O projekcie

Cele projektu

19 partnerów projektu z dziewięciu krajów regionu Morza Bałtyckiego będzie badało i wdrażało niskotemperaturowe ogrzewanie w swoich gminach i regionach. IMP PAN w Projekcie koncentruje się na zagadnieniach z zakresu projektowania, budowy i eksploatacji maszyn i urządzeń umożliwiających wysoko efektywną generację ciepła/chłodu, jego dystrybucję i wykorzystanie u odbiorcy końcowego. Wszystkie te elementy służą zaopatrzeniu w ciepło i chłód budynków mieszkalnych, biurowych i przemysłowych w oparciu o architekturę sieci ciepłowniczej 4 generacji. Celem projektu, realizowanego w wielu krajach nadbałtyckich, są badania eksploatacyjne elementów sieci ciepłowniczych (wymienniki, zawory, itp.) prowadzone pod kątem optymalizacji rozwiązań konstrukcyjnych i dopasowania do odbiorników o niskiej temperaturze zasilania. Przykładem takich odbiorników są budynki, zespoły budynków lub całe dzielnice które po termomodernizacji wymagają niższej temperatury zasilania.

Albertslund

HDD 2018 (NUTS 2): 3020
Company: Albertslund varmeværk
Heat source: heating plant
Fuel: natural gas
Thermal capacity [MW]: 129
Supply temperature (winter) [°C]: 60
Return temperature (winter) [°C]: 35

Comments:
Albertslund municipality is heated by central heating grid supplied by waste incineration and CHP biomass combustion system. New SEAP envisions that in 2025 all heat and energy will be produced without CO2 emission – by introduction 4th generation district heating and better use of local energy sources (wind farms and heat pump). These measures are combined with complex renovation of communal housing resources, which includes LTDH application. By 2026 LTDH will be implemented in the whole city.


Source: J. Losinski, W. Cenian, A. Cenian, Reports on Study Visits in Denmark, Sweden, Germany (GoA 6.1 Implementation of study visits, lectures and seminars to increase the partnerships knowledge on LTDH), IMP PAN, Gdansk 2019
Berlin, Adlershof ("Wohnen am Campus")

HDD 2018 (NUTS 2): 2680
Company: BTB GmbH Berlin
Heat source: CHP
Fuel: natural gas
Power [MW]: 13
Thermal capacity [MW]: 96
Other heating system components: Power-to-Heat installation
Thermal capacity of additional heat source [MW]: 6
Supply temperature (winter) [°C]: 60
Return temperature (winter) [°C]: 40

Comments:
In the context of a subproject "Wohnen am Campus", energy company BTB Berlin – the owner and operator of combined heat and power plants (CHP) has investigated the possibility of supplying district heat to a small-scale residential area on the campus, which would generally be deemed unsuitable for this purpose due to its low heat density. This pointed to the implementation of a low-temperature grid 60/40 °C sourced from the return of the upstream district heating grid with conventional temperatures (110/55 °C). BTB also encouraged the customers to build their own feed-in renewable energy systems, e.g. thermal solar energy panels, of which three have been realized. Today, there are 1200 apartments in single-family homes, terraced houses and apartment blocks on an area measuring around 19 ha, with low heat demand, (total of 62 buildings, including 5 low energy and 3 plus energy buildings, which generate more energy than they consume over the course of a year). The CHP plant consists of a gas turbine (8 MWth, 5 MWel), four gas engine-generator units (BHKW – total: 8 MWth, 8 MWel), and four boilers (80 MWth); thus total installed capacity: 96 MW (thermal), and 13 MW (electric).


Source: J. Hinrichsen, FlexPaket Adlershof – Power-to-Heat in der Praxis der BTB GmbH Berlin, BTB, Berlin, 29.04.2015; A. Reinholz, "Wohnen am Campus": BTB's low temperature district heating system with solar feed-in in Berlin-Adlershof, BTB, Berlin, 17.01.2019 (presentation paper for LowTEMP Study Visit in Berlin, January 17, 2019); S. Dedeyne, P2X@ADLERSHOF: Insight into the topic of the research project and its results, BTB, Berlin, 16.01.2019 (presentation paper for LowTEMP Study Visit in Berlin, January 17, 2019); J. Losinski, W. Cenian, A. Cenian, Reports on Study Visits in Denmark, Sweden, Germany (GoA 6.1 Implementation of study visits, lectures and seminars to increase the partnerships knowledge on LTDH), IMP PAN, Gdansk 2019
Brædstrup (DK)

Company: Brædstrup Fjernvarme
Heat source: CHP
Thermal capacity [MW]: 50
Other heating system components: solar collectors, multifunctional heat storage
Supply temperature (winter) [°C]: 75/70
Return temperature (winter) [°C]: 30


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Bramming (DK)

Company: Bramming Fjernvarme a.m.b.a.
Heat source: CHP
Fuel: natural gas
Other heating system components: HVDC converter station in Endrup
Thermal capacity of additional heat source [MW]: 3,15
Supply temperature (winter) [°C]: 68


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Castelnuovo del Garda (IT)

Company: Hiref
Heat source: heat pump (based on industrial waste heat with temperature of 40 °C)
Thermal capacity [MW]: 1,32
Supply temperature (winter) [°C]: 63
Initial year of investment: 2011
Completion of the investment: 2014


Source: https://danskfjernvarme.dk/-/media/danskfjernvarme/gronenergi/jfb/reuseheat---24-cases-of-urban-waste-heat-recovery_c.pdf
Copenhagen, Nordhavn

HDD 2018 (NUTS 2): 3020
Company: HOFOR
Heat source: saline water heat pump
Thermal capacity [MW]: 0,8
Other heating system components: two electric boilers and a water storage tank
Thermal capacity of additional heat source [MW]: 0,2
Supply temperature (winter) [°C]: 70/65
Return temperature (winter) [°C]: 40
Completion of the investment: 2018

Comments:
Copenhagen has adopted the ambitious goal of becoming a CO2-neutral city by 2025, and district heating plays an important role. A demonstration plant at Copenhagen’s Nordhavn harbor, which supplies three cruise ship terminals and UNICEF warehouse with district heating, shows just how far you can get with electrification and sector coupling. The FlexHeat plant is a heat pump based on ground water that is retrieved from a 150 m deep well. The saline 10.5 °C water is pumped through a heat exchanger with ammonia as a refrigerant. The FlexHeat plant also has two electric heaters, which are used in special circumstances to increase the temperature of the outgoing supply to the consumers. The heat pump has a heat output of 800 kW, and the two electric boilers have a total output of 200 kW. Altogether, the FlexHeat facility has a heating capacity of 1 MW. The FlexHeat plant stores thermal energy corresponding to a virtual battery of 4 MWh in the 100 m3 water storage tank. The FlexHeat plant can operate in six different modes (where the sixth is not used in daily operation).


Source: https://www.danfoss.com/en/service-and-support/case-studies/dds/electrification-and-sector-coupling-achieve-co2-goals-at-flexheat-nordhavn/
Crailsheim (DE)

Company: Stadtwerke Crailsheim GmbH
Heat source: solar collectors
Thermal capacity [MW]: 20
Other heating system components: inter-seasonal borehole heat storage
Supply temperature (winter) [°C]: 75/65
Return temperature (winter) [°C]: 50/40


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Flensburg, Schwarzenbachtal (project)

HDD 2018 (NUTS 2): 2859
Company: Stadtwerke Flensburg GmbH
Heat source: CHP
Fuel: natural gas / light oil
Supply temperature (winter) [°C]: 60
Return temperature (winter) [°C]: 35/25

Comments:
The low-temperature network is part of the heat supply market segment. The goals of the project are to lower the return temperature of the district heating network, thereby increasing the efficiency of the turbine and reducing fuel costs. Thus, using the implementation of a low-temperature district heating network in Flensburg, a solution is shown as an example of how Stadtwerke Flensburg can reduce the costs caused by losses, particularly in the condensing power station, and the losses in the CHP plant (258 MW of power and thermal capacity). The Schwarzenbachtal development area is a good pilot project here. A low-temperature network can be fed from the return of a secondary / primary display of a main district heating line. The available temperature level for the low-temperature network is approx. 55 °C in the flow and approx. 30 °C in the return. As a result, the temperature of the return can be significantly reduced withing long-term and continued use of the low-temperature concept. At the moment, the return temperatures in the primary network are still 57-67 °C and in the secondary network approx. 60 °C. In order to maintain the drinking water supply even with fluctuating temperature levels, apartment transfer stations are equipped with a 3l drinking water storage tanks.


Source: L. Aßmann, C. Dähling, S. Körner, M. Schlemminger, Niedertemperaturnetz in Flensburg – Praktische Anwendung, technische Realisierbarkeit und Wirtschaftlichkeit, Europa-Universität Flensburg, Flensburg; L. Aßmann, C. Dähling, S. Körner, M. Schlemminger, Niedertemperaturnetz Flensburg – Green Engineering, Europa-Universität Flensburg, Flensburg 2017
Hamburg, HafenCity (West)

HDD 2018 (NUTS 2): 2791
Company: Wärme Hamburg GmbH
Heat source: heating plant / CHP (to further reduce CO2 emissions, it is equipped as a pilot plant with a steam turbine and a fuel cell)
Fuel: multifuel
Other heating system components: solar collectors
Completion of the investment: 2020

Comments:
The district heating supply (low temperature?) in HafenCity is a cost-effective and sustainable solution. Hamburg’s prestigious project is a model for successful city development and not just for architectural reasons. The energy concept also sets standards. The Danfoss control equipment installed in a wide range of buildings for the distribution of district heating ensures that every single kilowatt of energy is used as efficiently as possible, to the benefit of house owners, tenants and the energy supplier.


Source: https://www.danfoss.com/en/service-and-support/case-studies/dhs/district-heating-network-in-hafencity-hamburg-germany/
Hamburg, Bergedorf ("Bergedorfer Tor")

HDD 2018 (NUTS 2): 2791
Company: enercity Contracting GmbH
Heat source: CHP
Fuel: natural gas
Supply temperature (winter) [°C]: 45

Comments:
The heart of the energy supply is a combined heat and power plant (CHP). The chillers used for air conditioning in buildings work according to the principle of heat-cold coupling. In addition, the chillers are primarily driven by the electricity generated locally by the CHP modules. The residential building and the care facility draw their water for heating and direct consumption from a high-temperature heating network. There is a low-temperature heating network with a flow temperature of around 45 °C. This supplies the office buildings and the medical center in parallel to the high-temperature network. And this low-temperature network is operated with the waste heat from refrigeration, for which there would otherwise be no use. This not only significantly improves the efficiency of the chillers, it also reduces the amount of fuel used for heat supply.


Source: https://www.zfk.de/artikel/hamburg-quartierskonzept-fuer-waerme-und-kaelteversorgung-2018-07-28/
Høje-Taastrup, Sønderby

HDD 2018 (NUTS 2): 3020
Company: Hoje-Taastrup Fjernvarme a.m.b.a.
Heat source: heating plant
Fuel: natural gas / biometane
Thermal capacity [MW]: 15
Heat demand per annum [MWh]: 1715
Other heating system components: heat pump (based on district cooling of vegetable market)
Supply temperature (winter) [°C]: 55
Return temperature (winter) [°C]: 40

Comments:
The company Høje-Taastrup Fjernvarme a.m.b.a. developed a pilot LTDH system in 75 existing detached houses (110-212 m2 living area, the total heated area of 11,230 m2) with under-floor heating (in a housing area called Sønderby built in 1997-98) and return water flow from the neighbour area as the main supply (‘cold supply’) for the system. When the return water temperature is not sufficient for the LTDH-network, a portion of hot water from the ‘hot supply’ (normal utility supply) is added in the mixing shunt. The ‘cold supply’ has provided heat in the range of 30-67 °C (48 °C in average).


Source: J. Losinski, W. Cenian, A. Cenian, Reports on Study Visits in Denmark, Sweden, Germany (GoA 6.1 Implementation of study visits, lectures and seminars to increase the partnerships knowledge on LTDH), IMP PAN, Gdansk 2019
Kalundborg

Company: Kalundborg Forsyning A/S
Heat source: power plant
Fuel: biomass (converted from coal)
Other heating system components: waste water heat pump with capacity of 10 MW
Completion of the investment: 2019


Source: https://danskfjernvarme.dk/-/media/danskfjernvarme/gronenergi/jfb/reuseheat---24-cases-of-urban-waste-heat-recovery_c.pdf
Kassel, Harleshausen (project)

HDD 2018 (NUTS 2): 2838
Company: Städtische Werke AG
Heat source: CHP
Fuel: natural gas / biometane
Heat demand per annum [MWh]: 1600
Other heating system components: ground source heat pump
Supply temperature (winter) [°C]: 40
Initial year of investment: 2013
Completion of the investment: 2014

Comments:
The new settlement "Zum Feldlager" is in the Harleshausen district of Kassel. The central element of the new development is, among other things, a modern, sustainable and innovative heat supply. This largely dispenses with the use of fossil fuels and the supply via far less efficient small boiler systems in every boiler room. Instead, the new housing development should take care of itself. The innovative idea of the concept is that the generation variants are not mutually exclusive, but are combined with one another. In a first step, the energy requirements of the approximately 130 individual buildings and the entire settlement were determined, which should offer space for around 150 residential units in the future. For the planned single-family, terraced and multi-family houses in energy-efficient construction, the energy requirement for heating and hot water preparation is a good 1,600 megawatt hours (MWh) per year. Since the heat supply is to be largely ensured through renewable energy, the researchers and practitioners have developed three solutions for how heat can be generated in an environmentally friendly manner: low-temperature district heating and solar thermal energy; via a combined heat and power plant operated with biomethane in combination with a ground source heat pump; via a decentralized heat supply for individual buildings with air heat pumps and solar thermal support.


Source: A. Kallert, K. Stroh, D. Schmidt, Geosolare Wärmeversorgung – intelligente Verknüpfung erprobter Technologien – "das Feldlager Konzept", Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE, Kassel, 20. Februar 2019; D. Schmidt, Wärmewende 2030 – Schlüsseltechnologien zur Erreichung der mittel- und langfristigen Klimaschutzziele im Gebäudesektor, Fraunhofer IBP / Fraunhofer IWES, Kassel, 15. Februar 2017
Kiel

HDD 2018 (NUTS 2): 2871
Company: Stadtwerke Kiel AG
Supply temperature (winter) [°C]:75/70

Comments:
According to Stadtwerke Kiel AG, there are currently five major low temperature networks in Kiel. Networks are hydraulically attached to the primary network, but temperature is reduced to 70-75 °C instead of 90 °C. Stadtwerke Kiel AG is currently operating on the community power plant with 115 °C, because there are large pipe diameters from the old pipe structure in which over a large volume flow at a lower temperature the same amount of heat can be transported as in (future planned) small diameters and temperature of 130 °C. Great potential for low-temperature networks are hardly seen overall. In Ellerbek, an investigation for a low temperature network offer as a decoupling from the overall network.


Source: Die Zukunft der Fernwärme, Dokumentation des Fachworkshops zum "Masterplan 100% Klimaschutz", Kiel, 9. Mai 2017
Ludwigsburg, Grünbühl-Sonnenberg

HDD 2018 (NUTS 2): 2419
Company: Stadtwerke Ludwigsburg-Kornwestheim GmbH
Heat source: CHP
Fuel: natural gas
Power [MW]: 0,1
Thermal capacity [MW]: 0,2
Other heating system components: ground source heat pump
Thermal capacity of additional heat source [MW]: 0,2
Length of the LTDH network segment [km]: 1,8
Supply temperature (winter) [°C]: 70
Return temperature (winter) [°C]: 40

Comments:
The main pillar of the energetic neighborhood concept was the heat supply. With high energy standards (KfW 70 according to EnEV 2009) in the core development area Sonnenberg the city of Ludwigsburg had already specified a strategy in terms of construction. Now the task was to find a solution for the growing new building stock in Sonnenberg with the highest possible proportion of renewable energy sources. A high proportion of the before the energy consumed on site should also be generated locally. For Grünbühl, where there is none central heat supply there should be concepts of low temperature district heating microgrids. Possible expansion of the cogeneration plant
* Peak load and redundancy protection by gas boiler with 720 kW, year of construction 1995
* Route length of the first construction phase approx. 1,100 m, in the final construction approx. 1,800 m




Source: D. Pietruschka, D. Kurth, U. Eicker et al., Energetischer Stadtumbau Energieleitplanung und Wärmenetze für neue Nachbarschaften in Ludwigsburg Grünbühl-Sonnenberg, Fraunhofer IRB Verlag, Stuttgart 2016
Ludwigsburg, Sonnenberg-Südwest (project)

HDD 2018 (NUTS 2): 2419
Company: Stadtwerke Ludwigsburg-Kornwestheim GmbH
Heat demand per annum [MWh]:2686
Return temperature (winter) [°C]: 35

Comments:
In Sonnenberg-Südwest, changes on the customer side were excluded, for example the further increase in building density. Likewise, the heat supply (Grünbühl-Sonnenberg CHP plant) cannot be supplemented through the construction of another heating center. For these reasons research focused on the heat distribution system. There was recognized the potential of low-temperature local heating system. A cheap supply option offers the connection to the district heating return side of Sonnenberg system. The return line offers only relatively low temperatures around 40 °C, so there was developed low temperature distribution system with decentralized heat pumps.


Source: D. Pietruschka, D. Kurth, U. Eicker et al., Energetischer Stadtumbau Energieleitplanung und Wärmenetze für neue Nachbarschaften in Ludwigsburg Grünbühl-Sonnenberg, Fraunhofer IRB Verlag, Stuttgart 2016
Ludwigsburg, Sonnenberg-Sudwest (project)

HDD 2018 (NUTS 2): 2419
Company: Stadtwerke Ludwigsburg-Kornwestheim GmbH
Heat demand per annum [MWh]:2686
Return temperature (winter) [°C]: 35

Comments:
In Sonnenberg-Sudwest, changes on the customer side were excluded, for example the further increase in building density. Likewise, the heat supply (Grunbuhl-Sonnenberg CHP plant) cannot be supplemented through the construction of another heating center. For these reasons research focused on the heat distribution system. There was recognized the potential of low-temperature local heating system. A cheap supply option offers the connection to the district heating return side of Sonnenberg system. The return line offers only relatively low temperatures around 40 °C, so there was developed low temperature distribution system with decentralized heat pumps.

Lund, Brunnshög-Science Village

HDD 2018 (NUTS 2): 3140
Company: Kraftringen Energi AB
Heat source: ESS accelerator and MAX IV synchrotron
Heat demand per annum [MWh]: 128
Supply temperature (winter) [°C]: 80/65
Initial year of investment: 2016

Comments:
The European Spallation Source in Lund will be equipped with (the most intensive in the EU) pulsed neutron source, powered by a wind farm, which will enable investigations in the field of materials, life sciences, energy, environmental technology, cultural heritage, and fundamental physics. Energy efficiency is one of the important issues, as e.g. the energy supply was reduced from 310 to 270 GWh/a. The waste heat to be produced in large quantity, 100 GWht at temperature 80 °C and similar amount at lower temperature, will be used to supply heat for standard and low temperature grids. Besides, 28 GWh/a of heat under temperature 65 °C will be added from MAX IV synchrotron facility to provide heat to LTDH network in nearby Science Village. The whole Kraftringen DH system (to be finished 2035) will be one of the largest in the world (~8700 offtake points, 889 GWh/a, 1100 km).


Source: https://europeanspallationsource.se/
J. Losinski, W. Cenian, A. Cenian, Reports on Study Visits in Denmark, Sweden, Germany (GoA 6.1 Implementation of study visits, lectures and seminars to increase the partnerships knowledge on LTDH), IMP PAN, Gdansk 2019
Lystrup (DK)

Company: Lystrup Fjernvarme a.m.b.a.
Heat source: heating plant?
Fuel: natural gas?
Supply temperature (winter) [°C]: 55
Return temperature (winter) [°C]: 25


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Middelfart (DK)

Company: Middelfart Fjernvarme a.m.b.a.
Heat source: heating plant?
Fuel: natural gas?
Supply temperature (winter) [°C]: 68
Return temperature (winter) [°C]: 44


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
München, Freiham-Nord

HDD 2018 (NUTS 2): 2536
Company: Stadtwerke München GmbH
Heat source: geothermal heating plant
Thermal capacity [MW]: 9,5
Length of the LTDH network segment [km]: 4,5
Supply temperature (winter) [°C]: 60
Return temperature (winter) [°C]: 35
Initial year of investment: 2016
Completion of the investment: 2022

Comments:
The heat is transferred to the individual by means of apartment transfer stations. The apartment transfer stations have two heat exchangers, one for heating and one for heating the drinking water, using the flow principle. For security and cost reasons, the individual devices (radiators, surface heating, etc.) are separated from the heating water circuit of the district heating network. Devices in the individual apartments can thus be carried out for lower pressures.


Source: M. Arnold, Investitionskriterien Fernwärme / Fernkälte, Stadtwerke München, München, 26. Januar 2017
Munksundet (SE)

Company: Svenska Cellulosa AB
Heat source: industrial waste heat
Supply temperature (winter) [°C]: 70
Return temperature (winter) [°C]: 40


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Paris, Saclay

HDD 2018 (NUTS 2): 2060
Company: Etablissement public d'aménagement Paris-Saclay
Heat source: geothermal heating plant
Thermal capacity [MW]: 37
Heat demand per annum [MWh]: 40000
Length of the LTDH network segment [km]: 10
Supply temperature (winter) [°C]: 63
Return temperature (winter) [°C]: 45
Initial year of investment: 2016
Completion of the investment: 2022

Comments:
Paris-Saclay has developed a low carbon district heating and cooling network, vital infrastructure to harness local and renewable energies. It will increase the potential to reach optimum energy use across the region at any moment by playing on all the elements involved: thermal inertia of buildings, heat storage, the recharging of electric vehicles, the incorporation of solar panels, and many more. The Paris-Saclay Development Agency and its energy transition institute (PS2E) have signed a framework research agreement on Paris-Saclay’s industrial energy systems with a view to potentially integrate them into a broader Paris-Saclay Smart Energy project.


Source: M. Galindo Fernández, C. Roger-Lacan, U. Gährs, V. Aumaitre, Efficient district heating and cooling systems in the EU – Case studies analysis, replicable key success factors and potential policy implications, JRC Science Hub, Publications Office of the European Union, Luxembourg 2016
Rødkærsbro (DK)

Company: Rødkærsbro Fjernvarmeværk
Heat source: CHP and heating plant
Fuel: biogas
Heat demand per annum [MWh]; 15000
Other heating system components: heat pump (based on industrial waste heat with temperature of 20-25 °C)
Thermal capacity of additional heat source [MW]: 1,6


Source: https://danskfjernvarme.dk/-/media/danskfjernvarme/gronenergi/jfb/reuseheat---24-cases-of-urban-waste-heat-recovery_c.pdf
Skjern (DK)

Company: Skjern Papirfabrik
Heat source: heat pump (based on industrial waste heat with temperature of 43 °C)
Thermal capacity [MW]: 4
Supply temperature (winter) [°C]: 70
Completion of the investment: 2012


Source: https://danskfjernvarme.dk/-/media/danskfjernvarme/gronenergi/jfb/reuseheat---24-cases-of-urban-waste-heat-recovery_c.pdf
Slough

Company:Slough Heat and Power
Heat source:CHP
Fuel:multifuel
Supply temperature (winter) [°C]: 52
Return temperature (winter) [°C]: 32


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Spjald (DK)

Company: Spjald Fjernvarme- og Vandværk
Heat source: CHP
Fuel: biogas
Supply temperature (winter) [°C]: 65
Return temperature (winter) [°C]: 39/32


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Tarm (DK)

Company: Tarm varmeværk
Heat source: heating plant
Fuel: natural gas
Supply temperature (winter) [°C]: 65
Return temperature (winter) [°C]: 36


Source: https://www.researchgate.net/publication/327538652_Transition_to_the_4th_generation_district_heating_-_possibilities_bottlenecks_and_challenges
Halmstad, Ranagård (project)

Company: Halmstads Energi och Miljö AB
Heat source: CHP
Fuel: biomass
Supply temperature (winter) [°C]: 65/55


Source: https://www.halmstadarena.se/
J. Losinski, W. Cenian, A. Cenian, Reports on Study Visits in Denmark, Sweden, Germany (GoA 6.1 Implementation of study visits, lectures and seminars to increase the partnerships knowledge on LTDH), IMP PAN, Gdansk 2019
Gulbene

Heat source: firewood boiler
Fuel: pellet
Thermal capacity [MW]: 0,2
Heat demand per annum [MWh]: 489
Initial year of investment: 2017
Completion of the investment: 2019

Comments:
Installing a modern, self-acting pellet boiler with a pellet tank with as little human involvement was a goal, including the replacement of the outdated DH infrastructure with a LTDH grid to reduce CO2 emissions.


Source: Best Practice No. 1, Implementation of LTDH in existing buildings and installations, LowTEMP Training Package 23, Hamburg – Gdansk 2020
Jabłoń

Heat source: heat pumps
Heat demand per annum [MWh]: 44,7
Initial year of investment: 2020

Comments:
Improvement of energy efficiency in multi-family residential buildings of the commune through comprehensive thermomodernization using low-temperature energy sources was a goal. Project "Renewable energy sources in the Municipality of Jabłoń" was co-financed from the EU funds.


Source: Audyt energetyczny opracowany przez firmę MSC ENERGOEKSPERT Projektowanie i Doradztwo Techniczne, Gdańsk, styczeń 2019; Best Practice No. 1, Implementation of LTDH in existing buildings and installations, LowTEMP Training Package 23, Hamburg – Gdansk 2020
Łomża

Heat source: CHP
Fuel: biomass
Power [MW]: 2,8
Thermal capacity [MW]: 14
Other heating system components: biomass heating plant
Thermal capacity of additional heat source [MW]: 15
Length of the LTDH network segment [km]: 160
Supply temperature (winter) [°C]: 89
Return temperature (winter) [°C]: 48
Completion of the investment: 2022

Comments:
Goal – by 2022: Heat and energy will be produced with 75% reduction of CO2 emission, transformation of the whole existing DH into LTDH. Decrease of DH heat losses from 12.6% to 9.5% (use of biomass – local energy source in boilers and CHP unit).


Source: Best Practice No. 1, Implementation of LTDH in existing buildings and installations, LowTEMP Training Package 23, Hamburg – Gdansk 2020
Zakopane

Company: Geotermia Podhalańska
Heat source: geothermal heating plant
Thermal capacity [MW]: 40,7
Heat demand per annum [MWh]: 125166,7
Other heating system components: CHP (oil, natural gas)
Thermal capacity of additional heat source [MW]: 40,1
Length of the LTDH network segment [km]: 110
Initial year of investment: 1993
Completion of the investment: 2020

Comments:
Testing the possibility of more efficient use of geothermal heat by using it in low-temperature installations of various industry sectors was the goal. Construction of a cascade system for the use of geothermal heat on the premises of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences.


Source: W. Ignacok, P. Kupczak, Przedsiębiorstwo Energetyki Cieplnej Geotermia Podhalańska SA – przeszłość, dzień dzisiejszy i plany rozwoju, Technika Poszukiwań Geologicznych, nr 1/2018; Best Practice No. 2, Implementation of LTDH concept in new urban developments and local heating systems, LowTEMP Training Package 24, Hamburg – Gdansk 2020


O projekcie

W wielu krajach nadbałtyckich istniejące maszyny i urządzenia wykorzystywane w sieci ciepłowniczej nie spełniają warunków efektywności energetycznej ze względu m.in. na szereg problemów eksploatacyjnych. Z tego powodu IMP PAN w projekcie wiele uwagi poświęca przewymiarowanym wymiennikom ciepła w węzłach ciepłowniczych oraz koniecznej ich modernizacji poprzez zaproponowanie nowych, wysokosprawnych rozwiązań konstrukcyjnych. Jednym z kolejnych problemów podjętych w ramach projektu jest integracja wielu urządzeń wytwórczych ciepła i chłodu (m.in. opartych na odnawialnych źródłach energii OZE oraz cieple odpadowym).
W ramach działań realizowanych w IMP PAN opracowywano koncepcję wymiennika dedykowanego do odzysku ciepła z procesów produkcyjnych realizowanych w pralni przemysłowej. W tym przypadku realizowane są prace z zakresu podstaw konstrukcji maszyn, inżynierii produkcji, termodynamiki i wymiany ciepła. Wykonywane są obliczenia i analizy innowacyjnych układów, dobory geometrii i pola powierzchni wymiany ciepła.
W IMP PAN realizowane są analizy cieplno-przepływowe opracowywanych w ramach projektu sieci i urządzeń ciepłowniczych (m.in. sieci ciepłowniczo-chłodniczych 5 generacji) oraz przygotowywane są publikacje do czasopism naukowych i specjalistycznych. W ramach projektu opracowywane są pompy ciepła pracująca w warunkach gdzie ciepłociąg, w zależności od potrzeb, stanowi górne lub dolne źródło pompy ciepła. W tym przypadku realizowane są działania z zakresu termodynamiki, wymiany ciepła i mechaniki płynów z uwagi na konieczność wykonania obliczeń: doboru optymalnego czynnika roboczego pomp ciepła, głębokości położenia ciepłociągów i oporów przepływu. Dodatkowo by osiągnąć cel projektu, zaprojektowano, wykonano i przebadano pod kątem charakterystyk eksploatacyjnych szereg elementów (urządzeń) instalacji pilotażowych 4 generacji, m.in. w Lubaniu pod Kościerzyną.

W ramach projektu LowTEMP współpracuje 19 partnerów z dziewięciu państw nadbałtyckich, w tym Dania, Niemcy, Polska, Litwa, Łotwa, Estonia, Finlandia, Szwecja, a także Rosja. Liderem projektu jest IMP PAN Gdańsk. Działania dostarczają lokalnym i regionalnym władzom publicznym, a także instytucjom odpowiedzialnym za dostawę ciepła, know-how w zakresie projektowania i optymalizacji konstrukcji, maszyn oraz urządzeń a także strategiczne narzędzia diagnostyki i optymalizacji wybranych elementów niskotemperaturowych sieci ciepłowniczych (LTDH) w tym sieci ciepłowniczo/chłodniczych 5 generacji. Ponadto, opracowano program szkoleniowy rozpowszechniający know-how projektu wśród przyszłych ekspertów, w modelu „train-the-trainers”.
Projekt przyczynia się do realizacji celów strategii "Europa 2020", promując efektywność energetyczną, wykorzystanie źródeł odnawialnych i zmniejszenie emisji CO2, do krajowych i europejskich polityk rozwoju przestrzennego, a także do strategii Unii Europejskiej dla regionu Morza Bałtyckiego (EUSBSR).
Projekt LowTEMP jest wspierany przez Unię Europejską (Europejski Fundusz Rozwoju Regionalnego i Europejski Instrument Sąsiedztwa) w ramach programu Interreg Baltic Sea Region na lata 2014-2020.