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Synonyms 
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Definition 

Shell thermomechanics is the study of effects of heat upon mechanical properties of a thin solid body. 

The resultant shell theory is based on the set of two-dimensional balance laws of mass, linear and 

angular momenta, and energy as well as the entropy inequality which are formulated on the shell base 

surface as exact resultant implications of corresponding laws of three-dimensional rational continuum 

thermomechanics. The only approximations enter this shell model through constitutive equations, 

which are experimental laws anyway.  

 

Introduction 

 Non-linear thermomechanic two-dimensional (2D) models of shells are usually developed using 

two main approaches: 1) the so-called direct formulation, and 2) the derived or deductive formulation 

from three-dimensional (3D) continuum thermomechanics. But the final 2D relations of shell 

thermomechanics and physical interpretation of their ingredients vary substantially throughout the 

literature. 

 The resultant shell thermomechanics proposed by Simmonds (1984, 2012) seems to be the most 

promising way to formulate shell thermomechanics. All 2D relations were formulated on the shell 

base surface by exact through-the-thickness integration of appropriate 3D fields of rational continuum 

thermomechanics. The only approximations were made in the resultant balance of energy when 

expressed through the 2D stress and strain fields alone. The approximations were then transferred onto 

the resultant entropy inequality and the 2D constitutive equations, which are experimental laws 

anyway. The mechanical part of such resultant shell theory, originally proposed by Reissner (1974), 

gained considerable attention in the literature, and many results obtained in the field are now partly 

summarised in the books by Libai and Simmonds (1998) and Chróścielewski et al. (2004).  

In this entry the extended resultant thermomechanics of shells proposed by Pietraszkiewicz (2011) 

is briefly presented. The local, resultant 2D balance laws of mass, linear and angular momentum, and 

energy as well as the entropy inequality for shells are constructed as the exact resultant implications of 

corresponding 3D laws of rational continuum thermodynamics. As compared with the results by 

Simmonds (1984, 2012) the following refinements are introduced: 

 The resultant laws are formulated on the shell base surface which is taken to be the material 

surface during the entire shell motion.  

 An additional stress power, called an interstitial working, is introduced on the 2D level, which 

completes the initially approximate resultant 2D balance of energy expressed through the 2D 

stress and strain measures alone.  
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 The extra surface heat and entropy supplies, following from non-uniform distribution of 

temperature across the thickness, are accommodated by three extra surface fields. 

The kinematic structure of the resultant shell theory is that of the Cosserat surface with the 

translation vector and rotation tensor fields as the only kinematic field variables (Pietraszkiewicz 

2018). The structure of the extended resultant 2D thermomechanical laws for shells reminds somewhat 

that of corresponding 3D laws of extended thermodynamics, see for example Müller and Ruggeri 

(1998).  

 

Basic Principles  

Within 3D continuum thermodynamics one assumes that all material bodies possess mass, sustain 

forces and torques, convert energy, and basic laws of thermodynamics are valid for any part  of the 

body . 

To describe the mechanical behaviour of  at any time t T  one assumes the following primitive 

quantities to be meaningful: the mass ( , )tM , the mass production ( , )tC , the linear momentum 

vector ( , )tL , the total force vector ( , )tF , the angular momentum vector o( , )tA , and the total 

torque vector o( , )tT . The latter two quantities are defined in an inertial frame (o, )ie  relative to a 

point o  of the three-dimensional (3D) physical space  with V as its translation 3D vector space, and 

where Vi e , 1,2,3i  , are orthonormal vectors. The primitive quantities are assumed to satisfy three 

balance laws of continuum mechanics: balances of mass, of linear momentum and of angular 

momentum (Truesdell and Toupin 1960; Truesdell and Noll 1965). When written in the most general, 

global integral-impulse form these laws are: 

 
2 2 2

2 2 2

1 1 1
1 1 1

o o| , | , | .
t t tt t t

t t tt t t
dt dt dt    M C L F A T  (1) 

When the theory is designed to account for thermal effects, one assumes additional primitive 

quantities to be meaningful: the total energy ( , )tU , the heating ( , )tQ , the entropy ( , )tH , and the 

entropy flux ( , )tJ . It is generally accepted that these quantities have to satisfy no more than two 

laws of continuum thermodynamics. However, while the form of energy balance is universally 

accepted, there is no general agreement which specific form should take The 2
nd

 Law. One may 

consult reviews (Muschik et al. 2001; Muschik 2008) and books (Müller 2007; Badur 2009), where 

many references to historic papers and books on various formulations of continuum thermodynamics 

are given.  

Within rational thermodynamics developed by Truesdell and Toupin 1960), Truesdell and Noll 

(1965) and Truesdell (1984), which is used here, the two laws of thermodynamics are the balance of 

energy (also called The 1
st
 Law) and the entropy inequality (also called The 2

nd
 Law) given by 

 
2 2

2 2

1 1
1 1

| ( ) , | ,
t tt t

t tt t
dt dt   U P Q H J  (2) 

where ( , )tP  means the mechanical power, and ( , )tJ  is taken in the Clausius-Duhem form, see 

below. 

In continuum mechanics each placement ( , )t  of   at time t  becomes a part P( )t  of the 

region B( ) ( , )t t   of . By y P(t)  one denotes the actual place of material particle and by 

y o y  its position vector in the inertial frame (o, )ie . Then P B  is the region of  occupied by 

 in the reference placement    associated here with 0t  , while x B  is the reference place of 

material particle and x o x  its position vector in the same inertial frame (o, )ie . 

In the shell-like body the boundary surface B  of the reference region B  consists of three 

separable parts: the upper M  and the lower M  shell faces, and the lateral boundary surface B*  
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such that B B*M M     , M M   . Relative to the origin o  of the inertial frame the 

position vectors x  and y  are usually represented by 

 ( , ) ( ) ( ) , ( , , ) ( , ) ( , , ) , ( ,0, ) .x x x x t x t x t x t       x y z z 0x n y  (3) 

Here ( ) ( ,0)x x xx  is the position vector of corresponding point of some reference shell base surface 

M  , ( )xn  is the unit normal vector orienting M , [ ( ), ( )]h x h x     is the distance along n  

from M  to x  with h h h    the initial shell thickness, ( , )x ty  is the position vector of the actual 

shell base surface ( )M t , and ( , , )x tz  is a deviation of y B(t)  from ( )M t .  

Each placement P( )t  of the moving shell-like body can be represented through a part ( )Π t  of the 

shell base surface ( )M t   taken here to be the material surface, i.e. consisting of the same material 

particles during the shell motion. By ( )y Π t  one denotes a point of ( )Π t  and by oy y  its 

position vector in the inertial frame. Then Π M  represents a part of M , while x Π  is the point of 

Π  and ox x  its position vector in the same inertial frame.  

Under appropriate smoothness requirements the mechanical primitive quantities can be expressed 

as the following volume and surface integrals of their densities, written here with respect to the 

reference placement: 

 oP P P P
dv, c dv, dv , dv ,R R R R         y y yM C L A  (4) 

 n o nP P P P
dv da , dv da .R R 

         b t y b y tF T  (5) 

Here (x, ) 0R t   and c (x, )R t  are the referential mass and mass production (densities) per unit volume 

of B , (x, )tb  is the body force (density) per unit mass of B , (x, )ty  is the 3D velocity field, and 

n (x, )tt  is the contact force (density) per unit area of P  with the unit normal vector (x, )tn  orienting 

P .  

One can define the following resultant 2D surface fields: 

 d , c d , d , d ,R R R Rc    
   

   
             y y yl k  (6) 

 n nd , d ,
h

h  




  

   
         t z tn m  (7) 

    n nd | , d | ,R R     
  

  
         b t z b z tf c  (8) 

where ( ) |  
 x x x  and the geometric parameters    are given in (Konopińska and 

Pietraszkiewicz 2007, A.15 – A.17).  

In (6) - (8), ( , ) 0x t   and ( , )c x t  are the referential surface mass and mass production (densities), 

( , )x tl  and ( , )x tk  are the surface linear momentum and angular momentum vectors per unit area of 

M , while ( , )x tf  and ( , )x tc  are the surface force and couple vectors per unit mass of M , 

respectively. Additionally, ( , )x tn  and ( , )x tm  are the surface contact stress and couple-stress 

vectors describing internal mechanical interactions between the shell parts at the internal boundary 

fΠ\ M  . 

With the help of (6) - (8) the mechanical primitive quantities can also be expressed through their 

resultant 2D representatives, 

 , ,
Π Π

da cda  M C  (9) 
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 , ,
f fΠ Π Π\ M Π M

da da ds ds
   

      l f n n*L F  (10) 

 
o o( ) , ( ) ( )

( ) ,

f

f

Π Π Π\ M

Π M

da da ds

ds

  
 

 

        

  

  



k y l c y f m y n

m* y n*

A T

 (11) 

where ,n* m*  are just the external resultant boundary force and couple vectors assigned along a part 

fM M   , which are statically equivalent to distribution of external tractions *t  applied on fB * . 

Similarly, the primitive quantities associated with The 1
st
 and 2

nd
 Laws can be expressed with 

respect to the reference placement by the following integrals: 

 nP P P P
u dv , pdv p da , dv ,R R

         U P H  (12) 

 n nP P P P
r dv p da , k dv j da .R R 

        Q J  (13) 

Here u(x, )t , (x, )t , r(x, )t , and k(x, )t  are the 3D (referential) total energy, entropy, heat supply, and 

entropy supply (densities), all per unit mass of B , p(x, )t  is the 3D mechanical power per unit volume 

of B , while np (x, )t , nq (x, )t , and nj (x, )t  are the 3D contact power, heat, and entropy fluxes through 

the boundary P , respectively. 

One can again define the resultant surface fields: 

 nu d , p d , p d , d ,R Ru p p     
   

   
              (14) 

  n nr d q | , q d ,Rr q  
 

 
         (15) 

  n nk d j | , j d .Rk j  
 

 
         (16) 

In (14) - (16), ( , )u x t , ( , )x t , ( , )r x t , and ( , )k x t  are the resultant total energy, entropy, heat supply, 

and entropy supply (densities), all per unit mass of M , ( , )p x t  is the resultant mechanical power per 

unit area of M , while ( , )p x t , ( , )q x t , and ( , )j x t  are the resultant contact mechanical power, heat, 

and entropy fluxes through the internal boundary Π , respectively. 

With the help of (14) - (16) the quantities (12) and (13) can also be expressed through their 2D 

representatives, 

 , * , ,
f fΠ Π Π\ M Π M Π

uda pda p ds p ds da 
   

        U P H  (17) 

 * ,
h hΠ Π\ M Π M

r da q ds q ds
   

    Q  (18) 

 * ,
h hΠ Π\ M Π M

k da j ds j ds
   

    J  (19) 

where *p  is the external resultant boundary power flux assigned along fM , while *q  and *j  are 

the external resultant boundary heat and entropy fluxes given along a part hM M  , which are 

thermally equivalent to distributions of 3D heat q*  and entropy j*  fluxes assigned on B* B*h   . 

By the Cauchy postulate extended to the 2D thermal fields, the contact surface quantities n , m , 

q , and j  can be represented through the respective surface stress resultant ( , ) xx t V T M N  and 

stress couple ( , ) xx t V T M M  tensors of the 1st Piola-Kirchhoff type, as well as the respective 

referential heat ( , ) xx t T Mq  and entropy ( , ) xx t T Mj  flux vectors according to 



 - 5 -   

 

 , , , , .p q j           n Nν m Mν p ν q ν j ν  (20) 

In these relations xT Mν  is the unit vector externally normal to Π , and xT M  is the 2D vector 

space tangent to M  at x M . 

In what follows one assumes, as is usual in solid mechanics, that mass is not produced during the 

process, 0C . Hence, the balance of mass (1)1 is identically satisfied. 

If time derivatives of the set functions o( , ), ( , ), ( , )t t tUL A , ( , )tP , and ( , )tH  exist for all 

t T  one can write 

 
2 2 2 2 2

2 2 2 2 2

1 1 1 1 1
1 1 1 1 1

o o| , | , | , | , | .
t t t t tt t t t t

t t t t tt t t t t
dt dt dt dt dt        U U P P H HL L A A  (21) 

Then using the 2D representations (9) - (19), one obtains 

 , ( ) ( ) ,
Π Π Π Π

d d
da da da da

dt dt
          l l k y l k y l y l  (22) 

 
Π Π Π Π Π Π

d d d
uda uda , pda pda , da da ,

dt dt dt
            (23) 

and the four remaining laws of mechanics and thermodynamics for the shell-like body become 

 ( ) ,
f fΠ Π\ M Π\ M

da ds ds
   

      0f l n n*  (24) 

 

{ ( ) ( )}

( ) ( ) ,
f f

Π

Π\ M Π M

da

ds ds 

 

   

     

      



 

c k y l y f l

m y n m* y n* 0
 (25) 

 

( ) *

* 0,

f h

h h

Π Π\ M Π M

Π Π\ M Π M

u p da p ds p ds

r da q ds q ds









   

   

  

   

  

  
 (26) 

 * 0.
h hΠ Π Π\ M Π M

da k da j ds j ds 
   

        (27) 

In what follows one assumes that M  be a regular geometric surface, so that any kinks, branchings 

and self-intersections are excluded. One also assumes that all surface fields discussed here are smooth 

in Π . 

To (24) - (27) with (20) one can apply the surface divergence theorems: 

 , ,
Π Π Π Π

ds Div da ds Div da
 

     a ν a Sν S  (28) 

 { ax[ ( ) ( ) ]} ,T T

Π Π
ds Div Grad Grad da


     a Sν a S S a a S  (29) 

valid for any ( , ) xx t T Ma  and ( , ) xx t V T M S , where the surface gradient and divergence 

operators with respect to x M  are defined as in Gurtin and Murdoch (1975), and (ax ) VT  means 

the axial vector of the skew tensor , TV V  T T T , so that (ax ) T T 1 , where V V 1  is the 

3D identity tensor. Then, after some transformations one obtains the following four local laws of 

resultant shell thermomechanics in the Lagrangian description valid in any Π M : 

 , ax( ) ,T TDiv Div        N f l M NF FN c k y l  (30) 

 ( ) ( ) 0 ,u p Div r Div     p q  (31) 

 ( ) 0 ,k Div   j  (32) 
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where xGrad V T M  F y  is the surface deformation gradient. 

The corresponding dynamic and thermal boundary conditions are 

 , , * 0 along ,fp M       0 0n* Nν m* Mν p ν  (33) 

 0 , 0 along .hq j M      * q ν * j ν  (34) 

The relations (30) - (34) are formally exact implications of the global laws of continuum 

thermodynamics (1), (2), with (21) and 2D representations (9) - (11), (17) - (19), for the shell-like 

body represented during motion by the material base surface ( )M t , which in the reference placement 

is M .  

 

Modified Resultant Energy Balance 

It was noted in Pietraszkiewicz (2011) that during the through-the-thickness integration some part 

of the 3D mechanical power following from the Piola stress tensor P  acting on surfaces in B  parallel 

to M  as well as from self-equilibrated distributions across the shell cross section of P , body forces b  

and boundary tractions *t  is not accounted for. In fact, Pietraszkiewicz et al. (2006) proved explicitly 

that the 3D stress power can be expressed through the resultant 2D stress power plus an additional 

stress power not expressible through ,N M . As a result, one can write the resultant 2D balance of 

mechanical energy symbolically as e e e P S K , where indices e  mean that these quantities are 

effective quantities calculated using only the surface fields defined on the material base surface. In 

particular, if S  and eS  are given through their 2D representatives then 

 , , .e e eΠ Π
da da      S S  (35) 

In continuum mechanics, the total energy ( , )tU  is often decomposed into the kinetic energy 

( , )tK  and the internal energy ( , )tE , 

 
P

, dv , d .R RΠ
da  




          U K E E  (36) 

On the other hand, the mechanical power ( , )tP  can be related to K  by  P K S . Then the balance 

of energy (2)1 can be stated in the alternative simpler form  

 
2

2

1
1

, or | .
tt

t t
dt  E S Q E = (S Q)  (37) 

From (37) follows the simpler form of local, resultant balance of energy 

 ( ) 0.r Div     q  (38) 

Thanks to Libai and Simmonds (1983, 1998),  Chróścielewski et al. (2004),  Pietraszkiewicz et al. 

(2006), the integrand of eS  can also be given in the following coordinate-free form:  

 o o ,e  N E + M K  (39) 

 , ,   F FE J QI K C QB  (40) 

 o o( ) , ( )T Td d
Grad Grad

dt dt
     .E Q Q E F K Q Q K    (41) 

In definitions (40) of the natural surface stretch ( , )x tE  and bending ( , )x tK  tensors, xV T M I  

and ( )yV T M t J  are the inclusion operators at x M  and ( )y M t , see Gurtin and Murdoch 

(1975), xV T M B  and ( )yV T M t C  are the structure tensors of the shell in the reference and 
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actual placement, respectively, and ( )y xT M t T M F  is the tangential surface deformation gradient 

such that dy dxF ,  FF J . The co-rotational time derivative o(.)  is defined in (41) through the 

rotation tensor i i Q d t , 1T Q Q , det 1 Q , where ( , )i x td  and ( )i xt , 1,2,3i  , are the 

orthonormal base vectors (directors) in the actual and reference placement, respectively. Moreover, 

now  

 , , ax( ) , ,T      1u y x y u QQ     (42) 

where ( , )x tu  is the surface translation vector and ( , )x tQ  is the surface rotation tensor. The fields y  

(or u ) and Q  are independent kinematic variables of the shell motion. Thus, the complementary to 

(33) displacement boundary conditions are 

                 , along \ .d fM M M       0 0y* y Q* Q      (43) 

In the resultant balance of energy (38) the resultant stress power   is required, while only its 

effective part e  is available in (39). Use of e  in place of   in (38) as in Simmonds (1984, 2012) 

introduces indefinable error into the resultant energy balance (38). To compensate this error, one can 

introduce an additional stress power ( , )tW  of the shell-like body, called here the interstitial 

working after Dunn and Serrin (1985), such that e S S W . For any Π M  the interstitial working 

may be represented locally as 

 ,
Π Π

w ds Div da
   wW  (44) 

where ( , )w x t  is the surface contact interstitial working (density) and ( , ) xx t T Mw  is the 

corresponding surface interstitial working flux vector such that w  w ν , so that now 

e Div   w . Then the local, resultant balance of energy (38) is modified into 

 o o( ) ( ) 0 .Div r Div     N E + M K w q  (45) 

The resultant equation (45) can now be regarded as an exact implication of the global 3D balance 

of energy (37). 

 

Modified Resultant Entropy Inequality 

The local resultant entropy inequality in the form (32) is entirely decoupled from other local 

resultant balance laws (30) and (45).  

In continuum thermodynamics coupling of The 2
nd

 Law (2)2  with other balance laws (1)2,3 and 

with (2)1 is achieved by introducing the absolute 3D temperature field θ(x, ) 0t  , through which the 

fields k(x, )t  and nj (x, )t  in (13)2  are related to those r(x, )t  and nq (x, )t  in (13)1 . In rational 

continuum thermomechanics these relations are taken as k r/   and nj /  q n . The 3D entropy 

inequality in the form 

 RP P P

r
ηdv dv daR 


   

   
q n

 (46) 

is usually called the Clausius-Duhem inequality, (see Truesdell and Toupin 1960; Truesdell 1984).  

Three different 2D temperature fields appear naturally in shell thermodynamics: a reference 

temperature associated with the base surface M , and two temperatures of the upper and lower shell 

faces M  and M . Postulating some reasonable relations between the three surface temperatures one 

can reduce the number of independent 2D temperature fields to two or to one, whichever is 

appropriate. In particular, Murdoch (1976a) proposed to use only one common temperature field 

associated with M , and this approach has recently been used by Eremeyev and Pietraszkiewicz 
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(2009). Temperatures of the upper and lower shell faces as independent fields were used by Zhilin 

(1976), and Eremeyev and Zubov (2008).  Naghdi (1972), and Green and Naghdi (1979) used the 

thickness-averaged temperature and its derivative in the transverse normal direction evaluated on M  

as independent fields, while Simmonds(2012) used the maximal and minimal temperatures across the 

thickness and introduced their average and difference temperatures as independent variables. Recently 

Eremeyev and Pietraszkiewicz (2011) developed the resultant, thermomechanic, quasistatic model of 

phase transitions in shells, where the referential mean temperature and its deviation suggested by 

Murdoch (1976b) were used. Any such proposal leads to a slightly different structure of the 

thermodynamic initial-boundary value problem for shells. In particular, for two independent 2D 

temperature fields one needs two independent 2D energy balance equations. Since the shell 

thermodynamic theories mentioned above are not entirely resultant ones, they introduce an indefinable 

error into the 2D energy balance and entropy inequality.  

In this entry the surface mean referential temperature ( , )x t  is defined by 

 
+ + + +

1 1 1 1 1 1 1 1 1 1 1 1 1 1
, , ,

2 θ θ θ 2 θ θ θ 2 θ θ     

     
            

     
 (47) 

where θ  and θ  are values of temperature on the upper and lower shell faces M  and M , 

respectively. The use of so defined   itself does not introduce any approximation. Then the through-

the-thickness integration in (46) with (47) allows one to represent the Clausius-Duhem inequality in 

the resultant form 

 

2

1 1

* 0 ,
*h

Π

Π M

r
s Div Div da

qq*
s s ds



 
  

  

  
       

  

  
      

  





q q g s

 (48) 

where 

  
_

, r d | ,x RGrad T M r  
 

       g q n  (49) 

  
+

1 1 1 1 1
r d | ,

2 θ θ
Rs 



 




  
         

   
 q n  (50) 

 
1 1

* d , * d ,q s  


 

 

 
           

 
 q ν s νq n q n  (51) 

 
1 1

* * * d , * * * d ,
*

q s 


 

 

 
            

 q* ν s* νq n q n  (52) 

and the geometric parameters , , *   n n  are given by Konopińska and Pietraszkiewicz (2007, 

A.15 – A.17). 

With definitions (49) - (52), the relations between the resultant fields appearing in (31), (32) and 

(34) become 

 , , .
r

k s
  

     
q q*

j s j* s*  (53) 

The extra surface fields , ,s s s*  in (53) take into account the extra surface heat and entropy supplies 

following from non-uniform distribution across the shell thickness of the temperature field  , which 

now enters (48) only through its value   on base surface M . Presence of the extra fields in (48) 

assures that the resultant form of Clausius–Duhem inequality (48) still remains an exact implication of 

the 3D principle (46). 
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With usual continuity assumptions the local form of (48) is 

 
2

1 1
( ) 0 in r Div s Div Π M ,  

 
       q s q g  (54) 

 
*

* 0 along .
* h

q
s M

 

 
      

 

q
s ν  (55) 

One can solve the exact, resultant balance of energy (45) for r Div  q  and use the result in (54), 

which gives 

 o o 1
( ) 0 in .Div s Div Π M   


         N E M K w q g s  (56) 

Upon introducing the surface free energy (density) ( , )x t  by     , one has        , 

and (56) takes the final form 

 o o 1
0 in Div s Div Π M .   


          N E M K w q g s  (57) 

The local resultant 2D entropy inequality (57) can now be regarded as an exact implication of the 

global Clausius–Duhem inequality (46) as well. 

 

Remarks on Constitutive Equations 

The local resultant 2D balance laws (30), (45) and the inequality (57) are expressed through 16 

fields, which together form the shell thermomechanic process over the domain M T . Different 

groups of the fields play different roles in the process. The fields , ,y Q  constitute the basic thermo-

kinematic independent field variables of the initial-boundary value problem of shell thermomechanics. 

That only seven scalar fields can be taken as independent field variables here follows from the fact 

that there are only seven scalar resultant field equations (30) and (45) to determine them. The fields 

, , , , , , ,s N M q w s  have to be specified by appropriate material constitutive equations and the fields 

,l k  by appropriate kinetic constitutive equations. When all the fields above are settled, the fields 

, , rf c  are supposed to be adjusted so as to satisfy the 2D balance equations (30) and (45). Every such 

process is called an admissible thermomechanic process; it is completely determined by the evolution 

of deformation and temperature of the shell base surface. 

In the resultant shell thermomechanics specific forms of the constitutive equations can be 

established by two main approaches. The direct approach consists in developing, for a restricted class 

of shell-like bodies, a general structure of 2D constitutive equations satisfying some reasonable 

physical and mathematical requirements. Then one has to devise a suitable sets of experiments from 

which the appropriate material constants or functions entering the constitutive equations can be 

established. In the derived or deductive approach one has to devise suitable mathematical methods 

allowing one to deduce the 2D constitutive equations for shells as an exact, asymptotic of otherwise 

rational consequence of a given set of corresponding 3D constitutive equations of the parent theory.  

Due to the limited space of this entry, the interested reader should consult discussion given in 

Pietraszkiewicz (2011) on constitutive equations of the refined resultant 2D thermomechanics of 

shells. There one can find some general requirements which the shell material constitutive equations 

must obey. Several admissible forms of the response functionals, in which also the possibility of 

longer-range spatial interactions is accounted for, have been proposed for constitutive equations of 

viscous shells with heat conduction and of thermoelastic shells. The procedure of Coleman and Noll 

(1963) has been used to analyse restrictions imposed by our refined entropy inequality (57) on the 2D 

forms of constitutive equations. Finally, several novel forms of the 2D kinetic constitutive equations 

obtained with the help of heuristic arguments have been provided. 
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Cross References 

Surface Geometry, Elements 

Elastic Shells, Resultant Non-linear theory 

Junctions in Irregular Shell Structures 
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