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Definition 

The Lagrangian non-linear theory of thin elastic shells is an approximate two-dimensional special 

case of geometrically non-linear theory of elasticity. Here the shell thickness is supposed to be 

much smaller than the smallest radius of curvature of the undeformed shell middle surface. As a 

result, the shell deformation can approximately be described only by stretching and bending of its 

middle surface. As compared with the classical linear theory of thin elastic shells discussed in 

another entry in this Encyclopaedia (Pietraszkiewicz 2018b), here only strains in the shell space 

are assumed to be small, while rotations of material elements are initially not restricted. The 

Lagrangian shell theory mean that all shell relations are formulated entirely in the undeformed 

geometry of the shell midsurface. 

  

Introduction 

Due to non-linearity of deformation, invariant non-linear relations of thin elastic shells 

can be formulated either in Eulerian, or in Lagrangian, or in several mixed descriptions 

(Pietraszkiewicz 1989). The Lagrangian thin shell relations are formulated entirely in the 

geometry of undeformed shell midsurface. The Lagrangian shell relations are of primary 

importance for most applications, because the undeformed shell midsurface is usually the only 

one known in advance.  

The quite general Lagrangian thin shell relations were proposed already by Galimov 

(1951) applying two steps. First, the corresponding simple Eulerian equilibrium equations and 

boundary conditions were given in the unknown deformed midsurface base. Then appropriate 

transformation rules were applied to express the vectorial Eulerian quantities in terms of the 

Lagrangian ones. Unfortunately, under such transformations the fourth scalar (rotational) 

boundary condition was still referred to the deformed lateral boundary surface. Only much later it 

was proved (Makowski and Pietraszkiewicz 1989) that such a transformation of the fourth 

boundary condition does not lead, in general, to a fourth Lagrangian boundary condition, because 

some differential one-form associated with the virtual rotation parameter referred to the deformed 

boundary is not integrable in terms of translation surface derivatives. This was the reason why no 

variational principles could be constructed for such quasi-Lagrangian shell theory even for 

conservative surface and boundary loadings. 
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The entirely Lagrangian thin shell relations were worked out by Pietraszkiewicz and 

Szwabowicz  (1981) using a modified tensor of change of curvature. These relations were 

reworked for the classical tensor of change of curvature (Pietraszkiewicz 1984) together with 

several consistently simplified versions of shell relations under small strains and restricted 

rotations as well as with two incremental formulations of the relations in the total Lagrangian and 

updated Lagrangian descriptions. 

 In this note the entirely Lagrangian non-linear theory of thin elastic shells is outlined. It is 

based on the following three assumptions: 

1. The strains in the shell space are small, but rotations of material elements are initially not 

restricted. 

2. The material elements, which are normal to the shell middle surface in the undeformed 

placement, remain normal to the deformed shell midsurface and do not change their 

lengths. This assumption allows one to approximately describe the non-linear shell 

deformation only by stretching and bending of its middle surface. 

3. The state of elastic stress in the shell space is approximately plane. This means that the 

effects of transverse shear stresses and of normal stresses, acting on surfaces parallel to 

the middle surface, may be neglected in the elastic strain energy density.  

To be concise, the assumptions 2. and 3. are used to derive the approximate equilibrium 

equations and boundary conditions from the postulated principle of virtual displacements for the 

shell midsurface. The resulting shell relations are initially formulated for unrestricted surface 

deformation measures and unrestricted displacements. Then consistently approximated relations 

under small elastic strains are discussed. Finally, several simplified sets of shell relations under 

additional consistently restricted rotations of material elements are given. 

 

Geometry and Deformation of the Shell Middle Surface 

Let  be the region of three-dimensional Euclidean point space  occupied by the shell 

in the undeformed placement. The position vector of any point P  relative to a reference point 

O  can be given by 

 ( , ) p ( ) ( ) ( ) ,i
i

          p i r n   (1) 

where , 1,2,3,i i i  are three orthonormal vectors of a reference frame, , 1,2,    are the 

curvilinear surface coordinates, / 2 / 2h h     is the distance from the shell midsurface  

defined by the position vector ( )r , ( )n  is the unit normal vector orienting , and h  is the 

shell thickness. In thin shell theory it is understood that h  be constant and small as compared 

with the smallest radius of curvature R  of  and with linear dimensions of . 

 Geometry of the middle surface  is described by the following fields (Pietraszkiewicz 

2018a): the natural base vectors / ,
    a r r  , the covariant components a   a a  of 

the surface metric tensor with determinant det ( )a a , the dual (contravariant) base vectors 


a  

such that , 
  a a  where 1 2 1 2

1 2 2 11, 0       , the unit normal vector 

1 2 1 2/ | |  n a a a a , and the covariant components , ,b         a n n a  of the surface 
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curvature tensor. The contravariant metric components a
   a a  are used to raise indices of 

surface vectors and tensors, for example a 
a a , b a b 

   etc., where the summation 

convention over the repeated indices is used.  

 The shell middle surface in the deformed placement  is described by the position 

vector ( ) ( ) ( )     r r u , where 
  are the surface curvilinear convective coordinates and 

u w
 u a n  is the translation vector field. The geometric quantities describing  are 

analogous to those describing , only now they are marked by the overbar: , a r  , 

a   a a  , det ( ) 0a a   ,  
  a a  , 1 2 1 2/ | |  n a a a a  , , ,b         n a a n  , 

a   a a  etc. The barred quantities can be expressed  through analogous unbarred ones and 

the vector u  by the relations (Pietraszkiewicz 1980, 1989) 

 

, ,
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n n
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a a u a n

n a a a n
  (2) 

where 

 | , , ,l a u b w w b u               (3) 
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a a n

  (4) 

The metric and curvature tensor components of  are given by 

 2 , ,a a b b            (5) 

 
   

   

1 1
,

2 2

, | , .

a l l a

b l n b n n b n b


        

  
           

  

 

     

       

a a

a n

  (6) 

Here   are the Lagrangian components of the surface strains while   are the Lagrangian 

components of the surface changes of curvatures (briefly bendings). Both surface deformation 

measures are symmetric:     ,    . The components   are quadratic polynomials 

of ,u w  and their first surface derivatives, while the   are non-rational functions of ,u w  and 

their first as well as second surface derivatives. The non-rationality of   is caused by the 

invariant j , where 

  2 1 2 2 .j     
             (7) 

 The boundary contour   of  consists of the finite set of piecewise smooth curves 

( ) [ ( )]s sr r  , where s  is the arc length along  . In each regular point M  two unit 

vectors are defined: the tangent / 'd ds 
   r r a  and the outward normal 
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, ,
      n a r  

 
   , where ,r  means the outward normal derivative of r  at 

 . 

The position vector of the deformed boundary contour   is given by 

( ) ( ) ( )s s s r r u , where s  is the convective coordinate. The following relations are satisfied 

along  : 

 1' ' , , , , , ' ,a j 
                 r a u r a u n r r   (8) 

 2 2 2 2| ' | 1 2 ' ' ' , | , | | ' | | , ' | .a j          r u u u r r r r   (9) 

 All the barred quantities appearing in (2) to (9) are understood to be expressed through 

components of the translation vector u  and its surface derivatives in the undeformed bases ,a n  

or , ,  n , respectively. 

 

Lagrangian Equilibrium Conditions 

 Let the shell be loaded by the surface force f f
 f a n  and the surface couple 

( )m
 m n a  vector fields, both measured per unit area of , as well as by the boundary 

force * * * *n n n    n n  and the boundary couple  * * *m m    m n  vectors, both given 

per unit length of  . Then for any additional kinematically admissible virtual translation 

u w
   u a n  the following Lagrangian principle of virtual displacements should be 

satisfied (Pietraszkiewicz 1984, 1989): 

 
 

   * * .
f

N M da

da ds

 
 



 

   




       



  f u m n u m
 (10) 

 In (10), N
 and M  are symmetric components of the internal 2

nd
 Piola-Kirchhoff 

type surface stress and couple resultant tensors,   and   are the virtual rotation vectors on 

 and  , respectively, while the virtual surface deformation measures are given by 
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 (11) 

 Variating the three constraints 0 n a , 1 n n  satisfied on , one obtains 

,     n a n u  , 0  n n , so that  ,
   n a n u . On the other hand,   on  

should satisfy   n n . As a result, in (10) one has ,m
    m n u  on . 

 Introducing (11) and the above relation for  m  to (10) and applying the surface 

divergence theorem (Pietraszkiewicz 2018), one can transform (10) into 
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T n f u

T n n u a n m

T n u a n

 (12) 

where 

  , | ,N M M    
   

     
 

T a n a a n  (13) 

and \d f     is the complementary part of   along which the kinematic boundary 

conditions are prescribed. 

 The vector ( )sn  along   satisfies only two constraints ' 0 , 1   r n n n . This means 

that in order to establish the unique position of , ,  n  relative to , ,  n  one has to know not only 

three components of ( )su  (thus also '( )su )  but additionally one scalar function 

( ) [ , ( ), '( )]s s s  u u  describing the rotational deformation between the bases. The meaning of 

( , , ') u u  is not unique and depends on how the rotational deformation is defined. 

 The structure of the Lagrangian boundary conditions along   has been discussed by 

Makowski and Pietraszkiewicz (1989) with the help of integrability conditions of some 

differential one-forms. It has been found, in particular, that the general relation for ( , ') n u  at 

the boundary contour can be given in the form 

 ' .   n q L u  (14) 

 Since   n n  along the boundary contour, one obtains  * *
    m m n n . 

Introducing this relation together with (14) into the curvilinear integrals of (12), after integration 

by parts one can transform them into 
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P T F P n F

q a q m n

F = F F u u

  (16) 

Kinematically admissible virtual displacements satisfy   0u , 0   and n  0u  

along d , so that the second integral in (15) and the last out-of-integral term identically vanish. 
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This requires the displacement boundary conditions *  0u u , * 0    along d  to be 

satisfied and *
n n  0u u  should be assured at each point of irregularity n dM   , where the 

starred symbols mean the prescribed quantities. 

Then with (15)1 as the second row of (12), the principle of virtual displacements requires 

the following local Lagrangian equilibrium conditions to be satisfied: 

 the equilibrium equations 

   | in ,m 
   0T n f   (17) 

 the natural force static boundary conditions 

 * *, 0 along ,fm M M     0P n P   (18) 

 the concentrated forces *
n nF F  applied to each point of irregularity n fM   . 

Particularly simple useful expression for   was proposed in Pietraszkiewicz and 

Szwabowicz  (1981) as 

  
1

' ,n
j

         n u n u  (19) 

following from (8). Varying the two constraints along  , one obtains ' ' ,    n r n u  

0  n n  from which it follows that    ' '    n r n n n u . The vector product of this 

formula by   from the left side, after transformations leads to 

      
1

' ' , ' ,n e
e

 


            n r n n n u r n  (20) 

so that in the formula (14) one has 

    
1 1

' , ,
e e 

    q r n L n n  (21) 

where   is the tensor product. 

Other particular cases of   suggested in Makowski and Pietraszkiewicz (1989) are: the 

function  2a     n n a  proposed by Novozhilov and Shamina (1975) and the angle   of 

total rotation of the boundary element defined in Pietraszkiewicz (1979) by the relation 

2cos 1           n n  . Corresponding formulas for ,q L  and for the boundary 

conditions were given in Pietraszkiewicz (1989, 1993). 

The Lagrangian vector shell relations derived above have their natural scalar 

representations in terms of translations ,u w  in the known undeformed base ,a n  of , 

displacements , , ,u u w    in the known undeformed base , ,  n  along   and the surface 

stress resultants and stress couples ,N M   (Pietraszkiewicz 1984, 1989). These scalar 

relations are very complex, because they are still valid for unrestricted surface deformation 

measures ,    and unrestricted displacements u  on  and ,u  along  . 
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Small Elastic Strains 

 When the strains in the shell space are assumed to be small, i.e.  max , 1h     , 

some shell relations derived so far can be consistently simplified. In particular, in  one has 

  
1

1, 2 , , .
2

j a a a n l l n l l l l         
                 (22) 

With (22) the surface bendings defined in (6)2 become the third-degree polynomials in ,u w  as 

well as their surface first and second derivatives. 

 Along   one can simplify some relations into 

  1, , ' , ' , ,j n     n r r u n u  (23) 

so that n  becomes the quadratic polynomial in the displacement derivatives. 

 With (22) the simplified scalar equilibrium equations (17) were explicitly given in 

Pietraszkiewicz (1989), while with (23) the simplified scalar static boundary conditions were 

formulated in Pietraszkiewicz (2001).  

When the shell is made of an elastic material, the principle (10) requires the existence of 

the surface strain energy density  ,    , per unit area of , such that /N
     

and /M
    . The explicit expression for   depends on the shell material properties, 

but also on the undeformed shell geometry: its thickness, curvatures of , the internal structure 

across the thickness, etc.  

 In case of a homogeneous isotropic shell undergoing small elastic strains, already Love 

(1927) used  ,     consisting of the sum of two quadratic functions describing stretching 

and bending energies of the shell. The error of such approximation was analysed in several 

papers. In particular, according to Koiter (1960, 1966, 1980) and John (1965) the consistently 

approximated strain energy density is given indeed by the sum of two quadratic functions 
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2 2 ,
2 12
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2(1 ) 1
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 (24) 

Here E  is the Young modulus and   is the Poisson ratio of the linearly elastic isotropic material, 

while the small parameter   is defined by 

 max , , , , ,
h h h h

b l L R
 

 
  

 
 (25) 

where b  is the distance from the lateral shell boundary surface, l  is the smallest wave length of 

geometric patterns of , L  is the smallest wave length of deformation patterns on , and 

(.)O  means “of the order of”. The material tensor H  corresponds to the plane stress state in 

the shell in accordance with the assumption 3. indicated in Introduction. 
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 With (24)1, the constitutive equations are defined by 
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 (26) 

Summarizing,  the boundary value Lagrangian equilibrium problem of thin isotropic shells 

undergoing small elastic strains can be formulated in terms of three translations ,u w  of  as 

the basic independent field variables. The BVP consists of three scalar equilibrium equations (17) 

in , the four natural static (18) and/or four work-conjugate displacement boundary conditions 

along f  or d , the concentrated forces *
n nF F  applied to each point of irregularity 

n fM  , the constitutive equations (26), and the kinematic relations (6) in which the 

approximate relations (22) and (23) have been used. Unfortunately, these consistently simplified 

relations are still too complex for engineering applications. 

  

Restricted Rotations 

 According to the Cauchy theorem, the shell deformation about a point of  can be 

exactly decomposed into a rigid-body translation, a pure stretch along principal directions of 

strain and a rigid-body rotation. Since in the previous section the shell relations have been 

consistently simplified under small elastic strains, several simpler versions of the displacement 

shell relations can be constructed by imposing consistent restrictions upon the rotations of the 

shell material elements (Pietraszkiewicz 1977, 1980, 1984). 

 A finite rotation may be described by an angle of rotation   about an axis of rotation 

fixed in space by a unit vector e . In mathematics the rotation is usually defined by the 2
nd

-order 

tensor ( , )R e  such that 1 , det 1T   R R R . Alternatively, for | | / 2   the rotation can be 

uniquely described by some finite rotation vector such as sin e  or 2tan / 2 e  . The 

magnitude of the rotation can be classified in terms of the small parameter   defined in (25) as 

follows: a) 2( )O   - the small rotation, b) ( )O   - the moderate rotation, c) ( )O    

- the large rotation, and d) (1)O   - the finite rotation. However, the shell structures are usually 

quite rigid for in-surface deformation being flexible for out-of-surface deformation. To account 

this property, one can associate the names “small, moderate, large, finite” rotation with the 

particular components     a  and    n  of   . 

 In the geometrically non-linear theory of thin shells   is expressed through translations 

of  by the consistent reduction of the exact formula (Pietraszkiewicz 1977, f. (3.7.17) or  

1984, f. (2.3.11)): 

  
1 1

1 ,
2 2

  
          

  
     

  
 a n  (27) 
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 (28) 

Here   are components of the linearized strains while ,   describe the linearized rotation 

vector  . 

 For any restriction imposed on   the estimates for ,   follow from (27) and those for 

  follow from solving (6)1 with ( )O  . Then the consistently simplified expressions for 

  and   can be established taking account of accuracy of   in (24)1. In such estimation 

procedure covariant surface derivatives are estimated dividing their maximal value by the large 

parameter 

 
1

min , , , , .
h

b l L hR
 

 
    

 
 (29) 

 Within small rotations 2( )O  , 
2( )O  , 

2( )O   and the shell deformation 

measures are consistently approximated by 
2( )O     , 

| |1/ 2( ) ( / )O            . These characterize the linear bending theory of thin elastic 

shells treated in many books and papers, see for example (Koiter 1961).  

Within moderate rotations ( )O  , ( )O  , 
2( )O   and the consistently 

reduced shell relations are 
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 If additionally the rotation about normal   is restricted to be small then also 
2( )O  . For such moderate/small rotation theory of thin elastic shells the relations (30) and 

(31) can be considerably simplified to 
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 The non-linear relations (30) and (31) (or (33)) with (32) and (26), when introduced into 

the equilibrium conditions (17) and (18), and the surface couples m  conventionally omitted, 

describe the boundary value problem in displacements of the Lagrangian geometrically non-

linear theory of thin elastic shells undergoing moderate (or moderate/small) rotations. This 

version of shell equations contains as special cases a number of simpler versions of non-linear 

shell equations proposed in the literature. A detailed review of those simpler versions was given 

in Schmidt and Pietraszkiewicz (1981), where also a set of sixteen basic free functionals and 

several functionals with subsidiary conditions were constructed for conservative dead-load type 

surface and boundary loadings. 

 The simplest case of the moderate/small rotation theory is the non-linear theory of 

shallow shells proposed by Mushtari (1939) and Marguerre (1939). In this case one additionally 

assumes that the tangential surface forces f   are also small and can be ignored. As a result, the 

tangential translations can be expected to be one order smaller than the normal ones, 

( )u w O   , so that 2, [1 ( )]w O     and the surface deformation measures become 

extremely simple  

 |

1
, , , .

2
w w w          (34) 

In the tangential equilibrium equations the terms b T 
  are small as compared with |N

  and 

can be omitted. As a result, the equilibrium equations become extremely simple as well, 

  || 0 , | 0 .N M b w N f  
         (35) 

The equilibrium equations (35) together with the constitutive relations (26), the kinematic 

relations (34) and corresponding boundary conditions form the boundary value problem of the 

non-linear theory of shallow elastic shells expressed in terms of translations of  as the 

independent variables. 

 It can be proved that the approximate expression (34)2 for   satisfies approximately 

two tangential compatibility conditions, which suggests that within this approximation the order 

of covariant differentiation is unimportant. This allows one to approximately satisfy (35)1 by 

|N  
   , where   is the stress function. Then (35)2 and the third compatibility 

condition for ,    leads to the set of two equations 
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| | | 0 ,
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1 1
| | | 0 .
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 (36) 

These two equations usually written in the orthogonal lines of principal curvatures of , 

together with corresponding boundary conditions expressed in ,w , are given in many books 

and papers, for example Mushtari and Galimov (1961), and Brush and Almroth (1975), where 

also many numerical examples are presented. 

 The consistent relations of the large/small rotation Lagrangian non-linear theory of shells 

have been presented in detail in Pietraszkiewicz (1984, 1989). These relations are more involved 
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than those of the moderate rotation theory. As a result, they have been used to solve some 

engineering shell problems in only limited number of papers. 
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