

a)

Spectroscopic measurements in plasma generated by waveguide-supplied coaxial-line-based nozzleless microwave source

Bartosz HRYCAK¹, Mariusz JASIŃSKI¹, Jerzy MIZERACZYK^{1,2}

¹Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences ul. Fiszera 14, 80-231 Gdańsk ²Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia

Gas processing: production of hydrogen via hydrocarbons decomposition [3] hazardous gas treatment [4]

Microwave Plasma Source (MPS)

Measured emission spectrum of argon microwave plasma without water vapour (a) and with small amount of water vapour added to swirl flow (b) (P₄ - 1 kW [4 kW - red], axial Ar flow rate 50 l/min, swirl N, flow rate - 50 l/min)

a) Comparison of the measured and simulated in LIFBASE program [7] emission spectra of OH (A-X) rotational band in argon microwave plasma, b) Measured H_{β} line profile and the Voigt function fitted to the experimental points (P_A - 1 kW, axial Ar flow rate 50 l/min, swirl N₂ flow rate - 50 l/min, 25 mm below the inner electorode end)

a) Argon microwave plasmas, b) the length of argon plasma (measured from electrode) as a function of microwave absorbed power $P_A (P_A = P_1 (incident) - P_R (reflected))$ for different axial flow rates

The experimental setup for spectroscopic study of argon microwave atmospheric pressure plasma at high flow rates

Measured rotational temperatures of OH radicals (a) and electron number density (b) as a function of distance below inner electrode end BIEE (P_A - 1 kW, axial Ar flow rate - 50 l/min, swirl N₂ flow rate - 50 l/min)

Rotational temperatures of OH radicals and electron number density measured 25 mm below inner electrode end as a function of microwave absorbed power P_A (axial Ar flow rate 50 l/min) (a) and axial Ar flow rate Q_{Ar} ($P_A - 2 kW$) (b)

Summary

Obtained rotational temperatures of OH radicals ranged from 1500 to 3100 K, depending on location in argon plasma, microwave absorbed power and argon axial

Rotational temperature of OH radicals

- Gas temperature can often be inferred from the rotational temperature of the heavy species of the plasma [1, 2]
- The rotational temperatures of OH radicals were determined by comparing the measured and simulated spectra in LIFBASE [5] program
- Method described by Izzara [1], based on analyzing intensities of two groups of unresolved rotational lines of the OH (A-X) band, was also used

Electron number density

- The electron number density in the argon plasma was determined using the Stark broadening of H_{B} spectral line
- **Solution** Voigt function was fitted to the measured H_{B} :

 $\Delta \lambda_{v}$ - Voigt FWHM, $\Delta \lambda_{L}$ - Lorentzian FWHM, $\Delta \lambda_{G}$ - Gaussian FWHM

Broadening mechanisms:

 $\Delta \lambda_{L} = \Delta \lambda_{W} + \Delta \lambda_{S}$ $\Delta \lambda_{0}^{2} = \Delta \lambda_{0}^{2} + \Delta \lambda_{1}^{2}$

 $\Delta \lambda_{\rm w}$ - Wan der Waals, $\Delta \lambda_{\rm s}$ - Stark, $\Delta \lambda_{\rm w}$ - Doppler, $\Delta \lambda_{\rm s}$ - Instrumental, $\Delta \lambda_{\rm G}$ - Natural, $\Delta \lambda_{\rm R}$ - Resonance - neglected [6]

 $\Delta\lambda_{D} = 7,16 \times 10^{-7} \times 486.13 \times \sqrt{T}$

 $\Delta \lambda_W = 6,48 \times 10^{-22} T^{-0,7} \frac{p}{L}$

[6]

[7]

T - temperature, p - pressure, k - Boltzmann constant

 $\Delta \lambda_s$ - Instrumental - measured with low-pressure Hg-Ne calibration lamp

Solution:

GKS theory: $n_{e} = 1.09 \cdot 10^{16} \cdot [\Delta \lambda_{s}(H_{B})]^{1.458} [cm^{-3}] [8]$

Gig-Card theory: $n_e = 10^{16} \cdot [\Delta \lambda_s(H_B)]^{1.5} [cm^{-3}] [9]$

flow rate

- Obtained electron number density ranged from 5.5×10^{14} to 1.4×10^{15} cm⁻³, depending on location in argon plasma, microwave absorbed power and argon axial flow rate
- Stable operation and wide range of parameters makes MPS attractive tool for different gas processing at atmospheric pressure and high flow rates

REFERENCES:

[1] Ch. Izarra: J. Phys. D: Appl. Phys. **33** (2000), 1697 [2] J. Raud, M. Laan, I. Jogi, J. Phys. D: Appl. Phys., 44 (2011), 345201 [3] M. Jasinski, M. Dors, J. Mizeraczyk: J. Power Sources 181 (2008), 41 [4] M. Jasinski, M. Dors, J. Mizeraczyk: Plasma Chem. Plasma Process. 29 (2009), 363 [5] http://www.sri.com/psd/lifbase/ [6] B. N. Sismanoglu, K. G. Grigorov, R. Caetano, M. V. O. Rezende, Y. D. Hoyer, Euro. Phys. J. D 60 (2010), 505 [7] C. Lazzaroni, P. Chabert, A. Rousseau, N. Sadeghi, Euro. Phys. J. D 60 (2010), 555 [8] H. R. Griem: Spectral line broadening by plasmas (1974), Academic Press, New York. [9] M.A. Gigosos, V. Cardenoso: J. Phys. B: At. Mol. Opt. Phys. 29 (1996), 4795.

This research was supported by The National Centre for Research and Development (NCBiR) under the programme NR14-0091-10/2010