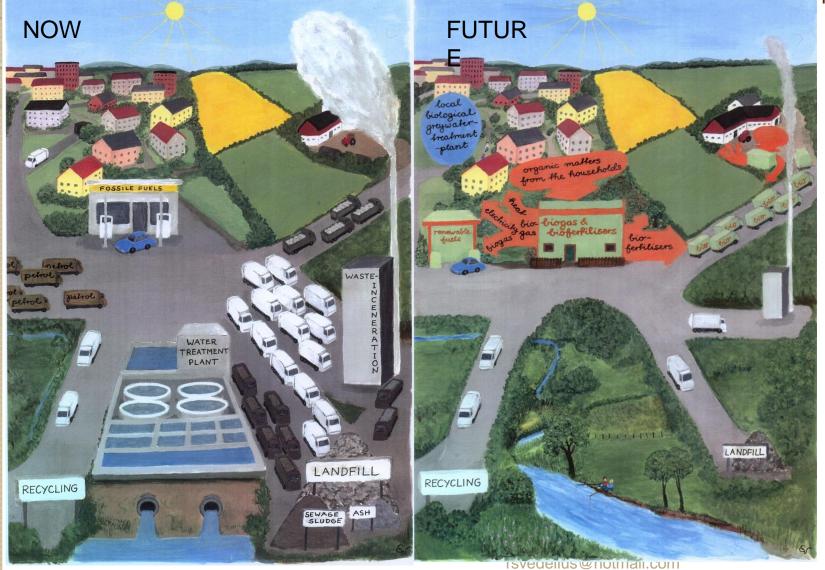
- Biogas containing energy-rich methane that can be transformed to
 - Electricity & heat
 - Heat
 - Fuel for vehicles
- Biofertilizers suited to cultivation containing remaining bioenergy and all plant nutrients

Biofertilizers

important now and for future generations

- Contain organic structures with
 - Bioenergy
 - Plant nutrients

 Increase amount of organic matter in cultivated soils that is positive for soil fertility i.e. growth of new plant biomass for


Food & Feed & Fibre & Fuel

Plant nutrients should be reused in biofertilizers

- All 16 chemical elements that are essential for plant growth and development should be reused
- Here are presented only values of
 - Nitrogen important for all living that is lost in WWTP, incineration plants, with thermal gasification and cause pollution of water and air, cause health problem when Reactive Nitrogen increases.
 - Phosphorus is a finite resource that ends up in sewage sludge and ash blended with toxic
 Substances

Treatment of ROM from waste now and in the future

Artist Two Midegree created pictures ofter date which are presented in Table 1

Challenges for sustainable management

- of renewable organic material (ROM)
 To use biological methods
- To transport HW with RC and treat in biogas plants
- To adapt modern knowledge based technologies both to needs of microorganisms and to staff who handle waste and wastewater
- To create conditions under which all residents can properly handle the ROM of residues and wastes
- Cooperate with other countries
- To transform about 500 million tons ROM in EU to biogas and biofertilizers Eventual com

Sustainable Biological Recycling System (SBRS) is under development

- Right collection (including RC)
- Short-distance transport
- Pre-treatment
- OS-AD will be used
 - Biogas to electricity and heat
 - Biofertilizers will meet requirements of different cultivated crops

Conclusion

- Everything that originates from plant and animal kingdom, can be transformed to valuable products
- The MSW contains more ROM than HHW because it includes ROM from restaurants, shops, farmers' markets, etc.
- ROM in residues from forestry, agriculture, horticulture and fishery are also suitable for co-processing in biogas plants
- Biotechnology will contribute to healthy prosperity for people throughout the globe

OUR RESPONSIBILITY

You and I can influence decisions that result

in **more efficient resource management** to lower costs while reducing the negative impact on

health and environment