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Synonyms 
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Definition 

Junctions in shells are design elements used for assembling regular shell parts along some of 

their boundaries into the complex multi-shell structure. The junctions can be constructed as 

bolted, welded, riveted, glued, adhesively bonded etc. Within the shell model mechanical 

properties of the junction are characterized by a scalar function of bending measure of the 

junction curve. This function has to be established by experiments. 

 

 

Introduction 

It follows from the review by Pietraszkiewicz and Konopińska (2015) that different 

shell models available in the literature require special forms of jump conditions at the singular 

surface curves modelling the shell junctions. Jump conditions corresponding to different shell 

models may lead to different stress and strain distributions near the junction. But the review 

also indicates that almost in all descriptions of shell junctions available in the literature the 

stiff junction conditions were enforced. Deformability of the junction itself was explicitly 

indicated and used in only a few papers based on simplest shell models. 

Within the resultant non-linear six-field shell model, the mechanical theory of 

compound multi-shell structures was initiated by Makowski and Stumpf (1994) and 

developed in the book by Chróścielewski et al. (2004). In this approach several regular shell 

elements may be joined at the common junction, deformability of any shell branch at the 

junction may individually be defined, and the junction curve itself may be equipped with 

additional mechanical properties independent from the adjacent shell branches. Unfortunately, 

the BVP of such a general irregular shell model becomes extremely complex and virtually 

useless for engineering applications. Even relatively simple cases of branching and self-

intersecting shells developed in Konopińska and Pietraszkiewicz (2007) and Pietraszkiewicz 

and Konopińska (2011) led to complex shell relations which were still hardly readable for 

engineering community. 

In this entry, following Pietraszkiewicz (2016), we formulate the boundary value 

equilibrium problem for the simplest compound shell structure consisting of two regular shell 

elements connected together along the common edge. Particular attention is paid to the static 

jump conditions across the junction. By further constraining the junction behaviour the stiff 
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junction, the hinge junction, and the deformable junction are described and the corresponding 

reduced forms of the principle of virtual displacements are formulated. 

 

Notation and Shell Equilibrium Conditions 

A shell is a 3D solid body identified in the undeformed placement with a region B  of 

the physical space  having the translation vector space V . The position vectors x  and 

( )y x  relative to some origin o  of any material particle in the undeformed and 

deformed placement, respectively, are represented by 

 , ( ) ( , ) , ( ,0) .     x t y x x xx y 0   (1) 

Here x  and y  are position vectors of some shell base surfaces M  and ( )N M in the 

undeformed and deformed placement, respectively,   is a deviation vector from N , n  is the 

unit vector normal to M  and orienting it, t  is the unit vector not necessarily normal to M  

with 0 t n , and [ , ]h h     is the distance from M  along t  with h h h    the initial 

shell thickness measured along  . 

 Within the resultant non-linear shell model (Libai and Simmonds 1998; 

Chróścielewski et al. 2004; Pietraszkiewicz et al. 2006; Pietraszkiewicz 2018) the 2D non-

linear equilibrium conditions in M  are derived by the exact through-the-thickness integration 

of 3D equilibrium conditions of continuum mechanics.  

 Let ,f c  be the external resultant surface force and couple vector fields acting on 

( )M , but measured per unit area od M , and * *,n m  be the external resultant boundary force 

and couple vectors prescribed along ( )f fN M   , but measured per unit length of fM  

having   as the outward unit normal vector. Then for any part    the 3D equilibrium 

equations can be reduced to the following 2D resultant equilibrium equations of forces and 

couples (Pietraszkiewicz 2018) 
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where 

 * *d , d ,
h h

h h

 
      

 

 

 

 
       n n m mPn Pn   (3) 

P  is the Piola stress tensor in the shell space, *n  is the external unit normal vector to the 3D 

undeformed shell cross section * *P B   ,   is the geometric expansion factor, and * *,n m  

are statically equivalent to distribution of the external traction *t  applied on the lateral shell 

boundary surface *B f . 

The shell base surface M  may be irregular one, in general, consisting of regular parts 

1 2, ,..., nM M M  joined together along some parts of their edges. The junction curves form 

together a net of singular surface curves   along which the junction jump (also called 

continuity) conditions should be satisfied. In case of branching and self-intersecting shells 

such jump conditions were formulated in Konopińska and Pietraszkiewicz (2007). 
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In order to keep the junction relations in focus, only two shell elements with regular 

base surfaces 1 2andM M  connected together along their common edges coinciding with   

are discussed here, see Fig. 1. 

 

 

Figure 1. The irregular surface 
1 2M M M   with the fold  . 

 

In case of   oriented  consistently with 1M , at any point x   the unit tangent 

/ s    x  of  coincides with the unit tangent 1  of 1M , 1   , and two other unit 

vectors n  and      n  along   coincide with 1n  and 1 1 1   n  of 1M , 

respectively. At the same point x   the orthonormal triad 2 2 2, ,  n  of the edge 

2 2M     does not coincide with the triad 1 1 1, ,  n  of 1 1M    . This means 

that the regular surface elements 1M  and 2M  have different orientations and their outward 

unit normal vectors belong to different 2D tangent spaces. 

For any M   having the fold   in its interior (Fig. 1), the surface divergence 

theorems of some terms in (2) are, see Pietraszkiewicz and Konopińska (2011, 2014), 
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  (4) 

where (.) |  is the covariant surface derivative taken in the undeformed surface metric a  of 

M , and the jump terms are defined by 
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With (3)-(5) the resultant equilibrium conditions (2) are equivalent to the local equilibrium 

equations satisfied for any part \ M   , 

 | | , ,  
        0 0n f m y n c   (6) 

the natural static boundary conditions satisfied along fM , 

 * *, , 
     0 0n n m m   (7) 

and the static jump conditions across  , 

 [ ] , [ ] [ ] .  
       0 0n m y n   (8) 

 The deformed position vector field y  is additionally assumed here to be always 

smooth, so that [ ] 0y  across  . By this requirement the shell is prevented from 

decomposing along   during deformation. As a result, the static jump conditions (8) are 

reduced to 

 [ ] , [ ] . 
   0 0n m   (9) 

 If   is oriented consistently with 1M , then (Fig. 1) 

 2 1 2 1 1 2 1 1, cos sin , cos sin .             n n n   (10) 

Hence, in this case the static jumps across   are defined as follows: 

    2 1 1 2 1 1[ ] cos , [ ] cos . 
           n n n m m m   (11) 

 

Principle of Virtual Displacements 

 Let ( , ) Vv w  be two vector fields smooth at the regular points of \M  , and 

( , ) V  v w  be two other vector fields smooth along  . Then for any part M   

containing the fold   one can set the integral identity 
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Since 
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and   is an arbitrarily chosen part of M  containing  , transforming (12) with the help of 

(13) and applying the surface divergence theorems (4) we obtain 
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If v  and w  are interpreted as the kinematically admissible virtual translation and 

rotation vectors such that   0v w  along dM , then the integral over dM   in (14) 

identically vanishes. The second surface integral over \   and the one over fM   in 

(14) can then be interpreted as the external virtual work performed by the given surface ,f c  

and boundary **,n m  loads, respectively. In this context the first surface integral over \   

takes the meaning of internal virtual work, where the expressions , ,  v y w  and ,w  can 

be interpreted as just virtual changes of appropriately defined shell strain and bending vectors, 

respectively. Then the formula (14) takes the meaning of the principle of virtual 

displacements for the irregular shell structure. 

Let the vector field ( )u x  represent the work-averaged translations of M  and the 

proper orthogonal tensor field ( )Q x  represent the work-averaged rotations of the shell cross 

sections. The deformed shell configuration can then be described by the relations 

 , , ,    y x u d Qt d Qt   (15) 

where ,t t  and ,d d are three directors attached to any point of the undeformed M  and 

deformed ( )N M  base surfaces, respectively.  

Let us consider a one-parametric family of shell deformations described 

by ( , ) ( , )t t y x x u x  and ( , ) ( , ) ( , )t t t
   Q x d x d d x t , where t  is a scalar (time-like) 

parameter such that 0t   corresponds to the undeformed shell placement and t  to the 

deformed one. Then the vectors v  and w  in (14) can be interpreted as virtual changes of u  

and Q  (linear and angular velocities in a real motion) according to 

    
( , )

, ax ( , ) ax ,Tt
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t
 


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
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y x
v u w Q x Q QQ   (16) 

Under such identification, the shell strain   and bending   vectors corresponding 

to the kinematics (15) and their virtual changes can be defined as in Chróścielewski et al. 

(1992) 
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where  (.) [ (.)]c T Q Q  is the co-rotational variation (the co-rotational time derivative in a 

real motion), and V V 1  is the metric tensor of the 3D vector space. 

 The vectors 


n ,


m  and ,f c  appearing in (6) can naturally be represented 

through components relative to the rotated base ,d d  by 
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The components M  m d  are usually called the drilling couples, while the work-

conjugate components K   d  are the drilling bendings. These surface stress and strain 

measures do not appear in any other non-linear shell model. 

 From (15) and (16) it follows that the displacement boundary conditions, which assure 

vanishing of the integral over dM   in (14) should be 

 * *, ,   0 0u u Q Q   (20) 

where * *,u Q  are the prescribed fields. 

Introducing the virtual strain energy density in \M   defined by 

 ,c c 
       n m  (21) 

the principle of virtual displacements following from (14) for the irregular shell structure 

takes the form 
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The curvilinear integral over   in (22) contains the jump terms which describe the 

shell – junction interaction between two joined shell elements with regular base surfaces 

1 2andM M . Explicit expressions of the jump terms depend on the type of junction modelled 

by this approach. The large variety of types of 1D structural elements, which can be used as 

junctions in compound shell structures, together with complex kinematics required within the 

resultant six-field shell model, makes the general non-linear BVP of such structures very 

complex and hardly readable in engineering applications.  

The compound jump terms in (22) can be decomposed as follows: 
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where  a  is the average value of Va  at  . In our special case of smooth translations 

everywhere discussed here, the translation at the junction curve   may be interpreted as the 

common translation of both edges 
1M    and 

2M   , so that     u u v . But 

the rotation tensors 
11 | M  Q Q  and 

22 | M  Q Q  of the edges at the same x   may be 

different, in general, 
1 2Q Q .  

With (23) the principle of virtual displacements (22) can be reduced to 
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Let us introduce explicitly the net rotation tensor Q  of   such that 
2 1Q Q Q  at 

any x   when x  is approached from both sides of  , respectively. Since 
2 1, ,Q Q Q  are 

all proper orthogonal tensors, then 



 

7 

 

 2 2 1 1, , .T T T
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Virtual changes of these orthogonality relations lead to 
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2 1 .    Q   (27) 

The virtual rotations 
2 1, and   are all defined in the shell deformed placement. 

Let the virtual rotation w  at   be interpreted in terms of   as 

  1
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( ) .
2
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Then the principle (24) can be further reduced to 
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The variational statement (29) governs the simplified BVP of two shell elements with 

regular base surfaces 
1M  and 

2M  joined along the junction  . This statement has been 

constructed under the assumption that the junction translations are smooth everywhere during 

deformations. As a result, kinematic description of the junction has been reduced to 

characterising how the rotations 
1Q  and 

2Q  of the neighbouring points of the junction are 

related to each other during deformation. This still allows one for a variety of possible 

characterisations of the junction. Some of the simplest particularly appealing junction 

characterisations are discussed below. 

  

Mechanical Description of Junction 

The stiff junction 

 The shell junction along   is called stiff  if the shell deformation is continuous on the 

whole 1 2M M M   including  . In this case 

 1 2 1 2[ ] , [ ] , , ,    0 0u u u Q Q  (30) 

and the curvilinear integral along   in (29) vanishes. The correspondingly simplified PVD is 

reduced to 

    * * .
fM M M
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         f u c n u m    (31) 

The physical meaning of (31) is that in this case the junction along   does not 

contribute to the virtual work of the compound shell structure. The mechanical behaviour of 

the junction itself is enforced by the behaviour of stiffly joined shell lateral boundary surfaces 

of regular shell parts with surface elements 1 2andM M . This is exactly the case of almost all 

types of shell junctions reviewed in Pietraszkiewicz and Konopińska (2015). In particular, 
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within the resultant non-linear six-field shell theory several folded and multi-shell structures 

with stiff junctions were modelled and analysed with FEM by Chróścielewski et al. (1997). 

Non-linear dynamic problems of such structures were discussed by Chróścielewski et al. 

(2002). A number of linear and non-linear FE solutions of multi-shells with stiff junctions was 

summarized in the book by Chróścielewski et al. (2004). 

 

The Hinge Junction 

 The hinge junction along   is understood when u  is continuous across  , that is 

[ ] ,  0u  
1 2u u , but 

1 2,Q Q  are entirely unconstrained when approaching   along paths on 

corresponding 
1 2,M M . In this case [ ] 0 , in general. However, in order the entirely 

unconstrained rotations 
1 2,Q Q  to happen, from equilibrium it follows that no moments at both 

sides of   should be allowed, 

 1 1 2 2, , 
   0 0m m   (32) 

so that 

  0m  and hence [ ]
    0m  along  . As a result, in the corresponding 

principle (29) the curvilinear integral along   vanishes as well reducing it again formally to 

(31). However, the important difference from the stiff junction is that in the case of hinge 

junction along   the additional static equilibrium conditions (32) have to be enforced in the 

process of solution of the BVP. 

 

The Deformable Junction 

 In the principle (29) both ingredients 

 m  and [ ]  in the last integral may not 

together identically vanish, in general, that is 

  0m  and [ ] 0 . In this general case 

the shell junction along   may be called deformable.  

From engineering point of view, the junctions can be classified according to: 

 The type of medium used: bolted, welded, riveted, glued, adhesively bonded etc. 

 The type of internal forces the junction is expected to transmit: membrane, shear, 

moment (stiff, deformable). 

 The type of elements the junction is joining: regular shell elements, transition 

stiffening beam, special junction constructions. 

This leads to a large variety of constructions of junctions in compound shell structures. 

Mechanical and/or deformability properties of each particular case of such junction should be 

known in advance before the analyses take place. 

Let us differentiate the orthogonality relations (25) along  , 

 

2 2 2 2 2

1 1 1 1 1

( ) ' ( ) ' ,

( ) ' ( ) ' ,

( ) ' ( ) ' , (.) ' (.) ,

T T

T T

T T d

ds

    

   

   

    

1

1

1

Q Q Q Q

Q Q Q Q

Q Q Q Q







  (33) 

 
2 1 .  Q     (34) 
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The vector   describes the bending properties of the junction curve   during shell 

deformation. 

The mechanical behaviour of the deformable junction can be characterized by the 

relation 

 ( ) ,f

    m   (35) 

where f  is a smooth vector function of vectorial argument at any x  . The relation (35) 

is the kind of 1D constitutive equation modelling deformability properties of real engineering 

junctions. It is apparent that due to possible complexity of engineering junction constructions 

the function f  should be established from appropriate experiments for each particular type of 

the junction. 

 With (35) and (27) the PVD (24) takes the modified form 

 
   

 

* *

\ \

1( ) ( ) .

fM M M
da da ds

f ds

 

  

  


       

   

  

 1

 

  

f u c n u m

Q

  (36) 

 

The Elastic Junction 

 If there exists a scalar function ( )W   such that ( ) /f W     , the junction 

along   may be called elastic. The function W  may be quite complex non-linear function of 

 , so that such a junction is non-linearly elastic, in general. But in some cases W  may 

become a quadratic function such that 

 
1

( ) , ( ) ,
2

W f     L L:       (37) 

where L  is the second- order tensor of rotational material properties along  . In this case the 

shell junction can be called linearly elastic.  

Within the non-linear theory of thin shells of Kirchhoff-Love type, description of 

several types of shell junctions were given by Makowski et al. (1998, 1999) and explicit 

numerical solutions of the shell of revolution with deformable elasto-plastic junctions were 

given by Chróścielewski et al. (2011a,b). 

 

Cross References 

 

Surface Geometry, Elements 

Elastic Shells, Resultant Non-linear Theory 

Shell Thermomechanics, Resultant Non-linear Theory 
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