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Definition 

The linear theory of thin elastic shells is an approximate two-dimensional case of three-

dimensional linear theory of elasticity. Here the shell thickness is supposed to be much 

smaller than the smallest radius of curvature of the shell middle surface. As a result, the shell 

deformation can approximately be described only by stretching and bending of its middle 

surface. 

 

Introduction 

 The linear theory of thin elastic shells belongs to classical special two-dimensional 

models within linear elasticity. It was originated by Love (1888), developed subsequently in 

thousands of papers and summarized in dozens of monographs. Among the most important 

books in the field one might mention Love (1927), Goldenveizer (1961), Novozhilov (1964), 

Bașar and Krätzig (1985), and Novozhilov et al. (1991). 

 Initially, the linear thin shell relations were developed in orthogonal coordinates 

coinciding with lines of principal curvatures on the shell middle surface. However, such a 

shape-dependent description was found to be too complex and inefficient due to a large 

variety of shell shapes appearing in technology and everyday life. Lurie (1940) proposed to 

describe the linear shell relations in the invariant tensor notation. These relations were valid 

for any geometry of the shell midsurface. This compact description was then applied in many 

papers and books, for example by Green and Zerna (1954), Koiter (1960), Naghdi (1963), 

Chernykh (1964),  Flügge (1972), Bașar and Krätzig (1985, 2001), and Ciarlet (2000). 

 In this note basic relations of the linear theory of thin isotropic elastic shells are briefly 

derived and discussed. The formulation is based on the following simplifying assumptions: 

1. The material elements, which are normal to the shell middle surface in the undeformed 

placement, remain normal to the deformed shell midsurface and do not change their 

lengths. This assumption allows one to approximately describe the three-dimensional 

shell deformation only by stretching and bending of its middle surface. 

2. The state of elastic stress in the shell space is approximately plane. This means that the 

effects of transverse shear stresses and of normal stresses, acting on surfaces parallel 

to the middle surface, may be neglected in the elastic strain energy density. 

mailto:pietrasz@imp.gda.pl


 

2 
 

To be concise, these assumptions are used here to derive the approximate two-

dimensional equilibrium equations and boundary conditions from the postulated principle of 

virtual displacements for the shell midsurface. In deriving the basic shell relations the tensor 

notation for description of surface geometry is applied according to Pietraszkiewicz (2018). 

 

Geometry and Small Deformation of a Thin Shell 

 Let  be the region of three-dimensional Euclidean point space  occupied by the 

shell in the undeformed placement. The position vector of any point P  relative to a 

reference point O  can be given by 

 ( , ) p ( ) ( ) ( ) ,i
i

          p i r n  (1) 

where , 1,2,3,i i i  are three orthonormal vectors of a reference frame, , 1,2,    are the 

curvilinear surface coordinates, / 2 / 2h h     is the distance from the shell middle 

surface  defined by the position vector ( )r , ( )n  is the unit normal vector orienting 

, and h  is the shell thickness. In thin shell theory it is understood that h  be constant and 

small as compared with the smallest radius of curvature R  of , i.e. / 1h R  ,  and with 

linear dimensions of . 

 Geometry of the base surface  is described by the following fields (Pietraszkiewicz 

2018): the natural base vectors / ,
    a r r , the covariant components a   a a  of 

the surface metric tensor, the dual (contravariant) base vectors 
a  such that , 

  a a  

where 1 2 1 2
1 2 2 11, 0       , the unit normal vector 1 2 1 2/ | |  n a a a a , and the covariant 

components , ,b         a n n a  of the surface curvature tensor. The contravariant 

metric components a   a a  are used to raise indices of surface vectors and tensors, for 

example a 
a a , b a b 

  , etc.  

 The boundary contour   of  consists of a finite set of piecewise smooth curves 

( ) [ ( )]s sr r  , where s  is the arc length along  . In each regular point M  two 

unit vectors are defined: the tangent / 'd ds 
   r r a  and the outward normal 

, ,
      n a r   

   , where ,r  means the outward normal derivative of r  at 

  and   are contravariant components of the surface alternation tensor. 

 The shell midsurface in the deformed placement  is described by the position 

vector ( ) ( ) ( )     r r u , where 
  are the surface curvilinear convective coordinates 

and u w
 u a n  is the surface translation field. The geometric quantities describing  

are analogous to those of , only now they are marked by the overbar, for example 

, , , ,a b  a n  etc. The barred quantities can be expressed  through analogous unbarred ones 

and the vector u . In the linear theory of thin shells these relations are approximated by linear 

functions of u . In particular, one has (Koiter 1960; Pietraszkiewicz 1980) 
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where |(.)  denotes the covariant surface differentiation of (.) . 

In the linear theory of thin shells the surface deformation measures are linear functions 

of  the surface translations and their surface derivatives, and are defined by 
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The components   are the linearized surface strains while   are the linearized surface 

changes of curvatures (briefly bendings). Both surface deformation measures are symmetric: 

   ,    . Please note that   are given through the surface translations as well 

as their first and second surface derivatives. 

 

Equilibrium Conditions 

 Let the shell base surface  be loaded by the distributed force field f f
 f a n  

per unit area of , as well as by the boundary force * * * *n n n    n n  and the boundary 

couple  * * *m m    m n , both per unit length of the boundary contour f . If the shell 

is to be in equilibrium then, within the simplifying assumptions of the linear thin shell model, 

for a virtual displacement field u w
   u a n  subjected to kinematic constraints the 

following principle of virtual displacements should be satisfied: 

    * * .
f

N M da da ds 
      


         f u n u m  (5) 

Here N  and M
 are symmetric components of the internal surface stress and couple 

resultants, f  is that part of   along which the forces *n  and couples *m  are 

prescribed, and   is the linearized rotation vector of the shell lateral boundary element. 

 The first surface integral of (5) indicates the internal virtual work intG  performed by 

,N M   on the respective virtual strains and bendings ,    given according to (2) -  

(4) by 
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 (6) 

 The last two integrals of (5) indicate the external virtual work extG  performed by f  

on u  within  as well as by *n  and *m  on the corresponding u  and   along f , 

respectively. The virtual fields should satisfy the kinematic constraints, that is  u 0  and 

  0  along d , where f d    . 

 With the help of some tensor identities, the intG  in (5) with (6) can be transformed into 
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Introducing the vector 

   | ,N b M M    
    n a n   (8) 

and applying the surface divergence theorem to the last term of (7) in brackets, the relation (7) 

can be written in the compact form 

  int | ,
f

G da M ds  
     


      n u n u   (9) 

where   are tangential components of variation of the linearized rotation vector of , 

 |

1
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 a n   (10) 

 Along   the virtual translations and rotations can be expanded into physical 

components 
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The first term in (11)2  allows one to integrate by parts the last expressions in the line integral 

(9) leading to  
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n u   (12) 

 The linearized rotation vector   of the shell lateral boundary element is related to the 

linearized rotation vector   of  by     n  (Chernykh 1964; Pietraszkiewicz 1980). 

But within the assumptions of the linear thin shell theory *m  does not have the normal 

component, so it is always * 0 m n . As a result, * *
    m m  and the last term in (5) 

can be transformed similarly as in (12) leading to  
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 Summarizing, the principle of virtual displacements (5) with (6) - (13) requires the 

following local relations to be satisfied: 

 The equilibrium equations 

 | in .
   0n f   (14) 
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 The force static boundary conditions 

    * * *, along .f

d d
M m M m

ds ds


         n n n n   (15) 

 The concentrated forces applied in each singular point ,n fM    

  * *( 0) ( 0) ( 0) ( 0) ( ) .n n n n nM s m s M s m s s   
             n   (16) 

 The corresponding work-conjugate displacement boundary conditions are 

 **  , along .d    u u   (17) 

 In components some of these relations are: 

 The equilibrium equations in , 

 | 0 , | 0 ,T b Q f M b T f     
           (18) 

where the following abbreviations have been used:  

 , | .T N b M Q M     
      (19) 

 The force static boundary conditions along f , 
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n

  (20) 

where the following abbreviations of the physical components have been used: 

, , , , .T T T T M M M M Q Q    
                            (21) 

 

Compatibility Conditions 

 Six components   and   are expressed by only three components of u  on . 

Thus, the surface deformation measures have to satisfy three compatibility conditions.  

 Two smooth and differentiable vector displacement fields on the regular shell 

midsurface  satisfy the obvious identities 12 21, ,u u  and 12 21, ,   , which can 

equivalently be written as 

 | |, . 
   0 0u   (22) 

Differentiation of u  with the use of (10) leads to 

 , .
    u a a   (23)  

Differentiating (10), one obtains 
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Then  
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Using the relations (3) and (4), after some transformations one obtains 

 .b
         (26) 

This indicates that the second expression of (25)1 identically vanishes. Then one can solve the 

first expression in (25)1 for   and introduce the result into (25)2. By changing some indices, 

the remaining three compatibility conditions become  

 
   

   

| | 0 ,

| 0 .

b

b

    
    

   
   

     

     

  

  
  (27) 

 

Static-Geometric Analogy and Complex Shell Relations 

 Between the equilibrium equations (18) and the compatibility conditions (27) there 

exists the following correspondence: 

 , .T M     
          (28) 

When the surface stress measures in (18) are replaced by the surface deformation measures 

according to (28), the homogeneous equilibrium equations (18) are converted into the 

compatibility conditions (27). The correspondence is known as the static-geometric analogy 

in the linear theory of thin shells.  

The analogy (28) allows one to introduce three stress functions ,u w  by the relations  

 * *
2

, , .
12(1 )

h
T T Ehc M M Ehc c       

      


    


  (29) 

Here *T 
 and *M

 are some particular solutions of the inhomogeneous equilibrium 

equations (18), and the expressions   and   are similar to (4)1 and (26), respectively, 

only now constructed by corresponding stress functions ,u w .  

 With (29) one can introduce the surface complex stress measures 

 * *, , 1 ,T T i Ehc M M i Ehc i       
              (30) 

where   and   are expressions similar to (4)1 and (26) only now constructed by the 

complex translations ,u u iu w w iw       . When the compatibility conditions (27) are 

multiplied by i Ehc  and added with the corresponding equilibrium equations (18), this gives 

the following set of three equations for the complex stress measures: 

 | | 0 , | 0 .T b M f M b T f     
            (31) 

When expressed in terms of complex translations, the above system of PDEs for the complex 

independent variables is of the 4th order to be solved in the complex domain, while the 

system (18) of PDEs for the real translations is of the 8th order in the real domain.  

The complex formulation of the linear thin shell theory was used to solve analytically 

a number of linear shell problems presented, for example, in the books by Novozhilov (1964), 

Chernykh (1964), and Novozhilov et al. (1991). 

 

Constitutive Equations 
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 When the shell is made of an elastic material, the principle (5) requires the existence 

of the surface strain energy density  ,    , per unit area of , such that 

/N
     and /M

    . The explicit expression for   depends on the shell 

material properties, but also on the undeformed shell geometry: its thickness, curvatures of 

 and the internal structure across the thickness.  

 In case of a homogeneous isotropic shell undergoing small elastic strains, already 

Love (1888, 1927) used  ,     consisting of the sum of two quadratic functions 

describing stretching and bending energies of the shell. The error of such an approximation 

was analysed in Novozhilov and Finkel’stein (1943) and in several later papers. In particular, 

according to Koiter (1960) the consistently approximated strain energy density is given by  
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Here E  is the Young modulus and   is the Poisson ratio of the linearly elastic isotropic 

material, while the small parameter   is defined as  max / , / ,h L h R  , where L  is 

the smallest length of geometric and deformation patterns on . The form (32)1 of 

 ,     was subsequently justified by asymptotic analysis of the equations of 3D 

linearized elasticity as indeed the consistent first approximation to the 3D strain energy 

density of the shell (see review by Ciarlet 2000). The material tensor H  in (32)2 

corresponds to the plane stress state in the shell space in accordance with the assumption 2 

indicated in Introduction. 

 With (32)1, the constitutive equations of isotropic elastic shells are given by 
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 (33) 

Summarizing,  the boundary value equilibrium problem of a thin isotropic elastic shell 

can be formulated in terms of three translations ,u w  of  as the basic independent field 

variables. The BVP consists of three scalar equilibrium equations (18) with (19), the four 

natural static (20) and (15)2 and/or four work-conjugate kinematic boundary conditions (17), 

the constitutive equations (33), and the kinematic relations (4).  

The error indicated in (32)1 suggests that within the accuracy of the first 

approximation to the strain energy function (33)1 one can apply various alternative definitions 

of the bending tensor, provided that they differ from   by terms of the type b
  . In 

particular, Koiter (1960) used the bending tensor  1/ 2 b b 
             and 

Budiansky and Sanders (1963) by several additional criteria found it to be the “best” bending 

tensor for the linear theory of thin isotropic elastic shells. However, some shell relations 

compatible with   become more complex and less convenient in general discussions.  
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 According to (26), the non-symmetric tensor   may also be used as the bending 

tensor of the linear theory of thin elastic shells. In this case the constitutive equations (33)2  of 

an isotropic elastic shell are given by 

  
3

2 2

2
(1 ) .

12(1 )

Eh
M a O Eh   






    

 



       

  (34) 

 

Conclusions 

The limited space for this entry does not allow one to discuss here many other 

important problems of the linear theory of thin isotropic elastic shells. The literature in the 

field is numerous and some early important contributions are inaccessible through Internet. 

The interested reader should consult references given in the books referred to below. 
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