THE IV BALTIC BIOGAS FORUM

Efficiency of sulphur compounds removal - long-term studies of system applying modified mineral sorbent Jan CEBULA The University of Bielsko-Biała Institute of Environmental Protection and Engineering Józef SOŁTYS PTH Intermark Gliwice ul. Św. Marka 9/7

The Szewalski Institute of Fluid-Flow Machinery Gdańsk 11-12.09.2014

Chemical composition of biogas obtained from different kind raw materials

Component	Unit	Biogas from OFMSW	Biogas from WWTP	Agricultural biogas	Biogas from agricultu ral and food wastes
Methane	[%]	50 - 60	60 - 75	60 - 75	68
Carbon dioxide	[%]	34 - 38	19 - 33	19 - 33	26
Nitrogen	[%]	0 - 5	0 - 1	0 - 1	-
Oxygen	[%]	0 - 1	< 0.5	< 0.5	-
Water	[%] (40°C)	6	6	6	6
Hydrogen sulphide	$[mg/m^3]$	100 - 900	1000 - 4000	3000 - 10000	100
Ammonia	$[mg/m^3]$	-	_	50 - 100	400
Aromatic	$[mg/m^3]$	0 - 200	-	-	-
compounds					
Chlor or fluor	$[mg/m^3]$	100 - 800	-	-	-
organia compounds					

Popular sulphur compounds in biogas

- Hydrogen sulphide H_2S
- Sulphides R_2S
- Disulphides RSSR
- Dimethyl sulphide CH₃SCH₃
- Methane thiol CH₃SH
- Dimethyl disulphid CH₃SSCH₃
- Carbon disulphide CS_2
- Methyltiophene C_5H_7S
- Ethyltiophene C_6H_9S
- Alkyl disulphides $C_3 C_{10}$: $C_3H_8S_2 C_{10}H_{22}S_2$ Alkyltrisulphide $C_6 - C_6H_{14}S_3$
- Carbon oxysulphide COS

Compound	Abbreviation	Molecular weight [g/mol] at 25°C	Water sollubility [mg/dm ³]	Vapor Pressure at 25°C [kPa]
Trimethyl silanol	-	90	35000	2,13
Hexamethyldisiloxane	L ₂	162	0,93	4,12
Octamethyltrisiloxane	L ₃	236	0,035	0,52
Decamethyltetrasiloxane	L_4	310	-	0,07
Dodecamethylpentasiloxane	L ₅	384	3,1x10 ⁻⁴	0,009
Hexamethylcyclotrisiloxane	D ₃	222	1,56	1,14
Octamethylcyclotetrasiloxane	D ₄	297	0,056	0,13
Decamethylcyclopentasiloxane	D ₅	371	0,017	0,02
Dodecamethylcyclohexasiloxane	D ₆	445	0,005	0,003

Damaged noise suppressor through sour gasses

View of carbon deposits on cylinders of the engine burning raw biogas after c 1500 working hours.

Results of chemical analyses of the carbon deposit produced in the engine using raw biogas

Microscopic view SEM of the carbon deposit collected from the head of the engine

Structure tarry deposit produced on the surface of the heat exchanger

Signal A = SE2

Mag = 1.75 K X

EHT = 25.00 kV

WD = 14 mm

10 µm ⊢——∣

Results of chemical analyses of deposit accumulated in the filter

Element	Measurement 1	Measurement 2	Measurement 3	Average
0	40,10	39,58	40,71	40,13
Na	24,45	24,32	25,94	24,90
S	27,85	28,26	23,44	26,52
Ca	0,88	1,04	1,78	1,23
Fe	6,71	6,80	8,13	7,21

Structure of deposit stored up on the filter

View of deposit in the microscope SEM

View of deposit in the optical microscope

Lp.	Name compound	Designation	Value	Unit
1	Chlorine	Cl	< 100	mg/10 kWh
2	Fluorine	F	< 50	mg/10 kWh
3	Total content of chlorine and	Sum Cl + F	< 100	mg/10 kWh
	fluorine			
4	Dust 3 – 10 μm		< 10	mg/10 kWh
5	Oil		<250	mg/10 kWh
6	Silicon	Si	<20	mg/10 kWh
7	Sulphur	S	< 2200	mg/10 kWh
8	Hydrogen sulphide	H ₂ S	< 1500	mg/10 kWh
9	Ammonia	NH ₃	<30	mg/10 kWh
10	Nominal pressure		10	kPa
11	Max. fluctuation of gas		< 0,1	kPa
	pressure			
12	Max. gas temperature		35	°C
13	Max. humidity		80	%

The requirements in relation to the acceptable content of pollutants in biogas

Acceptable content of siloxanes

- Internal combustion engines: $5 28 \text{ mg/m}^3$
- Gas turbines : $< 0,1 \text{ mg/m}^3$

Acceptable content of ammonia NH₃

Internal combustion engines: $20 - 50 \text{ mg/Nm}^3$

Acceptable content of H₂S

- Energy boilers : do 1000 ppm
- Internal combustion engines: 50 100 ppm
- Gas net: 4 7 ppm
- Fuel cells: < 1 ppm

Acceptable content of vapour Hg

Gas net: $30,0\mu g/m^3$

Hexamethyldisiloxane $C_6H_{18}OSi_2$

Hexamethylcyclotrisiloxane $C_6H_{18}O_3Si_3$

Octamethyltrisiloxane $C_8H_{24}O_2Si_3$

Microscopic view of natural halloisite from the mine Dunino (scale 1 μ m)

Layer-cellular structure of halloysite

Change of content of the hydrogen sulphide and ammonia after passing biogas by individual layers of the filter

Measurement	Intake	After I shelf	After II shelf	After III shelf	After IV shelf
H ₂ S [ppm]	1865	1320	190	20	15
NH ₃ [ppm]	2050	1630	1350	960	650
O ₂ [%]	0,0	0,0	0,0	0,0	0,0

Measurement	Intake	After I shelf	After IV shelf
H ₂ S [ppm]	1955	245	10
NH ₃ [ppm]	1990	1250	425
O ₂ [%]	0,0	1,6	1,6

Influence of air addition to the filter

Changes concentration of the hydrogen sulphide after closing the inflow of air

Time after closing the inflow of air [min]	Concentration of H ₂ S [ppm]
0	385
1	600
2	970
3	1215
4	1310
5	1380
10	1360
20	1370

View of sorbent on the IV shelf (outflow). Privileged places of the flow are visible (darker).

View of sorbent partly saturated

Fresh sorbent

Different kind of filtrs used for biogas purification

New ports in filters

New ports for sampling

- New equipment

New measurements

New filter construction

-

1111

Filter in Rybnik compost plant

Filter in Chorzów

New compact biogas plant in Proboszczowice

Very W

THANK YOU FOR YOUR ATTENTION