



## **PESTLE analysis results on storage solutions**

Hamburg | 25 May 2023 Sauli Jäntti, Lea Hämäläinen/Thermopolis Oy, Finland

https://interreg-baltic.eu/project/energy-equilibrium/

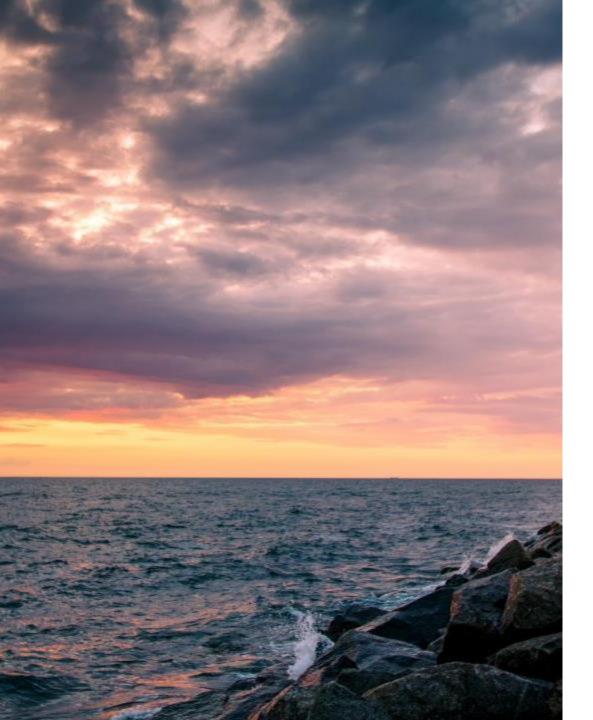


#### **General comments on energy storage**

The drivers behind interest in energy storing:

- International, EU, national and possible municipal level climate targets
- The goals of energy self-sufficiency
- Increased share of renewable electricity
  - Fluctuating production of energy energy market price variation
- Societies dependency on energy

## **PESTLE Analysis**


PESTLE is a broad fact-finding activity around the external factors that could affect an organisation's decisions, helping it to maximise opportunities and minimise threats.

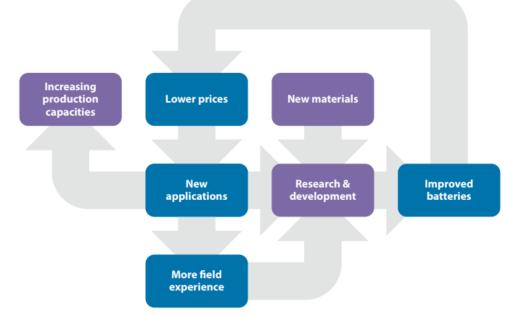
PESTLE audits six external influences on an organisation: P for Political, E for Economic, S for Social, T for Technological, L for Legal, and E for Environmental.

It can give an overall view of the environment under study, from many different angles, when considering a particular idea or plan.



https://pestleanalysis.com/what-is-pestle-analysis/

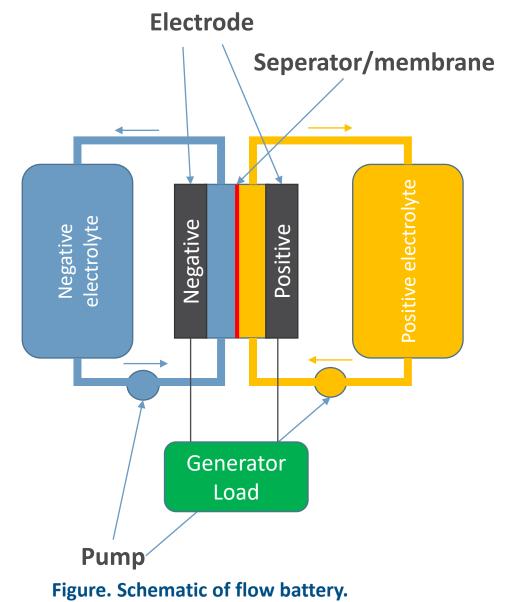



# Technology groups included in the analysis

#### **1. Batteries**

- 2. Accumulation in the form of thermal energy
- 3. Accumulation in the form of hydrogen
- 4. Accumulation in the form of biomethane
- 5. Accumulation in the form of potential energy




#### **1- Batteries**



Source: International Renewable Energy Agency.

#### Batteries Short overview

- Electricity is store and released via electrochemical reactions
- Often have a finite number of cycles
- Several different chemical combinations used
- Chosen technologies:
  - Lithium-ion battery for grid-scale storage
  - NA-S (Sodium-Sulfur) batteries (molten sodium anode, molten sulfur cathode, β-alumina oxide solid state electolyte)
  - Vanadium redox flow batteries (VRB)



**Original** M. Manahan, N. Jewell, D. Link, and B. Westlake, "Program on Technology Innovation: Assessment of Flow Battery Technologies for Stationary Applications," EPRI, 2016.

#### **Comparison of chosen battery technologies**

| TECHNOLOGY                                   | advantages                                                                                                                                                                                                    | disadvantages                                                                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Li-ion                                       | Relatively high energy density, no requirement for<br>a scheduled cycle to maintain battery life,<br>commercially available in many sizes                                                                     | Tendency to overheat and even combust,<br>can be damaged by high voltage,<br>aging,<br>Challenges related to availability and mining of<br>lithium,<br>cannot store energy for several months |
| Na-S                                         | Unexpensive and abundant raw materials, suitable<br>for energy intense applications, commercially<br>available (limited availability)                                                                         | High temperature (300-350C), limited amount of freeze –thaw cycle (~20), not suitable for idle storage                                                                                        |
| Vanadium<br>redox flow<br>batteries<br>(VRB) | Flexible installation size,<br>Storage capacity and power capacity can be varied<br>independently,<br>use of full battery capacity without degradation,<br>possibly unlimited cycle lifetime (up to 20 years) | High initial investment<br>(Relatively high and volatile price of vanadium), low<br>grid-to-grid efficiency                                                                                   |

#### **PESTEL findings for batteries**

| Political                                                                                                                                                                | Economic                                                                                                                                     | Technical                                                                                                                                                               | Social                                                                             | Environmental                                                                  | Legal                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Circular<br>battery<br>economy,<br>material<br>recovery, e-<br>mobility, some<br>countries<br>offer financial<br>support for<br>energy storage<br>including<br>batteries | Raw material<br>costs often<br>high, expected<br>for prices of<br>applications to<br>come down,<br>operation and<br>maintenance<br>cost vary | RES<br>integration,<br>peak shaving,<br>emergency<br>back-up,<br>time shifting,<br>black starting,<br>good power<br>quality,<br>many types<br>available<br>commercially | Usually well<br>accepted,<br>concerns<br>related to raw<br>material<br>mining etc. | Impact of<br>materials used<br>both in<br>manufacturing<br>and in<br>recycling | EU level:<br>Recycling rates<br>for batteries<br>and their<br>materials,<br>digital battery<br>passport<br>(usage history) |



### 2-Accumulation in the form of thermal energy



#### Thermal energy storage Short overview

Thermal energy or electricity stored as thermal energy and used as thermal energy or to produce electricity. Waste heat utilization possible.

The chosen technologies:

- Sensible thermal water-based energy storage
- Sensible heat sand-based energy storage
- Sensible molten-salt storage
- Latent phase-change material (PCM)
- Thermo-chemical heat storage

#### **Comparison of chosen thermal energy storage technologies**

| TECHNOLOGY             | advantages                                                                                                                                | disadvantages                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Water-based            | High heat capacity, low cost, easily available, scalable                                                                                  | Temperatures higher than 100 C<br>require pressurization to prevent<br>boiling               |
| Sand based             | Low-cost material, easily available, high<br>melting point (1700 C), high<br>temperature range (600-1200 C),<br>seasonal storage possible | only a few commercial applications,<br>low heat capacity,                                    |
| Molten-salt            | Temperature range (e.g. 62-560 C),                                                                                                        | To keep salt mixture molten "cold"<br>side must have a high enough<br>temperature, corrosion |
| Phase-change materials | Temperature range depends on used material,                                                                                               | Some materials have a high cost, cycle limitations possible                                  |
| Thermo-chemical        | Negligible heat loss, high energy density<br>temperature range depends on<br>chemicals used, compact                                      | Few commercial applications, high costs, technically complex                                 |

## **PESTEL findings for thermal energy systems**

| Political                                                                                                                                                             | Economic                                                                                                                                                                                                                                        | Technical                                                                                                                | Social                                                                                                             | Environmental                                                                                                                              | Legal                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste heat,<br>solar energy,<br>and district<br>heating<br>related<br><u>policies;</u><br>Some<br>countries<br>offer <u>subsidies</u><br>for thermal<br>heat storages | The initial<br>investment and<br><u>operational</u><br><u>costs vary</u><br><u>significantly</u><br>between the<br>different types<br>of thermal<br>energy<br>storages, often<br>having a use for<br>energy in<br>thermal form is<br>beneficial | There are many<br>commercially<br>available<br>technologies<br>and some still<br>on their way to<br>be<br>commercialized | Consumers<br><u>expect</u> any<br>investment<br>should <u>reduce</u><br><u>energy costs</u><br>in the long<br>run. | The impact on<br>the<br>environment<br>depends<br>heavily on the<br>chosen<br>technology<br>and the scale<br>of the<br>implementatio<br>n. | Thermal<br>storage follow<br>national<br>legislation in<br>terms of<br>environmental<br>impact, health<br>and safety<br>issues. New<br>technologies<br>bring new<br>challenges. |

## 3-Accumulation in the form of hydrogen



Picture: Liquid organic hydrogen carrier (LOHC)-installation, Provider: Hydrogenious Danish Energy storage, Danish Energy Agency, 2018

#### Accumulation in the form of hydrogen Short overview

Interest in hydrogen has been growing greatly. The main interest is on producing hydrogen by <u>excess renewable electricity</u>, or even renewable energy produced solely for the production of hydrogen, via electrolysis of water. Hydrogen can be stored as hydrogen or converted to another compound via power-to-x processes. The actual use of hydrogen in the energy system as an energy storage will be only a fraction of its uses.

Here the focus is on the use of hydrogen in the energy system as an energy storage.

The chosen technologies:

- Hydrogen in pressure containers
- Liquid organic hydrogen carrier (LOHC)

#### **Comparison of chosen hydrogen technologies**

| TECHNOLOGY                         | advantages                                                                                                                                                                  | disadvantages                                                                                                                                                                                                                                                  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen in pressure<br>containers | Commercially available, combined with a<br>fuel cell makes for quick electricity<br>production,                                                                             | Small or medium scale storage, short<br>to medium term storage, high<br>pressure requirements to containers,<br>hydrogen embrittlement of the<br>container, hydrogen <u>permeation</u><br>(trought sealings), whole <u>system</u><br><u>efficiency 40-45 %</u> |
| Liquid organic hydrogen<br>carrier | Stored in liquid form <u>in ambient</u><br><u>temperature and atmospheric pressure</u> ,<br>easy to transport, no storage losses,<br>ideal for large scale hydrogen storage | <u>Prototypes</u> on market, hydrogen<br>liberation is energy consuming,<br>possibly toxic                                                                                                                                                                     |

## **PESTEL findings for Accumulation in the form of**

| Political                                                                                                                                                                                                                                               | Economic                                                                                                               | Technical                                                                                                                                                                           | Social                                                                                                                                    | Environmental                                                                                                                                                                 | Legal                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Hydrogen is<br>expected to play a<br><u>significant role</u> in<br>the green<br>transition,<br>national hydrogen<br>strategies are<br>under way in<br>some countries.<br>Some countries<br>have <u>subsidies</u> for<br>hydrogen related<br>investments | <u>Electricity</u><br><u>price</u> has<br>significant<br>impact,<br>economical<br>aspect<br>under<br>considerati<br>on | Relatively new<br>applications of<br>technology.<br>Electricity<br>production,<br>quick<br>response to<br>seasonal<br>storage, peak<br>shaving, RES<br>integration,<br>black start, | LOHC can use<br>the same<br>infrastructure<br>as petrol and<br>diesel.<br>Wind farm<br>related<br>opposition<br>might affect<br>hydrogen. | Large leakages<br>could speed up<br>the<br>destruction of<br>the ozone<br>layer, LOHC<br>related<br>flammability,<br>toxicity etc.<br>Low toxicity<br>LOHC are<br>researched. | For now,<br>hydrogen<br>follows similar<br>safety and<br>health<br>legislation as<br>natural gas. |



https://www.iesbiogas.it/en/what-is-biomethane/

GAS REFILLING STATION

## Accumulation in the form of biomethane

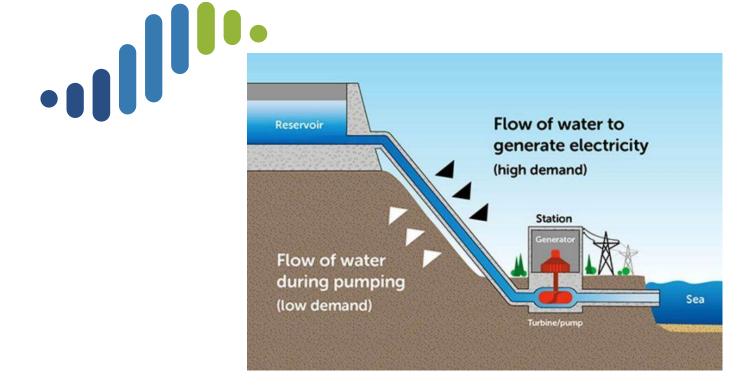
How is biomethane produced? How is the biomethane stored?

For production two possible routes are included:

- Biomethane production via digestion from biomass and <u>upgraded from biogas</u> (main focus)
- <u>Methanation</u> of the hydrogen  $(CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O)$

The possible storage technologies:

- High- or low-pressure storage tanks
- Cryogenic storage tank (liquified gas)
- Absorbed gas storage (porous material)


#### **Comparison of possible biomethane related technologies**

| TECHNOLOGY                        | Advantages                                                                                     | disadvantages                                                                        |
|-----------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Upgrading<br>from biogas          | Biogas production is well established,                                                         | The uptake of biogas has been relatively slow, upgrading biogas requires investments |
| Methanation of hydrogen           | One form of utilizing hydrogen                                                                 | Hydrogen production is an upcoming technology                                        |
| Low pressure                      | Lowest costs, on-site application                                                              | Short term storage,                                                                  |
| High pressure                     | Longer storage periods, smaller space requirements, transportation possible                    | Higher costs and more safety regulations, requirements on gas purity                 |
| Cryogenic<br>(Low<br>temperature) | Smaller space requirements,<br>transportation possibility,                                     | Transportation requires large enough volumes,                                        |
| Absorbed                          | Smaller space requirement, can be stored<br>at ambient temperature and atmospheric<br>pressure | Materials being researched                                                           |

#### **PESTEL findings for Accumulation in the form**

| Political                                                     | Economic                                                                                                                   | Technical                                                                                                                                                                              | Social                                            | Environmental                                                                                      | Legal                                                                                                    |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Biogas has a<br>differing<br>position<br>between<br>countries | Local job<br>creation in the<br>biomethane<br>production<br>chain,<br>initial<br>investment is<br>often relatively<br>high | Biogas<br>production<br>well<br>established<br>technology,<br>biomass<br>collection,<br>Power-to-<br>power<br><u>efficiency</u> with<br>Hydrogen<br>methanation<br><u>approx. 21 %</u> | Local<br>community<br>engagement<br>possibilities | Possible<br>methane<br>leakages and<br>the effect on<br>climate<br>change,<br>Waste<br>management, | Biogas is often<br>governed by<br>national<br>regulation for<br>natural gas in<br>relation to<br>safety. |

## 5-Accumulation in the form of potential energy



#### How pumped hydro works [CREDIT: EnergyAustralia]

https://www.greencarreports.com/news/1122395\_pumped-hydro-could-deliver-100-percent-renewable-electricity

#### Accumulation in the form of potential energy Short overview

Pumped hydro:

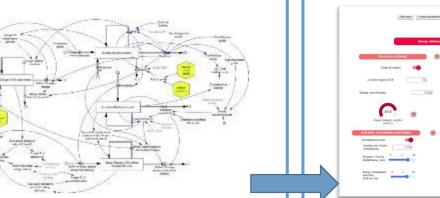
- Hydroelectric energy storage for load balancing (used by electric power system).
- The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation.
- Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power.

#### **Comparison of chosen potential energy storage technologies**

| TECHNOLOGY   | advantages                                                                                                                                                                                                                                                                                                                                                      | disadvantages                                                                                                                                                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pumped hydro | Pumped hydro energy storage can<br>provide municipalities with<br>opportunities for energy cost<br>management. By storing electricity<br>during off-peak hours when electricity<br>prices are low and releasing it during<br>peak hours when prices are high,<br>municipalities can optimize their energy<br>consumption and reduce their electricity<br>costs. | Pumped hydro is not included in the<br>calculation of RES produced (RES<br>directive),<br>Integration of <u>intermittent renewable</u><br><u>energy sources</u> with pumped<br>hydropower storage* (HYDROPOWER<br>AND PUMPED HYDROPOWER<br>STORAGE IN THE EUROPEAN UNION-<br>2022) |

### What's next?

#### Integrating PESTLE analysis results into Energy Equilibrium platform building




Data and findings from PESTLE will be used as input parameters for development of simulation tool – Energy Equilibrium Platform

System Dynamics modeling approach will be used to develop model structure based on PESTLE findings

Creating an interactive online tool that will be tested in municipalities

Image source: https://enterslice.com/learning/pestle-analysis-a-mechanism-for-analysis-of-businesses/









## Thank you !

We encourage participants to learn more about the techniques presented in the Poster session:

At 12:00 Interactive workshop: Walking lunch and poster walk.

**Topics of PESTLE analysis on walls with "moderators" –** 

Welcome!