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• Spectroscopic diagnostics of the plasma flame
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• Spectroscopic diagnostics of the plasma flame

• Hydrogen production via ethanol conversion

• Summary and conclusions



• Hydrogen is considered as a promising fuel of the future

• It is listed as a primary energy source in the energy development strategy in many developed
countries

• Plasma technologies on hydrocarbon reforming to generate hydrogen has been gradually
attracting attention (no expensive and impurity vulnerable catalysts)

• Hydrogen production reactions from ethanol:
C H OH + 1/ O → 3H + 2CO               (partial oxydation)
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C2H5OH + 1/2O2 → 3H2 + 2CO               (partial oxydation)
C2H5OH + CO2 → 3H2 + 3CO                (dry reforming)
C2H5OH + 3H2O→ 6H2 + 2CO2                   (steam reforming)
C2H5OH + H2O→ 4H2 + 2CO                (steam reforming)
C2H5OH → 3H2 + CO + C                  (thermal decomposition)

• Investigation concerns microwave (2.45 GHz) atmospheric pressure plasma source (MPS) for 
hydrogen production via ethanol conversion

• The main objective of this investigation is to obtain the knowledge about processes during 
microwave plasma conversion of liquids hydrocarbons (ethanol) as a hydrogen source



Selection of  microwave plasma source

Microwave plasma sources (MPSs) for gas processing

• surface-wave-discharge MPSs:
• coaxial-line-supplied, called surfatrons
• waveguide-supplied, called surfaguides

• nozzle-type MPSs:
• coaxial-line-supplied coaxial-line-based (low gas flow rate, several NL/min)
• waveguide-supplied coaxial-line-based (low and high gas flow rate, several thousands NL/h)

• nozzleless MPSs:
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• nozzleless MPSs:
• waveguide-supplied coaxial-line-based (with or without an inner dielectric tube)
• waveguide-supplied metal-cylinder-based (with or without an inner dielectric tube)
• waveguide-supplied resonant-cavity-based

• plasma-sheet MPSs:
• coaxial-line-supplied strip-line-based
• waveguide-supplied

• microwave microplasma sources (MmPSs)
• antenna type
• coaxial-line-based



Waveguide-supplied metal-cylinder-based MPS
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Schematic view of the waveguide-supplied metal-cylinder-based MPS
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Waveguide-supplied metal-cylinder-based MPS
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Schematic view of the waveguide-supplied metal-cylinder-based MPS
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Waveguide-supplied metal-cylinder-based MPS

Illustrations of the gas swirl.
Inlet gas – mixed working gas with 

ethanol

Laser visualization 
of  the swirl flow 
without plasma
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Experimental setup

The 915 MHz system
(up to 20 kW)
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The 2.45 GHz system
(up to 6 kW)
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Experimental setup
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Diagram of the experimental setup for hydrogen production via ethanol conversion
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Experiment parameters

Processes
• Thermal decomposition of etanol:

C2H5OH → 3H2 + CO + C (in N2 and Ar plasma)
• Dry reforming of ethanol:

C2H5OH + CO2 → 3H2 + 3CO (in CO2 plasma)

Constant parameters
• Pressure: atmospheric
• C H OH addition: about 3 %
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• C2H5OH addition: about 3 %

Variable parameters
• Microwave frequency: 915 MHz or 2.45 GHz
• Absorbed microwave power: 2 – 6 kW
• Working gas type: N2, CO2, Ar
• Working gas (N2, CO2, Ar) flow rate: 1500 – 3900 NL/min

Measured parameters
• Percentage concentration of following components at the output of the MPS: H2, Ar, O2, N2,

CO, CO2, CH4, C2H2, C2H4, C2H6 and C2H5OH
• Emission spectra of plasma in range of 300 – 600 nm



• Hydrogen production rate in NL(H2)/h, shows how many litters of hydrogen is produced per
unit of time (one hour).

• Energy yield of hydrogen production in NL(H2)/kWh is define as a ratio of the hydrogen
production rate to absorbed microwave power in kW. Energy yield describes the amount of
litters of hydrogen produced using 1 kWh of energy.

• Total ethanol conversion degree is given by

[(C H OH) / (C H OH) × 100%], 

Hydrogen production effectiveness parameters
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[(C2H5OH)converted / (C2H5OH)initial × 100%], 

where (C2H5OH)initial is the total mass of ethanol and (C2H5OH)converted is the converted mass of
etanol.

• Hydrogen concentration in the outgas is defined by relation

[Q(H2)outgas / Q(working gas+ H2+other products)outgas] × 100%, 

where Q(H2)outgas is a hydrogen gas flow rate at the output of the MPS and Q(working
gas+H2+other products)outgas is the total gases flow rate at the output of the MPS.



Spectroscopic diagnostics of plasma (rotational tempe ratures)
5th WHTC, Shanghai, September 25-28, 2013
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Comparison of the measured and simulated emission spectra of plasma. Absorbed microwave
power PA - 2 kW. 15 mm below the waveguide bottom.
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N2 and N2/C2H5OH plasma
5th WHTC, Shanghai, September 25-28, 2013

without C2H5OH with  C2H5OH
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Photos of N2 plasma with and without ethanol vapor addition (2.45 GHz plasma system, 
absorbed microwave power PA - 2 kW, working gas flow rate - 2700 NL/h)



Spectroscopic diagnostics of N 2 and N2/C2H5OH plasma
5th WHTC, Shanghai, September 25-28, 2013
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Measured emission spectra of N2 plasma and rotational temperatures with and without 
ethanol vapor addition (2.45 GHz plasma system, absorbed microwave power PA - 2 kW, 

working gas flow rate - 2700 NL/h, 15 mm below the waveguide bottom)

Tr

at 15 mm and PA – 2kW ranged (dep. PA & location)

N2+ 5000 K 4500 – 6000 K

OH 4800 K 3300 - 5500 K

Tr

at 15 mm and PA – 2kW ranged (dep. location)

CN 5400 K 4000 – 5400 K

C2 3500 K 3000 - 3500 K



Ethanol conversion N 2/C2H5OH plasma
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for N2 plasma in 915 MHz and 2.45 GHz systems.
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CO2 and CO2/C2H5OH plasma
5th WHTC, Shanghai, September 25-28, 2013

without C2H5OH with  C2H5OH
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Photos of CO2 plasma with and without ethanol vapor addition (2.45 GHz plasma system, 
absorbed microwave power PA - 2 kW, working gas flow rate - 2700 NL/h)



Spectroscopic diagnostics of CO 2 and CO2/C2H5OH plasma
5th WHTC, Shanghai, September 25-28, 2013
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Measured emission spectra of CO2 plasma and rotational temperatures with and without 
ethanol vapor addition (2.45 GHz plasma system, absorbed microwave power PA - 2 kW, 

working gas flow rate - 2700 NL/h, 15 mm below the waveguide bottom)

Tr

at 15 mm and PA – 2kW ranged (dep. PA & location)

C2 5000 K 4500 – 6000 K

OH 5000 K 3300 - 5500 K
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Ethanol conversion CO 2/C2H5OH plasma
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for N2 and CO2 plasma in 2.45 GHz system.



Ethanol conversion CO 2/C2H5OH plasma
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for CO2 plasma in 2.45 GHz system.

Instead of dry reforming, thermal 
decomposition or partial oxidation we 
achieved full oxidation:

C2H5OH + 3O2 → 3H2O + 2CO2



Ar and Ar/C 2H5OH plasma
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without C2H5OH with  C2H5OH
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Photos of Ar plasma with and without ethanol vapor addition (2.45 GHz plasma system, 
absorbed microwave power PA - 2 kW, working gas flow rate - 2700 NL/h)



Spectroscopic diagnostics of Ar and Ar/C 2H5OH plasma
5th WHTC, Shanghai, September 25-28, 2013

without C2H5OH with  C2H5OH

0.4

0.6

0.8

1.0

In
te

ns
ity

 [a
. u

.] Ar I lines

0.4

0.6

0.8

1.0

In
te

ns
ity

 [a
. u

.]

CN Violet

C
2
 Swan

21

Measured emission spectra of Ar plasma and rotational temperatures with and without 
ethanol vapor addition (2.45 GHz plasma system, absorbed microwave power PA - 2 kW, 

working gas flow rate - 2700 NL/h, 15 mm below the waveguide bottom)
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Ethanol conversion Ar/C 2H5OH plasma
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N2 plasma Ar plasma
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for N2 and Ar plasma in 2.45 GHz system.
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Ethanol conversion Ar/C 2H5OH plasma
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for Ar plasma in 2.45 GHz system.
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Ethanol conversion Ar/C 2H5OH plasma
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2.45 GHz system
N2 flow rate: 
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N2 plasma

Intensive CN molecules production
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Hydrogen production rate and energy efficiency of hydrogen production as a function of 
absorbed microwave power for N2 plasma in 2.45 GHz system.



Hydrogen production. The best results

Absorbed 
microwave 

power
kW

Flow rate
NL/h

Hydrogen 
production rate

NL(H2)/h
[g(H2)/h]

Energy yield
NL(H2)/kWh
[g(H2)/kWh]

Ethanol
conversion

degree
%

Products in 
the outgas

%

2 Ar - 3900
154

[12.8]

77

[6.3]
99.5

Ar - 93
H2 - 3.78
CO2 – 0.1
CO – 1.19
CH4 – 0.28
C2H2 – 0.54
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The best achieved results of hydrogen production via ethanol conversion 
using waveguide-supplied metal-cylinder-based MPS

C2H2 – 0.54
C2H4 – 0.26
C2H6 – 0.06

4 Ar - 3900
210

[17.5]

52.5

[4.4]
99.7

Ar - 91
H2 - 5.08
CO2 – 0.1
CO – 1.54
CH4 – 0.25
C2H2 – 0.9
C2H4 – 0.105
C2H6 – 0.03



Conventional and plasma methods of H 2 production
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Production method Initial composition Energy yield
g(H2)/kWh

Reference

Conventional steam 
reforming of methane

(catalyst)
CH4 +H2O+ air

60 Established 
Industrial Process

Katie Randolph, U.S. DOE,  Hydrogen Production,
2013 Annual Merit Review and Peer Evaluation
Meeting, May 16, 2013

Water electrolysis H2O 20 - 40
Katie Randolph, U.S. DOE,  Hydrogen Production,
2013 Annual Merit Review and Peer Evaluation
Meeting, May 16, 2013

Electron beam radiolysis CH4+H2O 3.6
T. Kappes et al., 8th Int. Symp. on High Pressure 
Low Temperature Plasma Chemistry, 196, 2002

Dielectric barrier discharge CH4+air 6.7
M. Heintze, B. Pietruszka 
Catal. Today 89, 21, 2004

CH +CO / H O 0.5
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Dielectric barrier discharge
CH4 +CO2  / H2O

CH3OH+CO2 / H2O
CH3CH2OH+CO2 / H2O

0.5
3.3
6.7

B. Sarmiento et al.
Journal of Power Sources 169, 140, 2007

Dielectric barrier discharge CH4 +CO2 5.2
M. Dors, T. Izdebski, A. Berendt, J. Mizeraczyk
Int. J. Plasma Envir. Sci. Technol., 6, 93, 2012 

Gliding arc CH4+H2O+air 40
J.M. Cormie, I. Rusu 

J. Phys. D: Appl. Phys. 34, 2798, 2001

Glid arc spray Ar+CH3OH 176
R. Burlica, K.-Y. Shih, B. Hnatiuc, B. R. Locke

Ind. Eng. Chem. Res., 50, 9466, 2011

Plasmatron with catalyst CH4+H2O+air 225
L. Bromberg et al. 

Int. J. Hydrogen Energy 25, 1157, 2000

Coaxial-line-based MPS CH4+N2 17
M. Jasiński, D. Czylkowski et al..

Int. J. Hydrogen Energy 38, 11473, 2013

Cylindrical MPS Ar+C2H5OH 6.4 present work



• The etal-cylinder-based MPS can operate in different gases (nitrogen, carbon dioxide, argon)
with high gas flow rates at atmospheric pressure and microwave power of a few kW

• The spectroscopic measurements showed the high gas temperature (1900-6000 K)

• The hydrogen production rate and energy yield were up to 210 NL(H2)/h [180 g(H2)/h] and
77 NL(H2)/kWh [42.9 g(H2)/kWh] in case of etanol thermal conversion using metal-cylinder-
based MPS

• The ethanol conversion rate in all cases was greater than 99% (initial addition of ethanol have

Summary and conclusions
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• The ethanol conversion rate in all cases was greater than 99% (initial addition of ethanol have
to be increased)

• The metal-cylinder-based MPS has a high potential for hydrogen production via liquid
hydrocarbons (e.g. ethanol) conversion
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